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We propose a mechanism to drive singlet-triplet spin transitions, electrically, in a wide class of
graphene nanostructures that present pairs of in-gap zero modes, localized at opposite sublattices.
Examples are rectangular nanographenes with short zigzag edges, armchair ribbon heterojunctions
with topological in-gap states and graphene islands with sp3 functionalization. The interplay be-
tween the hybridization of zero modes and Coulomb repulsion leads to symmetric exchange inter-
action that favors a singlet ground state. Application of an off-plane electric field to the graphene
nanostructure generates an additional Rashba spin-orbit coupling, which results in antisymmetric
exchange interaction that mixes S = 0 and S = 1 manifolds. We show that modulation in time of
either the off-plane electric field or the applied magnetic field permits to perform electrically driven
spin resonance in a system with very long spin relaxation times.

PACS numbers: 73.22.Pr, 73.43.Cd, 76.30.-v

I. INTRODUCTION

Spin 1/2 systems provide the simplest physical realiza-
tion of a quantum bit1,2. Unsurprisingly, localized spins,
both electronic3–5 and nuclear6, were early on proposed
as physical platforms to store and manipulate quantum
information taking advantage from the enormous know-
how in magnetic resonance techniques. In spite of sev-
eral remarkable experimental breakthroughs, using both
phosphorous donors in Silicon7 as well as III-V semicon-
ductor quantum dots8,9, the fabrication of spin based
quantum computer in solid state platforms, going beyond
a few quantum bits, remains a daunting challenge. One
of the main problems is the upper limit for spin coher-
ence lifetimes T2 due to hyperfine coupling to the nuclear
spins10.

Strategies to mitigate this problem come from two
fronts. First, using materials with a small, or even null,
density of nuclear spins, such as graphene11 and car-
bon nanotube based quantum dots12 or isotopically pure
silicon13. Second, using a different degree of freedom
to store quantum information, such as the singlet-triplet
Sz = 0 states that arise for pairs of exchange coupled
spins14. However, this approach requires the use of 2 elec-
tron spins per qubit, with the resulting fabrication over-
head, and decoherence is reduced, but not eliminated15,16

.

Interestingly, a class of graphene nanostructures that
can be synthesized with bottom-up techniques17,18 pro-
vides naturally, without the need of electrical control
of the number of carriers, exchange coupled unpaired
spin electron duets in an environment with a low den-
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sity of carbon nuclear spins. In figure 1 we show two
such graphene nanostructures: graphene rectangular rib-
bons with short zigzag edges (in the following ribbons)
and armchair ribbon heterojunctions with topological in-
gap states (in the following heterojunctions). Our work
also applies to sp3 functionalized gapped graphene nanos-
tructures . These systems form a class with the following
common properties:

1. On account of their finite size, they have a gaped
spectrum, except for two single-particle in-gap
states, that we label ψ±. These in-gap states host
two electrons (see figure 2(b)).

2. The wave function of these in-gap states turns out
to be a linear combination of two zero mode states
that are mostly localized in one of the sublattices,
labeled A and B that form the honeycomb lattice
(figure 2(d, e, f, g)). We refer to these zero mode
states as ψA and ψB.

3. The overlap of ψA and ψB, and thereby the
bonding-antibonding splitting (δ ≡ ǫ+ − ǫ−) of
the single-particle spectrum, depends on the geo-
metrical properties of the graphene structure, and
is therefore an important design parameter (figure
2(c)).

4. The electronic ground state is a singlet with S =
0, the first excited state is a triplet S = 1 and
their energy separation JH is proportional to δ2/Ũ ,

where Ũ is the Coulomb energy overhead of adding
a second electron in the localized states (ψA,B).

In this work two things are done. First, we pro-
vide a quantum theory, beyond mean field approxi-
mation, for the spin states and the exchange JH in
this class of graphene nanostructures. Second, we
study how the application of an off-plane electric field
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generates a Dzyaloshinsky-Moriya (DM) antisymmet-
ric exchange19,20 that could be used to enable spin-
transitions between the ground state singlet and the
states with Sz = ±1 in the triplet. Importantly, these
transitions are strictly forbidden, in the absence of DM
interaction, in conventional electron-paramagnetic reso-
nance experiments, where both spins interact with a dc
field B0 and a perpendicular ac field Bac and only tran-
sitions that conserve S may be induced. Therefore, our
results pave the way towards electrically driven spin res-
onance in graphene nanostructures, complementing re-
cent experiments on electrically detected spin resonance
in graphene21,22.
Graphene zero modes with a wave function localized

in a single sublattice were predicted to occur in zigzag
graphene edges23,24 and around carbon atoms with sp3

functionalization25–28. Their direct experimental obser-
vation, by means of scanning tunneling microscopy, has
been reported both for the edge states of rectangular
nanographenes with short zigzag edges17 as well as for
individual and for pairs of chemisorbed hydrogen atoms
in graphene29,30. These sub-lattice polarized zero modes
are expected to host unpaired spin electrons, giving rise
to the formation of local moments24,28,31–38. Sublattice
polarized zero modes have recently been predicted39 to
exist as in-gap topological states at the interface of cer-
tain graphene ribbons with armchair edges, shown in fig-
ure 1(b). Recent progress in fabrication of graphene rib-
bon heterojunctions18,40 shows that fabrication of this
type of structure is not out of reach of state of the art in
nanographene synthesis.
The exploration with STM of some of the

graphene nanostructures studied here has been
demonstrated17,18,30. With this approach, the ap-
plication of an off-plane electric field significantly larger
than in conventional field effect transistor geometries is
possible. On the other hand, STM can be used to carry
out electrically driven spin paramagnetic resonance of
individual atoms41–43 and coupled spin 1/2 atoms44.
Therefore, the electrical manipulation of localized spin
states in graphene seems within reach with state of the
art surface scanning probes.

II. SINGLE PARTICLE IN-GAP STATES

We model the single particle states of the graphene
nanostructures with the standard one-orbital tight-
binding model, with first neighbor hopping t = 2.7 eV.
For a given nanostructure with N carbon sites, this de-
fines a N ×N Hamiltonian matrix H0, whose properties
are briefly described below.
Electron-electron interactions are treated with the

Hubbard model, both at the mean field approximation,
including all the single particle states, or exactly for the
subspace of 2 electrons and 2 orbitals that controls the
spin properties of the studied systems. In the case of
graphene nanostructures, it is well known that mean field
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FIG. 1: Two types of graphene nanostructures that host
pairs of zero modes localized in opposite sublattices. a) Rect-
angular graphene nanoribbons with short zigzag edges that
host 1 unpaired electron each. b) Armchair graphene het-
erojunctions, hosting 1 zero mode at each interface39. In both
cases, the green arrows represent the magnetization calculated
with a mean field Hubbard model.

Hubbard model calculations and density functional calcu-
lations give very similar results34,45. The spin orbit cou-
pling effect considered in the following will be of Rashba
type,46–48 that can be externally modulated with an elec-
tric field.
The non-interacting spectrum. A scheme of the single-

particle spectrum characteristic of the gaped graphene
with 2 in-gap states is shown in figure 2(b). The energies
and wave-functions of the in-gap states are denoted by
ǫ± and ψ± respectively. It is always possible49 to write
down the wave function of a couple of conjugate states,
with single-particle energy E and −E, in terms of the
same sublattice polarized states ψA and ψB. Therefore,
we write

ψA(i) ≡
1√
2
(ψ+(i) + ψ−(i))

ψB(i) ≡
1√
2
(ψ+(i)− ψ−(i)) (1)

where ψ±(i) are the probability amplitude at site i of
the eigenstates of H0 closest to E = 0. In the case of the
in-gap states, the peculiar property of the resulting ψA

and ψB is that they are spatially separated. As a result,
the resulting splitting that arises from the hybridization
of the zero modes,

δ = 2〈ψA|H0|ψB〉 ≡ 2t̃ (2)

turns out to be small. In figure 2(c) we plot δ for dif-
ferent nanographenes as a function of the spatial sepa-
ration between the zero modes. It is apparent and well
known23 that this quantity decays exponentially withW .
In the limit whereW is very large (see figure 2(c)), δ van-
ishes, and the energy of the in-gap states goes to E = 0,
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FIG. 2: a) Graphene nanoribbon withW = 7. b) Sketch of the single-particle energy spectrum for the graphene nanostructures
shown in figure 1. A gap, separating the doubly occupied states from the empty states, contains 2 in-gap states, ψ±, split by
δ = ǫ+ − ǫ−. c) Dependence of δ on the spatial separation W of the zero modes. For 0D ribbons, W stands for the width of the
ribbon. For the heterojunctions, W stands for the distance between the interfaces. The splitting arises from the hybridization
of the zero modes, ψA and ψB . These are shown both for the ribbons (d, e) and heterojunctions (f, g) (see equation (2)).

showing that these sublattice polarized states are zero
modes.23

III. THEORY OF LOCAL MOMENTS

A. Mean field results

Our next task is to demonstrate that in-gap states
in these structures hold local moments. This has been
established, using either DFT and/or mean field Hub-
bard model calculations, in the case of infinitely long
graphene ribbons with zigzag edges24,35, as well as the
small nanoribbons considered here18,40, and also for hy-
drogenated graphene30,38,50,51. To the best of our knowl-
edge, the emergence of local moments in the case of
un-doped topological junctions has not been explored
yet. We therefore carry out a mean field Hubbard model

calculation (see Appendix A for details) to address the
emergence of local moments associated to the topolog-
ical in-gap states and, for comparison, the well under-
stood case of graphene nanoribbons. For the topologi-
cal in-gap states, we consider a structure with periodic
boundary conditions and two interfaces, that accommo-
date one in-gap state each. For U = t = 2.7eV , we
find broken symmetry solutions with a finite local mag-
netization, M(i) = 〈Sz(i)〉 that is mostly located in the
region where either ψA or ψB are non-zero, for all struc-
tures except those where δ is large (i.e., those where ψA

and ψB are strongly hybridized). This applies both for
heterojunctions and nanoribbons. In the mean field ap-
proximation, the transition between non-magnetic and
broken symmetry transitions is abrupt. The mean field
broken symmetry solutions have lower energy for anti-
ferromagnetic (AF) correlations between spins in oppo-
site sublattice, that result in a total zero magnetic mo-
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ment
∑

iM(i) = 0 (see figure 1(b)). Solutions with a
net magnetic moment and ferromagnetic (FM) correla-
tions between opposite sublattices have higher energy
and

∑

iM(i) = 1, as expected for a S = 1 configura-
tion in two antiferromagnetically coupled S = 1/2.
We study the exchange energy as the difference be-

tween FM and AF solutions JMF = EFM − EAF for
several different nanographenes, both for the edge and
interface states. We find that, for the same value of W ,
the exchange is larger for ribbons than heterojunctions.
This ultimately arises from the larger hybridization of
the edge zero modes, compared with the topological in-
terface zero modes (see figure 2(c)). We show in figure
3 that JMF can be as large as 40 meV for graphene rib-
bons, and be made as small as necessary by increasing
the distance W between the zero modes. Importantly,
as we show in figure 3(d), we find that, both for ribbons
and heterojunctions, exchange energy scales as

JMF ∝ t̃2

Ũ
(3)

where

Ũ = U
∑

i

|ψA(i)|4 = U
∑

i

|ψB(i)|4 = Uη (4)

is the average addition energy for these states, as com-
puted in the Hubbard model (see Appendix B) and
η is the inverse participation ratio of the zero mode
states. This scaling provides a strong indication that
the mechanism of antiferromagnetic interaction is kinetic
exchange20,52, that arises naturally for half-filled Hub-
bard dimers. Our calculations show that, for a given
type of structures (ribbon or heterojunction), the inverse
participation ratio η is quite independent of W . Thus,
for the zigzag edge zero modes we find η ≈ 0.1 and for the
topological in-gap states we find η ≈ 0.035. The smaller
η for the heterojunction states can be anticipated, as they
can spread at both sides of the junction, in contrast with
the edge states.

B. Quantum theory of local moments

All these results, most notably the scaling of equation
3, strongly suggest that magnetic correlations are gov-
erned by the two electrons that occupy the two in-gap
states. This is also the case for graphene ribbons with
infinitely long zigzag edges35. In order to go beyond the
mean field picture and to be able to describe local mo-
ments in these nanographenes with a full quantum the-
ory without breaking symmetry, we restrict the Hilbert
space to the configurations of 2 electrons in the two zero
modes. To do so, we represent the Hubbard interaction
in the one body basis defined by the states ψA and ψB.
The Hamiltonian so obtained is a two site Hubbard model
with renormalized hopping and on-site energy:

Heff = t̃
∑

σ

(

a†σbσ + b†σaσ
)

+ Ũ (nA↑nA↓ + nB↑nB↓) (5)
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FIG. 3: a), b) Magnetization in the ferromagnetically aligned
(FM) configuration, as calculated within the mean field ap-
proximation for a graphene ribbon and heterojunction, re-
spectively. c) Dependence of the exchange energy, calculated
within the mean field Hubbard model, JMF = EFM −EAF on
the dimensions of the graphene nanostructure and d) scaling

of JMF with t̃
2

Ũ
, demonstrating kinetic exchange.

where a†σ =
∑

i ψA(i)c
†
iσ and b†σ =

∑

i ψB(i)c
†
iσ are the

operators that create an electron in the zero modes ψA

and ψB with spin σ, respectively. In turn, nA,σ = a†σaσ
is the number operator for the ψA state with spin σ. In
addition, we consider the Zeeman coupling to a magnetic
field,

HZ = gµB

∑

σ,σ′

~B · ~Sσ,σ′

(

a†σaσ′ + b†σbσ′

)

(6)

where ~Sσ,σ′ are the S = 1/2 spin matrices, g = 2 is the
gyromagnetic factor and µB = 57µ eV T−1 is the Bohr
magneton.
Hamiltonian (5) is a two-site Hubbard model, where

the sites correspond to the zero mode states ψA,B, shown
in figure 2(b, c, d, e). This model can be solved
analytically53 or by a straight-forward numerical diag-
onalization (see Appendix B). For the relevant case of 2
electrons, the dimension of the Hilbert space is 6 and the
ground state is always a singlet. We are interested in the
limit t̃ << Ũ . In that case the excited state manifold
is a triplet, way below two closed shell singlets that de-
scribe states with double occupation of the zero modes.
A cartoon of the spectrum is shown in figure 4(a).
Unlike the mean field solution, the exact solution of

Hamiltonian (5) has no abrupt change of behavior from
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non-magnetic to magnetic solutions. However, depend-

ing on the ratio t̃

Ũ
, the physical properties of the system

are very different. This is quantified by the weight on the
ground state wave function of the states where 2 electrons
occupy one zero mode, denoted by P2. For U = 0 the
ground state is a trivial singlet, formed by two electrons
in the lowest energy in-gap state and P2 = 0.5. For very
small t̃/Ũ , P2 goes to zero. For a fixed value of t and
U , the effective hopping t̃ is controlled by the dimensions
of the nanographene structure. Thus, in figure 5(a), we
show P2 for a nanoribbon, assuming U = t, as a function
of the ribbon width W . We see that for W > 7, the
weight of the double occupancy configurations is smaller
than 5 percent of the state, and the charge fluctuations
are effectively frozen. In that limit, it is well known20,52

that the four lowest levels in the model of equation (5)
can be mapped into the Heisenberg Hamiltonian:

HHeis = JH ~SA · ~SB (7)

where ~SA,B are the spin 1
2
operators describing the elec-

tronic spins localized in states ψA and ψB, respectively

and JH ≃ 4t̃2

Ũ
. The Hamiltonian of equation (7) has

a ground state singlet (S = 0)and an excited state
triplet with S = 1, separated in energy by ∆ = E(S =
1) − E(S = 0) = JH (see figure 4(b)). heterojunc-
tions. Effectively, the upper limit to JH is marked by
the crossover to the un-correlated regime, where double
occupancy P2 is not negligible. On the other side, JH can
be made exponentially small when the distance between
the two zero modes is increased.

IV. SPIN-ORBIT COUPLING AND

DZYALOSHINSKY-MORIYA EXCHANGE

We now consider the effect of spin-orbit interactions

induced by an off-plane electric field, ~E, on the spin dy-
namics of these 4 states. These can be described with a
Rashba spin-orbit coupling46–48,

HR = itR
∑

σ,σ′,〈i,j〉

~E ·
(

~di,j × ~σσ,σ′

)

c†iσcjσ′ (8)

where 〈i, j〉 labels first neighbors and ~dij in the vector
linking them. σ = ± labels the eigenstates of the spin
matrix Sz = 1

2
σz, ~σσ,σ′ are the Pauli matrices (with

eigenvalues ±1), and the c and c† are second quantiza-
tion fermionic operators. The extrinsic spin-orbit cou-
pling constant tR is zero unless an off-plane electric field
is applied E0ẑ to break mirror symmetry47:

tR =
eEz0
9Vspσ

ξ (9)

where e is the electron charge, Ez0 is the voltage drop
across atomically thin graphene47, ξ = 6meV is the spin
orbit coupling of carbon and Vspσ is the hybridization
between p and s orbitals.68

For an electric field E = 50Volt/300nm, standard
for graphene field effect transistors54, we have tR ≃
3.7µeV.69 Importantly, with an STM tip it is possible
to apply a few volts at 1 nm, so that tR = 100µeV could
be reached.
The Rashba spin-orbit Hamiltonian adds an spin-flip

hopping in the 2-site model (5):

VR =
∑

σ

(

t̃R(σ)a
†
σbσ + t̃R(σ)

∗b†σaσ

)

(10)

where σ = −σ and

t̃R(σ) = σ〈ψAσ|VR|ψBσ〉 ≡ σt̃R (11)

For the graphene nanostructures considered here, we find

that t̃R is real. Unexpectedly, we find that t̃R
t̃

is always

more than 5 times larger than tR
t
. The origin of the en-

hancement of the Rashba interaction in graphene nanos-
tructures has to do with a constructive interference be-
tween the modulation of the sign of the in-gap zero modes
states and the angle-dependence sign of the Rashba hop-
ping.
The addition of this spin-flip hopping to the Hubbard

model results, in the strong coupling limit Ũ >> t̃,
in two types of additional terms to the effective spin
Hamiltonian20,55:

VDM = JDM [(Sx
AS

z
B − Sz

AS
x
B) + (Sz

AS
y
B − Sy

AS
z
B)] (12)

Vanis = JzS
z
AS

z
B (13)

with JDM = 8t̃t̃R
Ũ

and Jz = 4
t̃2−t̃2

R

Ũ
.

The first term (equation 12) is the widely studied
anisotropic exchange postulated by Dzyaloshinsky19 and
derived by Moriya20. It does not conserve Sz. The physi-
cal origin is transparent: exchange arises from the virtual
hopping of one electron between states ψA and ψB. This
hopping occurs through a spin conserving channel, with
amplitude t̃ and through a spin-flip channel t̃R. Thus,
two hoppings through the same channel, either spin con-
serving or spin flip, preserve the spin of the electron. In
contrast, the crossed term, by which only one hopping
preserves the spin, results in an effective interaction that
does not conserve Sz . This is the DM interaction, which
is the dominant addition coming from the Rashba per-
turbation, given that t̃ >> t̃R.

V. ELECTRICALLY DRIVEN SPIN

RESONANCE

The DM interaction scales with the kinetic exchange as

JDM = t̃R
t̃
JH . Thus, JH is in the range of meV, so that

JDM in this system is, at most, in the µeV. Whereas this
is a small energy scale, it has a qualitatively important
consequence: it permits otherwise forbidden transitions
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between singlet and triplet manifolds. This is shown in
figure 4(b, c), where we plot the spectrum of the 2-site
Hubbard model, as a function of the off-plane magnetic
field B, for a ribbon with W = 10, chosen so that for
a moderate magnetic field the Zeeman splitting of the
triplet manifold offsets the singlet-triplet splitting JH .
The calculation is done including the effect of the Rashba
interaction. The effect of the small Rashba interaction is
only apparent when the Sz = −1 triplet state gets close
in energy to the S = 0 ground state (figure 4(c)). In the
absence of Rashba interaction, these two spectral lines
would cross each other.
We have verified that dipolar interactions (see Ap-

pendix C) are small (for the W = 10 nanoribbon,
10−2µeV ). Importantly, they produce an anisotropic
symmetric exchange that does not couple S = 0 with
the Sz = ±1 states. In addition, dipole interaction can
not be modulated electrically in this class of systems.
The states Sz = −1 from the triplet and the S = 0

define a two level system with Hamiltonian:

HTLS =
1

2
h̄ω0 (τz + 1) +

h̄

2
Ωτx (14)

where τz and τx are the S = 1/2 Pauli matrices (with
eigenvalues ±1), h̄ω0 = J − gµBB is the splitting of the
two levels when the electric field is zero, and

h̄Ω ∝ t̃

Ũ
t̃R (15)

is the Rabi coupling. As expected from equations (9, 10,
11 and 15) , we find that h̄Ω scales linearly with the elec-
tric field (figure 4(d)). It must be noted that our TLS is
different from the case of singlet-triplet qubits where both
states have Sz = 0. As a result, the energy difference can
be tuned with a magnetic field, but this also removes the
protection against fluctuations of the magnitude of the
external magnetic field that makes singlet-triplet qubits
convenient9.
The energy scale h̄Ω defines a Rabi coupling between

the spin split levels. In order to asses its magnitude,
we first compare it with the Rabi coupling achieved

by pumping a spin S = 1/2 system with the ac mag-
netic field of a microwave. The magnetic field of a mi-
crowave generated in pulsed state of the art ESR setup
is, at most, Bac = 4mT, leading to a Rabi splitting of
gµBBac ≃ 0.4µeV. Thus, electrical driving can overcome
conventional microwave coupling, showing that it can be
used to efficiently drive singlet-triplet spin transitions in
graphene nanostructures.
In order to assess the strength of the system response

to the electrically driven spin resonance, it is important
to compare the Rabi coupling, that drives the TLS out
of equilibrium, with the spin relaxation T1 and decoher-
ence T2 times. For instance, the steady state solution
of the Bloch equation for a TLS driven with a resonant
ac Rabi coupling is fully determined by the dimension-
less constant x2 = Ω2T1T2 (see Appendix E). Both T1
and T2 depend a lot on whether the nanographenes are
deposited on top of a conductor or an insulator. In the
former case, exchange interaction with the electrons in
the conductor will be the dominant spin relaxation and
decoherence mechanism56.
We now provide a rough estimate of the contribution

to T2 coming from an intrinsic mechanism, namely, the
hyperfine coupling with the nuclear spins of the hydro-
gen atoms that passivate the carbon atoms. Given that
the natural abundance of spinless 12C is 99 percent, hy-
perfine interaction with carbon is less important. In ad-
dition, isotopically pure graphene could be used and get
rid of 13C completely. In principle, hyperfine interaction
between the graphene unpaired electronic spins and the
edge hydrogens has two components, the contact Fermi
interaction and the dipole-dipole interaction. The former
is stronger, in general, and depends on the probability for
the electrons in the zero mode states to visit the hydrogen
1s orbital. It can be seen right away that hybridization
of the pz orbitals of carbon with the 1s orbital of hy-
drogen is zero when these atoms lie in the same plane.
Therefore, Fermi contact interaction with edge hydrogen
atoms vanishes altogether and we are left with the dipo-
lar coupling.
The electronic spins will undergo dephasing due to the

stochastic addition of the magnetic field created by the
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nuclear magnetic moments. In order to estimate this ef-
fect, we treat the nuclear moments as classical indepen-
dent random variables ~mN . The average nuclear mag-
netic field is zero, but the standard deviation B2

z is not.
We assume that the nuclear spins undergo a stochas-
tic motion with a white noise spectrum with correla-
tion time τ . Under these assumptions, the T2 dephas-
ing time for the electronic transitions due to their hy-
perfine interaction with the edge hydrogen atoms is56,57

T−1
2 =

(

gµBBz

h̄

)2

τ . This equation is valid as long as τ

is the shortest time-scale in the problem56,57. In particu-
lar, τ << ω−1

0 , where h̄ω0 is the electronic Zeeman split-
ting. Therefore, in its range of validity, the upper limit

for the decoherence rate is given by T−1
2 <

(

gµBBz

h̄

)

Bz

B
.

In the Appendix D we have obtained Bz ≃ 1mT . This
small field produces a electronic Zeeman splitting of 120
neV . The resulting estimate for the decoherence rate is
T2 > 0.5ms. Using T1 > T2 we can obtain a lower limit
for x = Ω2T1T2 > Ω2T 2

2 . For h̄Ω = 1µeV , we obtain
x >> 100. So, the intrinsic decoherence mechanism does
not pose an obstacle for the proposed electric manipula-
tion of the spin states of singlet-triplet states in graphene
nanostructures.

VI. DISCUSSION AND CONCLUSIONS

We have identified a class of graphene nanostructures
that host local spin moments in the form of pairs of anti-
ferromagnetically coupled electrons. We have presented
a full quantum theory for these local moments that goes
beyond the broken symmetry mean-field and DFT based
calculations. We have identified a new mechanism to ef-
ficiently drive spin transitions by application of an off-
plane electric field. The mechanism, particularly effi-
cient in graphene nanostructures, relies on the electrically
driven breakdown of mirror symmetry that generates
spin-orbit coupling in the single-particle wave functions.
In turn, this induces and antisymmetric Dzyaloshinsky-
Moriya exchange in the spin Hamiltonian that mixes the
S = 0 ground state with the Sz = ±1 states of the
triplet. The strength of the Rabi coupling is found to
exceed the one obtained for S = 1/2 with state of the
art conventional spin resonance driven with microwaves.
Importantly, the proposed mechanism permits to drive
transitions that are forbidden in conventional spin reso-
nance experiments.
The proposed mechanism is different from other pro-

posals for electrically driven spin resonance. Some
of them rely on the modulation of the crystal field
Hamiltonian41,58. Others, on the slanting magnetic59 or
exchange60 field of a nearby magnetic electrode. Our
findings could be used to manipulate individual pairs
of spins in nanographene structures. The indepen-
dent progress both in spin resonance driven by scanning
tunneling microscopes and in the fabrication of atom-
ically defined graphene nanostructures with bottom-up

techniques17,18,61,62, could permit to explore their poten-
tial for spin qubits.
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Appendix A: Mean field Hubbard model

The exact solution for the Hubbard model is only pos-
sible in some very specific instances, such as a 1d chain,
by means of Bethe ansatz, or in small clusters via nu-
merical diagonalization. For the nanographenes con-
sidered here, we make use of the so called mean field
approximation,24,34,35,37,38,63 where the exact 4-fermion
operator is replaced by

VMF = U
∑

i

(ni↑〈ni↓〉+ ni↓〈ni↑〉 − 〈ni↓〉〈ni↑〉) (A1)

where 〈niσ〉 stands for the average number operator, eval-
uated with the eigenstates of the mean field Hamiltonian
obtained from the sum of VMF and the single-particle
part. Of course, this defines a self-consistent problem,
that is solved by numerical iteration. Depending on
the atomic structure of the nanographene, and the ra-
tio U/t, the mean field self-consistent solutions can de-
scribe broken symmetry solutions with local moments, or
non-magnetic solutions.

Appendix B: Exact solution of 2 site Hubbard

model

The Hilbert space for the 2 site Hubbard model with
2 electrons (half filling) has a dimension of 6, spanned
by the basis set of Fock states in the site representa-
tion (2, 0), (0, 2), (↑, ↑), (↓, ↓), (↓, ↑) and (↑, ↓) with a
self-evident notation, so that the first (second) state rep-
resents a doubly occupied A (B) site, the third state
denotes the two sites with single occupation with a
Sz = +1/2 each, and so on. In this basis set, the Hamil-
tonian matrix is readily calculated, taking into account
the sign that arises from the definition of the Fock states
in terms of the second quantization operator, as:

H =

















Ũ 0 −t̃R −t̃R −t̃ t̃

0 Ũ −t̃R −t̃R −t̃ t̃
−t̃R −t̃R gµBBz 0 0 0
−t̃R −t̃R 0 −gµBBz 0 0
−t̃ −t̃ 0 0 0 0
t̃ t̃ 0 0 0 0

















(B1)
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FIG. 5: a) Representation of P2, the weight of the dou-
ble occupancy states on the ground state wave function, for
graphene ribbons as a function of W (for t = 2.7 eV and
U = t). b) P2 as a function of U/t, for the ribbon with
W = 10.

For tR and Bz = 0, and in the relevant limit with
t̃ << Ũ , the eigenvalues are, in increasing order of energy,
a singlet, a triplet, and two more non-degenerate singlets
(see Figure 4(a)). We define the weight of the (2, 0) and
(0, 2) configurations on the ground state singlet, P2 =
|〈20|ΨG〉|2 + |〈02|ΨG〉|2. The smaller P2, the better the
approximation of the spin model to describe the singlet
and triplet states. The dependence of P2 onW and U/t is
shown in figure 5 for rectangular graphene nanoribbons.
It is apparent that, except for very small for U = t and
W > 10, P2 is below 0.05. It is also apparent that there
is a smooth crossover from the non-interacting limit, for
which P2 = 0.5, and the local moment limit for which
charge fluctuations are frozen.

Appendix C: Electronic dipolar interaction

Here we consider the effect of the dipole-dipole cou-
pling between the magnetization cloud of state ψA with
state ψB. This leads to an additional term in the spin
Hamiltonian:

Hdip =
∑

a,b

DabSa(1)Sb(2) (C1)

where a = x, y, z and

Dab = (gµB)
2 µ0

4π
Λab (C2)

where

Λab =
∑

i,i′

|ψL(i)|2|ψR(i
′)|2 δa,b − 3na(ii

′)nb(ii
′)

r3ii′
(C3)

where na(ii
′) is the a component of the unit vector

~n(ii′) = 1
|~ri−~r

i′
| (|~ri − ~ri′ |). Of course, the carbon po-

sitions lie in the plane z = 0 so that the nz components
are zero. Thus, we have:

Λzz =
∑

i,i′

|ψL(i)|2|ψR(i
′)|2

r3ii′
(C4)

Dxx

Dyy

Dzz

D
a
b
 (
μ
e
V
)

−1

−0,5

0

0,5

1

1,5

W

4 6 8 10 12 14

FIG. 6: Dipolar interaction, as defined in equation (C2), for
rectangular graphene nanoribbons, as a function of ribbon
size W .

Our numerical calculations confirm that only the di-
agonal terms of the tensor are finite, as expected from
symmetry. We show them in figure 6 for rectangular
graphene nanoribbons. The elongated shape of ribbons,
accounts for the difference between Dxx and f Dyy. The
resulting dipolar Hamiltonian can be written as:

Hdip = −DxxSx(1)Sx(2) +DzzSz(1)Sz(2) (C5)

Importantly, this Hamiltonian does not couple states
with different total Sz. Therefore, the dipolar interac-
tion does not couple the two states in the two level sys-
tem formed by the S = 0 ground state with the Sz = −1
state (equation (14)). The only effect of the dipolar in-
teraction is to introduce a small anisotropy splitting in
the triplet manifold.

Appendix D: Hyperfine interaction

The hyperfine interaction is the sum of two dominant
contributions57, Fermi contact interaction and dipolar
coupling. The first is given by the overlap of the elec-
tronic quantum state with the nuclear species in question.
The Fermi-contact contribution to the hyperfine interac-
tion of the edge electron, A or B, on a given hydrogen
atom, denoted with the label N , is computed by calcu-
lating the weight of the wave function on the s orbital
of that atom and multiplying the weight to the hyperfine
interaction of atomic hydrogen, 1024 MHz. In order to
estimate the contact interaction we adopt a tight-binding
model that permits to compute how the π orbitals of
graphene hybridize with the s orbital of hydrogen. This
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can be done using the TB model with 4 orbitals per
carbon atom64,65, and one orbital per hydrogen atom.
Within this model, the mid-gap states are, in principle,
a linear combination of pz, px, py and s orbitals of the car-
bon atoms and the s orbital of the edge hydrogen atoms.
However, for flat structures with mirror symmetry, the
pz orbitals are odd under reflection, and are thereby per-
fectly decoupled from all the other states of the basis set,
that are even. As a result, within this model we find that
the Fermi contact contribution to the hyperfine interac-
tion vanishes for the mid-gap states, as well as all the
low energy states, as long as the edge hydrogen atoms
remain in the same plane than the nanographene, which
is their equilibrium position.
We thus are left with hyperfine dipolar coupling, whose

magnitude we estimate here. Since we are interested in
the decoherence induced by the nuclear spins on the elec-
tronic states, we treat the nuclear spins as classical mag-
netic moments ~mN , whose orientation is completely ran-
dom. At any given time they create a magnetic field at
a carbon site ~ri

~Bi[~mN ] =
µ0

4π

∑

N

~mN − 3~nNi (~nNi · ~mN )

|~rN − ~ri|3
(D1)

where the index N runs over the edge hydrogen atoms
and ~nNi is the unit vector along the direction that joins
the nuclear spin N and the carbon site i. We now write
down the electronic magnetization density as:

~me(i) =
1

2
~τσ,σ′

(

|ψA(i)|2a†σaσ′ + |ψB(i)|2b†σbσ′

)

(D2)

where ~τσ,σ′ are the spin 1/2 Pauli matrices with eigen-
values ±1. The dipolar hyperfine interaction reads:

VN = −
∑

i

~me(i) · ~Bi[~mN ] (D3)

It is now convenient to define the average nuclear mag-
netic field by the electronic states:

~BA,B =
∑

i

|ψA,B(i)|2 ~Bi[~mN ] (D4)

This permits to write the interaction of the electronic
spins in states A and B with the nuclear spins as:

VN =
∑

σ,σ′

gµB

(

~BA · ~SA
σ,σ′ + ~BB · ~SB

σ,σ′

)

(D5)

where

~SA
σ,σ′ =

1

2
~τσ,σ′a†σaσ′ , ~SB

σ,σ′ =
1

2
~τσ,σ′b†σbσ′ (D6)

In the strong coupling limit Ũ >> t̃ this results in the
addition of the stochastic magnetic field to the Zeeman
contribution in equation (6).
The nuclear field component along the z direction mod-

ifies the energy of the Sz = 1 state of the TLS, and leaves

the energy of the S = 0 unchanged. Therefore, it induces
a shift of the the TLS splitting, defined by equation (14),
by an amount

δω0 =
gµB

h̄
(Bz,A + Bz,B) (D7)

which is a functional of the nuclear magnetic moments.
For nanoribbons and heterojunctions, the mirror symme-
try of the structures gives Bz,A = Bz,B ≡ Bz,B.
We take the orientation of the nuclear moments as ran-

dom variables with an uniform distribution, given that
even at mK temperatures, nuclear Zeeman splitting is
much smaller than kBT :

〈~mN 〉 = 0 , 〈ma
Nm

a′

N ′〉 = δa,a′δN,N ′

m2
0

3
(D8)

where m0 is the proton magnetic moment.
As a result, its straightforward to see that the average

over nuclear moment realizations vanishes, 〈 ~BA.B〉 = 0.
The standard deviation of the components, defined as:

B2
a,A =

µ2
0

(4π)2
m2

0

3

∑

i,i′,N

|ψA(i)|2|ψA(i
′)|2

r3iN r
3
i′N

ηa(N, i, i
′)

(D9)
where

ηa(N, i, i
′) ≡ 1+9na

Nin
a
Ni′~nNi ·~nNi′ −3((na

Ni)
2+(na

Ni′)
2)

(D10)
In the case of the a = z component we have nz = 0

for all N and i. We can obtain a quick estimate for the
edge states in the graphene nanoribbons if we approxi-
mate the wave function as equally distributed in 5 edge
carbon atoms and only consider their coupling to the first
neighbor hydrogen. In that case, we have:

B2
z ≃ µ2

0

(4π)2
m2

0

3

1

d6HC

≡ 1

3
(b0)

2
(D11)

where dH,C ≃ 1.1Å is the carbon-hydrogen bond length
and b0 ≃ 1mT is the magnitude of the magnetic field
created by a proton at a distance dHC . From this, we
can estimate the associated shift h̄δω0 ≃ 120neV . Our
numerical calculation of (D9) yields Bz = 0.2 mT for a
nanoribbon with W = 10, in line with the estimate of
equation (D11).

Appendix E: Steady State solution of driven two

level system

The steady state solution of the Bloch equation for a
two level system driven by an a.c. Rabi monochromatic
signal with frequency ω is given by41

P0 − P1 = δPeq

(

1− Ω2T1T2
1 + (ω − ω0)2T 2

2 +ΩT1T2

)

(E1)

where P0 and P1 are the non-equilibrium occupation
of the ground and excited states in equation (14) and
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δPeq ≡ tanh
(

h̄ω0

2kBT

)

is the equilibrium population im-

balance. Thus, a relevant figure to assess the merit of
the electrical control of the spin on electrically driven
graphene nanostructures is x2 = Ω2T1T2. In resonance,
we have P0 − P1 = δPeq

1
1+x2 . Thus, the maximal depar-

ture from equilibrium is obtained for very large x.

Appendix F: Influence of second neighbour hopping

and inhomogeneous strain

In this appendix we analyze the effect of two differ-
ent single-particle contributions we have neglected in the
first neighbour tight binding model. These are the sec-
ond neighbour hopping t2, that is expected66 to be as
large as 0.12t , and the modification of the first neighbour
hopping at the edges, that could arise from the different
chemical environment67. In both cases we have analyzed
the influence on the main energy scales of the system,
namely the splitting of the in-gap states, δ, and the ex-
change energy JMF = EFM −EAF , computed within the
mean field Hubbard model for a graphene ribbon. The
calculation of δ is carried out by exact diagonalization
of the single particle Hamiltonian that now includes first
neighbour hopping t and only one of the extra terms, ei-
ther t2 or tedge. The exchange energy is obtained doing
mean field calculations of the resulting Hubbard model.
We express our results in terms of the relative change
(variation normalized by the unperturbed value).
The results, shown in figure 7, for the case of a rectan-

gular graphene nanoribbon with short zigzag edges and
W = 10, are small in both cases. In the case of second
neighbour hopping, first order perturbation theory shows
that all the energy levels shift linearly with t2, having no

effect on the splitting of the in-gap states. Our nu-

merical calculation show that the splitting δ changes
quadratically in t2/t. In turn, JMF scales with δ2, so that
∆JMF ∝ ∆δ. In the case of variation of the edge hop-
ping, these affect directly the extension of the edge states,
which affects linearly the zero mode splitting δ. However,

the effect is quantitatively small. Thus, a variation of the
edge hopping of 10% results in a variation of the in-gap
splitting δ of one percent. In conclusion, the simple first-
neighbour tight-binding Hamiltonian with homogeneous
hopping is a good starting point to describe these sys-
tems.

a) b)

c) d)
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FIG. 7: Influence of second neighbour hopping (top panels)
and edge atom hoppings (bottom panels) for a rectangular
graphene nanoribbon with W = 10 and U = t. Left panels
show the relative variation of the in-gap single-particle split-
ting. Right panels show the variation of the exchange energy,
computed within mean field theory. In both cases, quantities
are normalized by the unperturbed energy scale and expressed
in terms of a percentage.
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68 In the work of Min et al, the effective Hamiltonian at the

Dirac point is derived, and the Rashba coupling, denoted
by λR is used. When that effective Hamiltonian at the
Dirac point is derived from the tight-binding expression

(equation 8), it is found that λ = −3tR.
69 From equation (8) we can derive the effective Hamiltonian

at the Dirac points of 2D graphene


