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Abstract

Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating

restricts the plasmon frequencies to a range that does not include visible and infrared. Here we

show, through the use of first-principles calculations, that the high levels of doping achieved by

lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible

range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon

interaction across the vacuum separating periodic images of the doped graphene layers, consisting

of transparent boundary conditions in the direction perpendicular to the layers; this represents a

significant improvement over the Exact Coulomb cutoff technique employed in earlier works. The

resulting plasmon modes are due to local field efffects and the non-local response of the material to

external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the

features of these quantum plasmons, including the dispersion relation, losses and field localization.

Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two

dimensional materials.
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Collective excitations of electrons in metals, generically referred to as plasmons, have11

been attracting new attention recently in the realm of nanoparticles and low-dimensional12

materials. In these systems, new plasmonic phenomena continue to be discovered, be-13

yond what was observed in conventional crystalline solids. These phenomena include14

quantum interference of plasmons, observation of quantum coupling of plasmons to sin-15

gle particle excitations, and quantum confinement of plasmons in nm-scale particles and16

materials. These phenomena, intriguing in their own right, are also important for mul-17

tifaceted applications. Plasmonic nanostructures are finding applications in integrated18

nanophotonics1, biosensing2–4, photovoltaic devices5–7, single photon transistors8, single19

molecule spectroscopy9 and metamaterials10,11. The current interest in quantum nanopho-20

tonics and plasmonics is in part driven by new materials, particularly low dimensional solids,21

that access new ranges of frequency and transmission speeds. The reduced dimensionality22

of plasmons in two-dimensional (2D) materials provides ultra-subwavelength confinement23

with phase velocities several orders of magnitude lower than the speed of light12. In the24

present work we show that by properly controlling the density of metallic electrons in few-25

layer graphene, the prototypical 2D metal, the plasmon frequency can be pushed into the26

visible to near-infrared range, a feature highly desirable for optoelectronic applications and27

heretofore unattainable.28

Graphene is quite special for 2D plasmonics13, exhibiting intriguing properties such as ex-29

tremely high electrical mobility14 and easily tunable electron and hole doping concentrations30

(ne, nh), through gating14,15. The plasmon frequencies in graphene are controlled through31

doping13, where typical doping concentration values achieved by gating are ≈ 1011 cm−2, and32

the heaviest doping reached16 is nh > 1013 cm−2. Plasmons in gate-doped graphene typically33

emerge in the infrared to THz ranges, and seldom in the mid- or near-infrared range4,16,17.34

So far, reaching the visible range for 2D plasmons in graphene, a crucial requirement for35

optoelectronic applications, has remained elusive. Searching for materials beyond graphene36

to achieve plasmons with optical frequencies is a possible route. For example, one possibil-37

ity is the family of 2D materials referred to as transition metal dichalcogenides (TMDCs),38

but plasmons in these materials are predicted to appear at THz frequencies18,19. Another39

possible solution, the plasmon mode on Be(0001)13 observed in the visible range20, cannot40

be interpreted as a true 2D plasmon, since it has finite penetration depth into the under-41

lying bulk material. A recent report by Huang et al.21 predicts that triangular polymorph42
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of 2D boron sheet exhibits visible frequency plasmons. But free-standing triangular 2D43

boron is dynamically unstable22 and its experimental synthesis quite difficult, which makes44

it challenging for device applications.45

We propose here an alternative approach for breaking the impasse, by doping few-layer46

graphene structures to levels beyond what is achievable through gating. Though there have47

been previous reports of optical-frequency plasmons in graphene monolayers with adsorbed48

Li atoms (LiC2)
23, this configuration is energetically unstable as we have established in49

previous work24, and therefore unlikely to form experimentally; encapsulating the Li atoms50

between graphene layers, as in the structures proposed and studied here, is required to stabi-51

lize the doped system. Experiments have proved the feasibility of inserting metal atoms like52

lithium (Li) between layers of 2D materials25,26 resulting in heavy doping. Inspired by this,53

we use a theoretical approach based on first-principles electronic structure calculations to54

explore the possibility of observing quantum plasmons in the visible range for Li-intercalated55

two- and three-layer graphene. The origin of 2D plasmons is related to the local field effects56

and the non-local response of the material to external fields27. Hence, the study of these57

waves demands a fully quantum mechanical description of the material properties which58

compells us to call them as ‘quantum’ 2D plasmons. We effectively capture the quantum59

nature of these plasmons through our accurate, high-fidelity first-principles calculations, dis-60

tinguished by: (i) our methodology which correctly confines plasmons in two dimensions,61

and (ii) a realistic estimate of carrier lifetime, a crucial factor that determines plasmon62

losses. Our results show that quantum plasmons in few-layer graphene are indeed feasible.63

This opens new pathways for fine-tuning a wide range of plasmon frequencies, including the64

visible range, in 2D structures, by controlling the concentration and type of intercalants.65

Our first-principles calculations are based on density functional theory (DFT) as imple-66

mented in the GPAW package28,29. The interaction between ionic cores and valence electrons67

is described by the projector augmented wave method30,31. A vacuum of 25 Å is included68

to minimize the interaction between periodic images along the direction perpendicular to69

the plane of the sheets (z direction). The Kohn-Sham wavefunctions are respresented using70

a plane wave basis with energy cutoff of 340 eV, and the exchange correlation energy of71

electrons is described using Local Density Approximated (LDA) functional. For the linear72

response calculations, used to estimate the dielectric functions32, we sample the Brillouin73

zone with a 256 × 256 × 1 grid of k-points to include an accurate description of intraband74
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transitions. For the dielectric response calculations we use a plane wave energy cutoff of 3075

eV. All the other parameters were converged to within 0.05 eV of the plasmon energies, us-76

ing the methodology developed by Andersen et al.18,33 for calculating the quantum plasmon77

modes.78

The potential φ(r, ω) and charge density ρ(r, ω) of the quantum plasmon modes, are79

obtained as left and right eigenfunctions (which satisfy the Poisson equation) of the dielectric80

operator ε̂(ω), diagonalized in the plane wave basis:81

ε̂(ω)φn(ω) = [1̂− v̂ χ̂0(ω)]φn(ω) = λn(ω)φn(ω), (1)

where ω and r denote the frequency and in-plane spatial vector, respectively. Here, ε̂(ω)82

expressed in terms of the noninteracting linear response operator χ̂0(ω) and the Coulomb83

interaction operator v̂ = 1/|r− r′|. The condition for observing a plasmon at frequency ωp84

is Re[λn(ω)] = 0 or equivalently a peak in the loss function, −Im[λn(ω)]/|λn(ω)|2.85

A key ingredient in obtaining the plasmon dispersion relations and losses is the carrier86

lifetime, τ . To obtain reliable values of τ , we used DFT results for the energies and matrix87

elements of both electrons and phonons (see Supplemental Material34 and35). This takes88

into account the detailed electronic structure effects such as response of electrons far from89

the Dirac point, as well as scattering against both accoustic and optical phonons including90

Umklapp and inter-valley processes35–38. Doping, that is, change in position of the Fermi91

level (EF), changes the value of τ , and hence calculations were carried out for several different92

values of EF ranging from the neutral (undoped) value to 1.5 eV above it (see Supplemental93

Material34 for details of formulation and35 for values of τ). Interestingly, our results show94

that the extremely large τ ≈ 1 ps for free standing undoped graphene drops to ≈ 29 fs in95

doped graphene. For simplicity and computational efficiency, we use a doped monolayer96

graphene to obtain the values of τ for positions of EF that correspond to those of the Li-97

doped bilayer and trilayer graphene; this is a reasonable approximation, because, at high98

doping concentrations, we expect that the effects of interlayer electron-phonon and electron-99

electron coupling on τ in intercalated graphene will be rather small compared to the effects100

of changing the position of EF , which is properly taken into account by the procedure101

described.102

The standard approach for eliminating spurious effects due to finite size of vacuum39 is103

inadequate for plasmons with small in-plane wavectors (q), and increasing the size of the104
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vacuum region until these effects become negligibly small requires very expensive calcula-105

tions. A significant methodological contribution of the present work is the formulation and106

implementation of transparent boundary conditions which overcome the drawbacks of the107

Coulomb cutoff method and offer a more accurate description of the quantum plasmon fields.108

Let z−, z+ be the bounds of the super-cell (simulation box) along the z direction (vacuum109

region) with (x, y) plane being periodic. We apply a one-dimensional Fourier transform110

in the z direction to obtain a real space representation in this coordinate. The response111

operator under random phase approximation (RPA) then has the form:112

χ̂0φ(z,Gxy,q, ω) =

∫ z+

z−

∑
G′xy

χ0
Gxy,G′xy

(z, z′,q, ω)φ(z′,G′xy,q, ω)dz′, (2)

where Gxy, G′xy are vectors of the in-plane reciprocal lattice For values of z, z′ inside the113

super-cell, z− < z, z′ < z+, the kernel χ0
Gxy,G′xy

(z, z′) is deduced from χ0
G,G′ by Fourier114

transform. The kernel is extended with zero values for z or z′ that lie in the vacuum region115

outside this cell. We observe that Eq. (1) can be reformulated as the generalized eigenvalue116

problem34:117

χ̂0φn(z,Gxy,q, ω) =
1− λn

4π

(
|q + Gxy|2 −

∂2

∂z2

)
φn(z,Gxy,q, ω), (3)

with additional constraint that |φn| → 0 as z → ±∞ so the problem is well-posed. The

left-hand side vanishes in the vacuum region and Eq. (3) reduces to the one-dimensional

Poisson equation. For any nonzero value of |q + Gxy|, we thus obtain an explicit solution

φn(z,Gxy,q, ω) = φn(z±,Gxy,q, ω)e−|q+Gxy||z±−z|,

for z ≤ z− and z ≥ z+. The continuity of φn and its first derivative with respect to z leads118

to the transparent boundary conditions at z = z±:119

∂φn

∂z
(q,Gxy, z±, ω) = ∓|q + Gxy|φn(q,Gxy, z±, ω), (4)

which implies that the charge density and potential do not see the periodic boundary along120

the z direction for any value of q, and hence decay to zero as z → ±∞. The imposition of121

additional constraints generalizes the previous approaches39,40, which makes the transparent122

boundary conditions an improvement over the former techniques. We solve numerically by123

finite differences the eigenvalue problem of Eq. (3) restricted to the finite band z− ≤ z ≤ z+,124

with the boundary conditions of Eq.(4) (see Supplemental Material for details34).125
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We model Li intercalated graphene (G) multilayers with an in-plane
√

3×
√

3 multiple of126

the primitive unit cell of graphene, with the G/Li/G (bilayer) and G/Li/G/Li/G (trilayer)127

structures. There is one Li atom per unit cell between each pair of layers (see Fig. 1)24,41.128

For the trilayer, we consider the structure with the two Li atoms at the same hollow site129

but between two different pairs of graphene layers, as this is the most stable configuration41.130

Li intercalation makes AA stacking energetically more preferable24 and hence both bilayer131

and trilayer structures are inversion symmetric. The separation between the layers increases132

by 0.14 Å and 0.11 Å relative to its value in the AA stacked graphene bilayer (3.52 Å), for133

the bilayer and trilayer, respectively. Due to band folding in the
√

3 ×
√

3 unit cell, the134

high symmetry K point and hence the Dirac point of primitive graphene cell folds onto Γ135

point in the Brillouin zone (BZ) in our simulations (see Fig. 1). AA stacking preserves the136

sublattice symmetry of the layers and the linear dispersion of the electron bands at the Dirac137

point, unlike AB stacking where the bands are parabolic42. Intercalation also leads to charge138

transfer from Li to the graphene layers, and renders the system metallic (see Fig. 1) with ≈139

0.84e and 0.87e charge transferred from Li to bilayer and trilayer graphene (determined using140

Bader analysis), which corresponds to n = 5×1014 and n = 1015, respectively. Subsequently,141

shifting the Fermi level from the Dirac point into the conduction band by 1.35 eV and by142

1.51 eV for the bilayer and trilayer, respectively, as seen in Fig. 1.143

Since we consider metallic multilayers, more than one plasmon modes emerge18,33,42. De-144

pending on the phase of the charge density and potential fields, we differentiate them as145

symmetric and antisymmetric plasmonic modes [see Fig. 2(a) and (d)]. For small q, the146

decay length of 2D plasmons extends beyond the vacuum region giving rise to interactions147

with periodic images, and hence, spurious fields and pseudo charges at the vacuum edge. On148

the other hand, our transparent boundary conditions correct these periodic interactions and149

make the plasmon tails invisible to one another for the same vacuum length. The charge150

density with (solid lines) and without (dotted lines) transparent boundary conditions is151

shown in Fig. 2(a) and (d) for G/Li/G and G/Li/G/Li/G, respectively. We also note that152

the charge transferred from Li is equally distributed in the unoccupied π∗ orbitals, which is153

confirmed from the charge density distribution of the plasmon modes [see in Fig. 2(a) and154

(d)], where the intensity of the fields is equal and reaches the maximum/minimum values155

away from the layers, consistent with the fact that the π∗ orbitals of graphene extend away156

from the layers.157
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We plot the plasmon dispersion along Γ-M (the Γ-K direction is not as interesting in the158

band structure) with the magnitude of the real part of q ranging from |q|= q= 0.007 Å−1 to159

0.21 Å−1, since both plasmon modes become very weak above q= 0.21 Å−1. The symmetric160

mode is more dispersive than antisymmetric, and varies as
√
q at small q, corresponding161

to classical plasmon with Drude behavior due to intraband transitions. Whereas the anti-162

symmetric mode varies almost linearly with q (has finite frequency at q=0) and relates to163

interband transitions between perfectly nested bands of the two layers42. In G/Li/G the164

plasmon frequencies are between 0.8 eV to 2.2 eV for q ≥ 0.007 Å−1; the antisymmetric165

mode is in the optical frequency range even at low q, whereas the symmetric mode enters166

into this range at higher q values. The symmetric mode is always lower in energy than the167

antisymmetric mode due to finite coupling42. We note that the acoustic plasmon arising168

from the anisotropy of the bands crossing the Fermi level along Γ-M is not captured in169

our calculations due to limitations of the frequency grid which is too coarse on the scale170

required to reveal this feature. However, this does not affect our conclusions since this171

particular mode is damped by the intraband transitions and therefore not of interest here.172

We quantify the plasmon losses from the ratio of real to imaginary component of173

wavenumber, Re[q]/Im[q]43, which corresponds to the number of plasmon wavelengths that174

propagate before it loses most of its energy [see Fig. 2(c)]. For the doping in G/Li/G (EF =175

1.35 eV), a τ ≈ 29 fs was calculated using our methodology discussed above, which is much176

shorter in comparison with τ ≈ 135 fs for EF = 0.135 eV43 . We only give the ratio for the177

symmetric (intraband) mode in Fig. 2(c). Due to its linear dispersion, antisymmetric mode178

shows less variation in Re[q]/Im[q] as compared with symmetric mode (see Supplemental179

Fig. S134). The in-plane propagation length of the plasmons varies directly with this ratio,180

with the symmetric plasmons propagating longer at longer wavelengths (λair). We also181

calculate the wave “shrinkage”or the field localization of the plasmons, shown in Fig. 2(c);182

this corresponds to the ratio by which the plasmon wavelength (λp) is smaller than that in183

vacuum, and is approximately 100 times for bilayer graphene.184

There are three important decay modes that lead to plasmon damping: (i) Landau185

damping due to intraband losses when h̄ω< h̄vFq, (ii) interband losses (electron-hole186

transitions referred to as single-particle excitations, SPE’s, identified as poles of the re-187

sponse function42,44) when h̄ω> h̄ωSPE (with damping region defined by h̄ωSPE − h̄vFq <h̄ω188

<h̄ωSPE + h̄vFq), and (iii) decay through optical phonons in graphene for ω> ωph (ωph= 0.2189
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eV or 6.2 µm)43 due to scattering of electrons (that is, plasmonic excitation) due to phonons.190

This calculation of dielectric function under the Random Phase Approximation (RPA) does191

not include the effects of electron-hole interactions, which are captured only by including192

a dynamically screened instead of the bare Coulomb interaction. However, these excitons193

give rise to a prominent peak in the absorption spectrum near 4.5 eV45 which is at a much194

higher energy than the visible frequency range. Also, doping has been shown to increase195

screening and reduce electron-hole interactions in graphene, leaving the optical response196

nearly identical to undoped graphene45. Hence, the exclusion of electron-hole interactions197

in our calculations does not affect the results.198

In case of G/Li/G, since the optical phonon ωph = 1400 cm−1 ≡ 0.17 eV41,46 is much199

smaller than the symmetric or antisymmetric plasmon frequencies (0.8 eV to 2.2 eV for200

q ≥ 0.007 Å−1), only multiple scatterings by phonons (which are less likely) will scatter201

plasmons into the damping regions. On the other hand, plasmons within frequency range202

ωSPE−ωph to ωSPE can get scattered by phonons into Landau/interband scattering regions.203

Therefore making ω> ωSPE − ωph the region where plasmons are damped by interband204

transitions and optical phonons. The SPE’s at q= 0 were identified at 0 eV, 0.6 eV and205

2.4 eV originating from the intraband, low energy interband and the electron-hole interband206

transitions in G/Li/G. The damping regions are defined by ESPE± h̄vFq ± h̄ωph (including207

scattering by optical phonons), where vF is the Fermi velocity and ESPE is the single particle208

excitation energy44,47 [see gray shaded areas in Fig. 2(b)]. Heavy doping by lithium pushes209

the electron-hole interband threshold for the bilayer to ωinter ≈ 1.77 eV (λ = 0.7 µm). Since210

the optical frequency range (ωop) is between 1.59 eV to 3.26 eV (λ = 0.38 µm to 0.78 µm)211

and ωinter < ωop, most of the symmetric and antisymmetric plasmon modes in this range are212

not damped by the interband transitions, indicated by the shaded regions in Fig. 2(b) and213

2(e). Only for q ≥ 0.06 Å−1 are the symmetric and antisymmetric modes damped.214

To push the interband threshold frequency, and hence the plasmon frequencies, higher215

into the optical range (> 2 eV), the Fermi level needs to be moved farther into the conduction216

bands. Since the maximum possible intercalation in bilayer graphene corresponds to com-217

position C12Li, additional Li can be incorporated only by having more than two graphene218

layers. We therefore explore trilayer graphene since it can accomodate two Li layers, with219

a composition Li2C18, which increases the doping level to EF = 1.51 eV. There are three220

modes in the trilayer structure in the 1.2 – 2.8 eV frequency range along the Γ-M direction221
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for q ≥ 0.007 Å−1, two of which are symmetric and one antisymmetric, shown in Fig. 2(d).222

The third (second symmetric) mode emerges due to the third graphene layer which brings223

in additional nesting of the bands. Similar to the bilayer case, the first symmetric mode due224

to intraband excitations exhibits
√
q dependence and the other two modes disperse linearly,225

see Fig. 2(e). The loss function shows larger variations in the peak positions for the first226

symmetric mode due to
√
q behavior at low q as compared to the antisymmetric mode (see227

Supplemental Fig. S2 for details34). More interestingly, the first symmetric and antisym-228

metric bands in the dispersion spectrum [red and blue curves in Fig. 2(e)] intersect and229

the symmetric and antisymmetric modes are degenerate for q > 0.067 Å−1 along Γ-M. The230

reason behind this unusual degeneracy is the fine nesting between the bands at the Fermi231

level and consequently the absence of coupling between the two modes42.232

The higher doping concentration pushes the interband threshold frequency (ωinter) to233

≈ 2.0 eV (0.62 µm) for the first symmetric and antisymmetric modes in G/Li/G/Li/G.234

The poles at 0 eV, 0.64 eV, 0.93 eV and 2.5 eV correspond to the three damping regions235

associated with intraband, low energy interband, and higher energy electron-hole interband236

transitions. Hence, for 1.59 eV < ω < 2.0 eV (0.62 µm< λair < 0.78 µm) the first symmetric237

and antisymmetric modes are undamped. More importantly, the second symmetric mode238

gets damped at a higher frequency (ω > 2.2 eV), so all three plasmon modes are undamped239

and emerge in the optical range for q < 0.05 Å−1. The τ in graphene for such high doping240

concentration (EF = 1.51 eV) is quite small ≈ 19 fs (See Supplemental Material34). From the241

Re[q]/Im[q] in Fig. 2(f), we find that the first symmetric mode can be observed further into242

the mid-infrared range (from extrapolation) (λair > 3 µm), whereas the other two modes have243

shorter wavelengths (λair < 0.62 µm). λp is also shrunk by approximately 100 times, Fig.244

2(f), as in the case for bilayer graphene, in agreement with previous reports43. We only plot245

the ratio for the first symmetric (intraband) mode in Fig. 2(f). Since the antisymmetric and246

second symmetric modes disperse linearly, the variation in the Re[q]/Im[q] is small. These247

plasmons exhibit similar “shrinkage”as that of the symmetric mode (refer to Supplemental248

Fig. S2 for further details34).249

Controlling the number of layers and the concentration of intercalated Li atoms appears to250

be a feasible method for engineering the properties of visible plasmons for applications. For251

example, the mid-infrared region plasmons in both the bilayer and trilayer Li-intercalated252

structures, can be used for plasmonic biosensing4,16. We caution that certain technical253
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aspects of the calculations reported here, like the choice of exchange correlation functional254

for the electronic structure, can affect the electronic spectrum and can shift the plasmon255

energies to slightly different values than what we reported; such shifts could change the256

precise values of the damped plasmon frequencies but we do not expect them to alter the257

overall picture. Damping due to the presence of defects and substrate phonons, features that258

were not included in the model of the physical system considered here, can also influence259

the existence of undamped 2D plasmons in the visible frequency range. A detailed analysis260

of these parameters will constitute the future scope of this work. Our work can be easily261

extended to explore other multilayers of other 2D materials (such as black phosphorus,262

transition metal dichalcogenides) with different dopants and/or intercalants (K, Mg, Na263

etc), opening up new pathways for fine tuning the plasmon dispersion either by varying264

the number and type of layers, and/or by varying the concentration and type of intercalant265

atoms.266
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I. FIGURES278

FIG. 1. Atomic structures (side and top views) and electronic structures of: (a) the bilayer Li-

intercalated graphene (G/Li/G, left) and (b) the trilayer Li-intercalated graphene (G/Li/G/Li/G,

right). The shaded regions in (a) and (b) denote the occupied states, and the dashed black lines

the Dirac point / Fermi level in undoped layers.
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FIG. 2. Plasmon features for: (a)-(c), the G/Li/G system, and (d)-(f), the G/Li/G/Li/G system.

(a) and (d) Plasmon charge density ρ(r) at q= 0.007 Å−1 for the symmetric modes (blue and

green lines) and the antisymmetric mode (red lines); solid lines (thicker and lighter shade) are for

results with transparent boundary conditions, dashed lines (thinner and darker shade) for periodic

boundary conditions with Coulomb cutoff (see text). (b) and (e) Dispersion relation of plasmons

along the Γ to M direction; the diameter of the circles is proportional to the strength of the

resonance18. Shaded areas represent regions of inter- and intra-band losses (including damping by

optical phonon). (c) and (f) Re[q]/Im[q] (left axis, solid line in blue), and field localization (right

axis, dashed line in magenta), or “shrinkage”, of the lowest symmetric mode. τ is ≈ 29 fs and

19 fs for the G/Li/G and the G/Li/G/Li/G systems, respectively. The grey shaded areas denote

the region of inter-band losses, and the yellow shaded (hatched) areas denote the visible frequency

range, calculated with the Fermi velocity of graphene.
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