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The thermal conductivity of a freestanding single-crystal silicon membrane may be reduced signif-
icantly by attaching nanoscale pillars on one or both surfaces. Atomic resonances of the nanopillars
form vibrons that intrinsically couple with the base membrane phonons causing mode hybridization
and flattening at each coupling location in the phonon band structure. This in turn causes group
velocity reductions of existing phonons, in addition to introducing new modes that are localized and
do not transport energy. The nanopillars also reduce the phonon lifetimes at and around the hy-
bridization zones. These three effects, which in principle may be tuned to take place across silicon’s
full spectrum, lead to a lowering of the in-plane thermal conductivity in the base membrane. Using
equilibrium molecular dynamics simulations, and utilizing the concept of vibrons compensation, we
report a staggering two orders of magnitude reduction in the thermal conductivity at room temper-
ature by this mechanism. Specifically, a reduction of a factor of 130 is demonstrated for a roughly
10-nm thick pillared membrane compared to a corresponding unpillared membrane. This amounts
to a record reduction of a factor of 481 compared to bulk crystalline silicon and nearly a factor
of 2 compared to bulk amorphous silicon. These results are obtained while providing a path for

preserving performance with upscaling.
I. INTRODUCTION

The emerging field of phononics seeks to elucidate the
nature of phonon dynamics in both conventional and ar-
tificially structured materials and use this knowledge to
extend the boundaries of physical response at either the
material or structural/device level or both [1]. The field
targets primarily acoustic, elastic, and/or thermal prop-
erties and usually involves the investigation and utiliza-
tion of complex wave mechanisms encompassing one or
more of a diverse range of phenomena such as dispersion,
resonances, dissipation, and nonlinear interactions [2].

In the subfield of nanophononics, an intensely active
area of research is the search for strategies for reducing
a material’s thermal conductivity [3], and in particular
strategies that would not deteriorate the electrical prop-
erties [4].° Attaining a low value of the thermal conduc-
tivity k£ and simultaneously high values of the electrical
conductivity o and the Seebeck coefficient S is strongly
desired in thermoelectric materials—materials that con-
vert heat to electric energy, or, conversely, use electricity
to provide heating or cooling [6]. The performance of a
thermoelectric material is measured by a figure of merit
defined as ZT = (052 /k)T, where T is the absolute tem-
perature and k is the sum of a lattice component k; and
an electrical component k. [7].

Over the past few decades, a large research effort has
focused on semiconductors where k; > k.. The prevail-
ing approach to increasing Z7T in this class of materials
is to introduce small and closely spaced features (such
as holes, particles, and/or interfaces) within the inter-
nal domain of the material to scatter the heat-carrying
phonons and consequently reduce the lattice thermal con-
ductivity, e.g., see Ref. [8]. This strategy, however, faces
the challenge that the scatterers are also likely to impede

the transfer of electrons and thus negate any possibility
of substantial increase in Z7T. Another approach is the
use of superlattices [9] or nanophononic crystals [4,10,11]
where the aim is to use Bragg scattering to open up
phonon band gaps and reduce the group velocities by flat-
tening the dispersion curves. A practical disadvantage to
this route, however, is that the surfaces of the periodic
features, e.g., the layers, holes or inclusions, need to be
considerably smooth to preserve the phase information
required for the Bragg effects to take place—especially
when the features are of relatively large sizes compared
to the phonon wavelengths [12]. An even stronger draw-
back is that the degree and intensity of group-velocity
reduction is rather limited and cannot be enhanced be-
yond what the available Bragg interference patterns can
provide. One other promising avenue is through dimen-
sionality reduction, e.g., considering thermal transport
along a nanowire [13]. This introduces phonon confine-
ment and strong phonon scattering at the free surfaces,
especially when roughened or oxidized [14]. Yet this ap-
proach too, when used alone, is relatively limited in its
capacity to lowering the thermal conductivity without
excessive reduction in the size of the smallest dimension.

In our group at CU-Boulder, we have been inves-
tigating a fundamentally different paradigm for increas-
ing ZT. Instead of depending on boundary-type scat-
tering (internal or external), Bragg interferences, and/or
phonon confinement as leading mechanisms for lowering
ki, we employ local resonances [15-17]. In this concept,
termed nanophononic metamaterial (NPM), nanoscale
resonating substructures are intrinsically introduced to a
conventional semiconducting material which acts as the
prime thermoelectric medium. The purpose of these sub-
structures is not to generate subwavelength band gaps
or create negative long-wave effective properties as is



the case for locally resonant electromagnetic [18], acous-
tic [19], and elastic [20] metamaterials, but to reduce the
phonon group velocities of the underlying semiconduct-
ing material, as well as populate it with a large number of
localized modes, in order to significantly reduce its ther-
mal conductivity.2! The substructure resonances may be
designed to couple with heat-carrying phonon modes be-
longing to all or most of the dispersion branches across
the full spectrum of the host medium.?? This atomic-scale
coupling mechanism gives rise to a resonance hybridiza-
tion between pairs of the wavenumber-independent vi-
bration modes of the local substructure (vibrons) and
wavenumber-dependent wave modes of the host medium
(phonons). The stronger the couplings, the sharper the
curve flattenings, which in turn implies larger reductions
in the group velocities and stronger mode localizations
within the substructures. The phonon lifetimes also drop
at the coupling locations in the phonon band structure,
which provides yet further reduction in the thermal con-
ductivity. In the limit, the number of hybridizing res-
onances is three times the number of atoms in a unit
nanoresonator.

A candidate configuration of an NPM consists of an
array, or a forest, of silicon nanopillars distributed on
the surface(s) of a freestanding silicon membrane with
no interior scatterers [15-17]. Here the nanopillars act as
the resonating substructures. Since the nanopillars are
located external to the main body of the membrane,
the electronic band structure is only mildly affected and
the scattering of electrons occurs only near the mem-
brane surfaces and not in the interior. Compared to all
conventional phonon scattering-based approaches (where
the scatterers are in the main body of the transport
medium), this new route therefore provides the unique
advantage of practically decoupling the lattice thermal
conductivity from the Seebeck coefficient and the elec-
trical conductivity—which is essential to creating signif-
icant improvements in Z7. And compared to superlat-
tices and nanophononic crystals, an NPM in general has
two advantages: (i) the structural features do not need to
be periodic or smooth (because the resonance hybridiza-
tion phenomenon is independent of periodicity and ro-
bust to perturbations in phase), and (ii) the intensity of
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FIG. 1. (a) Conventional 8-atom unit cell for silicon and unit
cells for a (b) uniform membrane, (c) single-pillared NPM,
and (d) double-pillared NPM. In (b), (c) and (d), the top and
bottom surfaces are free.

group-velocity reductions, with the added benefit of in-
troduction of localized modes and targeted phonon life-
time reductions, may be continuously enhanced by sim-
ply increasing the size of the nanoresonators [17,23].2* Fi-
nally, a nanopillared freestanding membrane naturally
exhibits dimensionality reduction (compared to the bulk
form). Therefore, the powerful rewards of resonance hy-
bridizations are gained over and above the benefits of
phonon confinement and/or surface roughness (as well as
the benefits to the electrical properties [25]). In light of
these impressive characteristics that are unprecedented
in thermal transport, the NPM concept in the form of a
nanopillared membrane is poised to enable thermoelec-
tric energy conversion at record high performance, while
using a low-cost and practical base material like silicon.

In a recent study involving nanopillars on one surface,
it was shown that the performance of this membrane-
based NPM configuration is highly dependent on: (i) the
relative volumetric size of the nanopillar with respect to
the base membrane within the unit cell (this quantity
is denoted V; and is equal to DOFpijja;/DOFpase where
DOFpjjar and DOFp,s denote nanopillar(s) and base
membrane number of degrees of freedom, respectively)
and (ii) the overall size of the unit cell (including both
the base membrane and nanopillar portions) [17]. While
the first dependency provides a controllable design pa-
rameter (which is an advantage as mentioned above), the
second was shown to pose a challenge because unless V..
is relatively high to start with, the extent of the ther-
mal conductivity reduction will deteriorate as the overall
unit-cell size is proportionally scaled up [17]. In this pa-
per, we explore the possibility of “compensating” this
loss in performance by increasing the nanopillar size at
a higher rate than the base membrane as we progres-
sively examine larger unit cells. By following this path,
we demonstrate that it is possible to even reverse the
trend and, remarkably, achieve exceedingly high perfor-
mance with upscaling. Throughout the paper, this com-
pensatory effect is utilized and analyzed thoroughly in
the context the underlying thermal conductivity reduc-
tion mechanisms. Towards the end of our investigation,
we highlight the potential thermoelectric performance of
NPMs by providing Z7T' projections and contrasting the
reduced values of the thermal conductivity with that of
the extreme case of bulk amorphous silicon.

II. CHARACTERISTICS OF NPM PHONONS
AND VIBRONS

We investigate two prime freestanding NPM configu-
rations: a membrane with nanopillars (i) on one surface,
and (ii) on each of the surfaces. In all cases, both base
membrane and nanopillar(s) are made of defect-free
single-crystal silicon. Figure 1 displays the unit cells of
these two configurations as well as the structure of a
conventional cell (CC) and a unit cell of a corresponding
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FIG. 2. Illustration of the resonance hybridization phenomenon from a lattice dynamics perspective. (a) Phonon band struc-
ture and group velocity distribution of a silicon membrane with (green) or without (red) silicon nanopillars standing on one
surface. (b) Uniform membrane atomic displacements for a heat carrying phonon mode in the acoustic regime contrasted to
NPM atomic displacements of the same mode upon resonance hybridization. Significant motion within the uniform membrane
is seen. In contrast, the atomic displacements of the NPM hybridized mode reveals localized nanopillar motion and almost
‘thermal silence’ in the base membrane portion. In (a), a zoom-in is provided for two hybridization zones including the one
illustrated in (b). A magnification factor of 2000 is applied to the atomic displacements in the mode-shape images.

uniform (unpillared) membrane. The geometry of a
membrane with nanopillars on each surface is repre-
sented as aA; x aA, x d+bx b x hy 4+ b x b x hg which
may be converted to CC by dividing each dimension
by a. Each of the last two terms in this representation
is dropped as needed when representing an unpillared
surface. All geometric parameters are pictorially defined
in Fig. 1. Unless explicitly specified, in all our analyses
room temperature at T = 300 K is assumed and the
Stillinger-Weber empirical potential is used to represent
the interatomic interactions [26].

A. Band structure and density of states

As we have described in Section I, the key mechanism
in an NPM is the coupling between phonons whose mo-
tion is confined to the in-plane directions within the base
membrane and vibrons whose motion is limited primar-
ily to the domain of each nanopillar. The former may
be viewed as traveling waves propagating in an infinite
medium, and the latter may be viewed as standing waves
taking shape in finite structures branching out orthogo-
nally from this infinite medium. Our interest is in the
steady-state characteristics of these two types of waves
as well as the manner by which they linearly interact
across the full spectrum. Nonlinear interaction between
these waves is also possible, and in fact takes place, but
is not the prime focus in this investigation.

Figure 2 provides a demonstration of the linear inter-

action between phonons and vibrons, i.e., the resonance
hybridization phenomenon, as manifested in the phonon
band structure, group-velocity distributions, and asso-
ciated mode shapes. For this purpose, we consider an
18 x 18 x 18412 x12x 36 CC NPM unit cell (consisting of
88128 atoms) and use the reduced Bloch mode expansion
(RBME) technique [27] to solve the corresponding eigen-
value problem over the 0-0.5 THz range (see Appendix A
for RBME implementation details). The effects of the
phonon-vibron mode coupling phenomenon are clearly
displayed. Figure 2a shows the resonance hybridizations
in the quasiharmonic frequency versus wavenumber dis-
persion diagram and the corresponding reduction in the
group velocities across the entire frequency range plot-
ted (the same effect extends throughout the entire spec-
trum). Reduction in phonon group velocities directly im-
plies reduction in the thermal conductivity. Figure 2b
focuses on a particular mode in the band structure and
displays the unit-cell mode shape without and with reso-
nance hybridization. The localization of the atomic mo-
tion solely in the nanopillar region represents a case of
extreme localization of energy—metaphorically as if the
nanoresonator is acting like a “phonon siphon” sucking
the energy from the base membrane and retaining it in
the nanopillar portion. This phenomenon is significant
because the nanopillar portion contributes to the unit-
cell’s overall heat capacity, yet these localized modes ap-
pear in the band structure as horizontal (or almost hor-
izontal) lines and thus exhibit zero (or-near-zero) group
velocities.

In Fig. 3, we show the effects of the size and geometry
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FIG. 3. Direct correlation between silicon membrane phonons
DOS (considering a 6 x 6 x 6 CC membrane) and silicon
nanopillar vibrons DOS for various nanopillar side lengths
and heights. The latter quantities are obtained by consider-
ing the nanopillar as an independent nanostructure with free
boundary conditions. All quantities are normalized with re-
spect to their maximum values.

of a nanopillar on the distribution of the vibrons den-
sity of states (DOS) and how it correlates with that of
the phonons DOS of the underlying base membrane. It
is observed that for the same number of atoms, a wider
nanopillar provides a more spread-out local resonances
spectrum than a tall nanopillar. The higher the vibrons
densities and the more conforming to the phonons dis-
tribution, the more effective is the resonance hybridiza-
tions phenomenon—especially at low frequencies down to
the limit of existing wavelengths (see Section IIB). For
the largest nanopillar, we clearly see a near-perfect con-
formity between the two distributions owing to the fact
that both membrane and nanopillar are made of the same
material. Recalling from Fig. 2, mode localizations take
place at each region in the spectrum where phonon dis-
persion curves and horizontal vibron resonance lines hy-
bridize. Unlike Anderson localization [28], the localiza-
tion phenomenon in the present system does not require
disorder; the position, spatial extent, and spectral inten-
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FIG. 4. Demonstration of phonon-vibron conformity as a
function of unit-cell size and V;.. Relative distributions of the
phonons and vibrons DOS are shown for three NPMs whose
V, values are (a) kept constant and (b) increased as the over-
all unit-cell size grows. The leftmost NPM configuration has
a3 x3x1CC membrane and a 1 x 1 x 1 CC nanopillar. The
vibron DOS are obtained by considering the nanopillar as an
independent nanostructure with free boundary conditions. All
quantities are normalized with respect to their maximum val-
ues. Increasing the size of the nanopillar at a higher rate than
the size of the membrane leads to higher phonon-vibron con-
formity, which corresponds to lower values of va and a more
intense resonance hybridizations effect.

sity of the localizations are controlled by the location,
size, and geometry of the unit nanoresonator.

The notion of conformity we refer to in our discussion
of Fig. 3 may be quantified. Conveniently, we introduce
a metric to represent its converse, namely, the noncon-
formity factor Ry, which we define as

Rppll; (1)

where R, is the cross-correlation between the phonons
and the vibrons DOS, Ry, is the auto-correlation of the

va = HRDV -



phonons DOS, and ||.| denotes the double norm. The
reader may refer to Ref. [29] for the definitions of
correlation functions. The nonconformity factor varies
between 0 (perfect conformity) and oo (no confor-
mity). Consistent with our previous remarks, we observe
that an NPM with a wide and short nanopillar indeed
has a lower nonconformity factor (i.e., has a higher level
of conformity) compared to an NPM with a narrow and
tall nanopillar and the same total number of DOF.

1. Effect of vibrons compensation on phonon-vibron
conformity

In Fig. 4, we take this analysis further and examine
how the overall size of the NPM affects the phonons
and vibrons DOS distributions, separately and with re-
spect to each other. We see in Fig. 4a that as the sizes
of the membrane and nanopillar portions are increased
at an identical rate, the value of the nonconformity fac-
tor rises. On the other hand, we observe in Fig. 4b that
when the size of the nanopillar portion is increased at
a higher rate compared to the membrane portion, this
value decreases, i.e., the degree of conformity intensi-
fies. The former scenario corresponds to the set of cases
considered in Ref. [17]. On the other hand, the latter
scenario represents a design pathway that creates com-
pensation, as described in Section I. For compensation
to be realized, nanopillar vibrons are added at a higher
rate than membrane phonons as the overall size of the
unit cell examined is increased. The outcome is that not
only (1) the phonon band structure gets enriched with a
higher vibrons-to-phonons ratio, but also (2) the level of
conformity between the phonon and vibrons DOS distri-
butions gets significantly enhanced.

2. Effect of vibrons compensation on group-velocity and
mode-weight-factor reductions

The degree of phonon-vibron conformity has significant
effects on all three mechanisms for thermal conductivity
reduction. Considering the reduction in group velocities
and the introduction of nanopillar localized modes, this
is demonstrated in Fig. 5 where we again consider the
three NPM configurations shown in Fig. 4b which feature
vibrons compensation as the membrane thickness is in-
creased. In Fig. ba, we show the group velocity frequency
distribution across the full spectrum for each NPM and
its corresponding uniform membrane with the same base
membrane thickness. In order to quantify the reduction
in the group velocities across the full spectrum, the av-
erage group-velocity ratio is computed and defined as
G, = GNpM/Gmemb, Where the average group velocity
G is calculated for each system (NPM or uniform mem-
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FIG. 5. Demonstration of the impact of the compensatory
effect on the frequency distributions of (a) the group velocity
and (b) the mode weight factor. These results are for the same
three NPM configurations considered in Fig. 4b where the V;
value grows as the overall unit-cell size increases. Increasing V;
significantly decreases the group velocities and increases the
degree of mode localization, across the full spectrum. This
outcome is consistent with the decrease in the nonconformity
factor observed in Fig. 4b.
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where vy is the group velocity, n, is the number of
wavenumber points considered, n,, = 3N is the to-
tal number of modes for an N-atom unit cell, x is the
wavenumber (scalar component of wave vector k), and
m denotes the branch number in the dispersion diagram;
see Ref. [17] for additional analysis on the influence of the
nanopillars on the group velocity characteristics. Clearly,
we see that G, drops as the size increases with a higher
growth rate in the nanopillar portion, which is a manifes-
tation of the compensatory effect. To similarly investigate
the impact of the compensatory effect on the mode local-
izations, we use the mode weight factor fregion to quan-
tify “regional” localization—this represents the relative
contribution of each region of the system (base membrane



or nanopillar) to each mode. This quantity is defined for
each mode (k, m) by [30-32],

NReg]on

Z Z¢1J K, m)@ii(k,m),  (3)

fReglon K, m

where ¢;;(x, m) is the normal eigenmode corresponding
to atom ¢ and direction j. The ()* symbol denotes the
complex conjugate operation. The first summation is over
the number of atoms Ngegion for a region in the system
(for example, Nregion = NMemb represents the number
of atoms in the base membrane and Ngregion = Vpillar
represents the number of atoms in the nanopillar). The
factor fRregion varies between 0 and 1. If the region of
interest encompasses the total number of atoms in the
system, i.e., NRegion = NMemb + Npillar = IV, the factor
fRegion is equal to one. In order to quantify the relative
contribution of each component of the unit cell, a mode
weight factor ratio, f;, is defined as f; = Fyemb/Fpillars
where FRegion represents the average value of fregion Over
all the modes in the system and is computed in a similar
manner to computing the average group velocity G. Fol-
lowing this definition, Fyfemp + Fpinar = 1. The ratio f;
varies between 0 (all the motion is localized within the
nanopillar) and oo (all the motion is localized within the
base membrane). The lower the f, value, the higher the
relative motion of the atoms in the nanopillar compared
to the base membrane and therefore the higher the de-
gree of mode localization in the nanoresonator. Figure 5b
shows that higher V, values yield lower f, values, which
is again consistent with the compensatory effect.

In summary, with vibrons compensation we observe a
perfect correlation between the increase in phonon-vibron
conformity on the one hand (which is represented by a
decrease in ]%pv), and the reductions in G, and f, on the
other hand. The consequence is a sustained increase in
thermal conductivity reduction, compared to a uniform
membrane, with increasing membrane thickness (see Sec-
tion IV).

B. Frequency limits for “active”
hybridization

resonamnce

Thermal transport in silicon is carried by very
short-wavelength waves and therefore there are lower
frequency limits on the nanopillar generated vibrons that
couple with the phonons. In bulk silicon, the transport is
carried by phonons with wavelengths ranging, roughly,
from 0.4 nm to 10 nm at room temperature with the
majority of the distribution being within 0.4 nm to
2.2 nm [33]. In Fig. 6, we show the phonon dispersion
curves for a uniform membrane unit cell of size 1 x 1 x 6
CC (i.e., 0.5431-nm wide) and an NPM unit cell of size
6 x6x6+4x4x12 CC (ie., 3.2586-nm wide). In
principle, the Brillouin zone of this NPM unit cell
may be unfolded six times and mapped on that of the
uniform-membrane to enable direct comparison. In the

figure, we consider the wavelengths of A = 0.54, 1.09
and 10.86 nm and mark the frequency where each of
these wavelengths intersects the lowest dispersion curve
of the uniform membrane. The intercepts correspond to
frequencies w = 3.1, 2.8 and 0.1 THz, respectively. These
values represent the lower limits on the frequencies of
vibrons that are capable of coupling with phonons at
each of these wavelengths and lower. For example, any
local resonance that is 2.8 THz or higher is, in principle,
available for coupling with phonons with a wavelength of
1.09 nm or lower. Furthermore, we observe from Fig. 6a
that the longitudinal acoustic branch extends to nearly
7 THz upon unfolding once. Thus the numerous vibrons
spanning the 3-7 THz range are available for coupling
and hybridization with a wide selection of phonons with
wavelengths between 0.5 and 1 nm, and many more
vibrons are active when also considering phonons with
wavelengths larger than 1 nm. Upon examining closely
the NPM dispersion curves (see inset of Fig. 6b), we
observe that the vibrons for this example NPM structure
start at 0.04 THz and populate as we move upwards;
thus there are plenty of vibrons available for resonance
hybridizations to take place within the full range of
phonon wavelengths.

The only limiting factor that remains is the dis-
tribution of the phonon mean free path (MFP). For
bulk silicon, the MFP distribution at room temperature
ranges from a few nanometers to a few microns [33]. And
for silicon membranes with a thickness on the order
of a few tens or hundreds of nanometers, the room-
temperature MFP distribution was shown in recent
experimental results to comfortably cover a range that is
at least on the order of the membrane thickness; see, for
example, Refs. [14,34]. The active wavelengths (which
as discussed above can be as small as a few angstroms)
are able to travel relatively long distances within the
pillared membrane structure as long as these distances
fall within the range of the MFP distribution. An im-
portant advantage of molecular dynamics simulations is
that all anharmonic and boundary scattering activity is
accounted for and thus any limitations on the dynamical
processes involving the nanostructure phonon and vibron
modes are inherently incorporated in the results. The
reader is referred to Ref. [16] where direct evidence of the
existence of the resonance hybridization phenomenon in
a room-temperature MD simulation was demonstrated
using spectral energy density (SED) calculations [35
and 36]. In the next section, we use a different version
of the SED method to further confirm the existence of
localized modes and to examine the effect of resonance
hybridizations on the phonon lifetimes and MFPs.
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III. EFFECT OF RESONANCES ON PHONON
LIFETIMES AND MEAN FREE PATHS

In this section, we briefly investigate the effect of lo-
cal resonances on the scattering properties of an NPM,
namely the phonon lifetimes 7 and MFPs A = v,7. We
use the SED method [35 and 36] to extract these
quantities after running equilibrium molecular dynamics
(EMD) simulations (EMD implementation details are in
Appendix A). This technique predicts the phonon SED
field ® (or ®'; see discussion below) at wave vector K
and frequencies w by taking a superposition of 3N (total
number of modes in the unit cell) Lorentzian functions

3N
Iy

(e, w) = Z 1+ [27(wa — w))]?’ )

where [ is the SED peak, w, represents the anharmonic
frequency of mode (k,m), and 7 also corresponds to
mode (k,m). In the literature, there are two formula-
tions for computing SED: ® and ®’. Both methods are
in principle the same although in practice they tend to
produce slightly different results [37]. The former uses
the normal mode velocity of the atoms and thus requires

a priori knowledge of the phonon modes. The projection
of atomic velocities onto the phonon modes is compu-
tationally demanding especially for large supercells such
as NPM unit cells. However, the peaks are easily dis-
tinguishable in the ® formulation and this allows us to
predict the frequencies/lifetimes mode by mode. The @’
formulation, on the other hand, requires only the atomic
velocities and no modal projections are involved. This
makes the predictions of the lifetimes in particular more
challenging especially when the modes are closely spaced
where identifying the peaks becomes difficult. However,
the ®" approach has the advantage that it requires less
intensive computations. Here, we choose to use the ® for-
mulation which entails predicting all phonon information
mode by mode. According to [36], ® is computed by
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where pg = m/(2nwtyosNe), m is the mass of a silicon
atom, tyoy is the total simulation time, and ¢ is normal
mode velocity,

3,N,N.

g(k,m;t) = Z u; (1,5t) (bfj(n,m)ei“'r‘)(l’o), (6)

risl

where 7 is the equilibrium position vector of the Ith unit
cell, and ; is the j-component of the velocity of the 7th
atom in the [th unit cell at time t. There is a total of
N¢ = N¢ N,y unit cells in the simulated computational
domain. To predict the phonon anharmonic frequencies
and lifetimes from Egs. (4) and (5), each peak is fitted to
a Lorentzian function centered at w, with a half-width
at half-maximum value of 1/(27).

We choose to study an NPM unit cell with the di-
mensions 3 X 3 x 34+ 1 x 1 x 3 CC (240 atoms) and
the corresponding uniform membrane unit cell with the
dimensions of 3 x 3 x 3 CC (216 atoms). The quasihar-
monic LD dispersion diagrams for these single unit cells
are shown as solid lines in Fig. 7a. As explained earlier,
the velocity trajectories of atoms from EMD simulations
and mode shapes from separately performed LD calcu-
lations are the main input for Eq. (5). Five independent
simulations are performed under NV E conditions (con-
stant number of atoms, volume, and energy) and are run
for 222 time steps using a 0.8-fs time step — the total sim-
ulation time is tyoy = 3.4 ns. The trajectories are output
every 2° steps resulting in 27 time steps. Several unit
cells must be considered in the direction of interest (I'-
X in our case) to accurately predict frequencies at the
allowed wave vectors and also ensure that there are no
computational size effects due to periodic boundary con-
ditions. We have considered two long simulation domains,
consisting of N., = 32, and N., = 1 and N, = 2 sin-
gle unit cells, respectively; the first consisting of 7,680
atoms and the second of 15,360 atoms. This results in
17 allowed wave vector points in the I'-X path of the ir-
reducible Brillouin zone. Using the EMD data and the
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FIG. 7. (a) The quasiharmonic LD dispersion curves for the
3 x 3 x 3-CC membrane unit cell and 3 x3 x3+1x1x3-CC
NPM unit cell are shown with the blue and red lines. The
blue squares and red circles show the anharmonic frequencies
extracted from EMD. (b) The group velocity, lifetime, and
mean free path of the phonons marked in (a). The squares
and crosses correspond to the NPM system when performing
the SED calculations on the atoms only in the membrane or
nanopillar portion, respectively. (¢) SED peaks for the uni-
form membrane (left) and the NPM (right). The peak broad-
ening in the NPM case is a manifestation of the effect of res-
onances. The black lines show the Lorentzian fits.

® formula, we have computed the frequencies and life-
times of several transverse-acoustic (TA) phonon modes
roughly in the range between 0.4-1 THz. The results are
obtained based on peaks averaged over five simulations
before curve fitting. Both simulation domains yield close
results, which confirms that there is no significant com-
putational size effect.

The anharmonic frequencies (squares and circles) for
the calculated TA phonons are shown in Fig. 7a. Clearly,
they closely match with the quasiharmonic dispersion
curves (higher frequency phonons are expected to deviate
from the quasiharmonic dispersion curves). The subset of
data points falling along one of the horizontal lines (just
below 1 THz) is direct evidence of the presence of lo-
calized modes. For frequencies lying along the phonon
dispersion branch for shear-like waves, the lifetimes and
MFPs are predicted and shown in Fig. 7b. The predic-
tions for this low-frequency range reveal that the life-
times and MFPs in an NPM are generally lower than in
the corresponding uniform membrane, with a substan-
tial decrease within the hybridization zones (for exam-
ple, around 0.76 THz). It is evident, however, that these
decreases in the the lifetimes and MFPs while signifi-

cant, they are not too extreme because we are still able
to identify and extract anharmonic frequencies (as shown
in Fig. 7a) which is indicative of the presence of wave phe-
nomena. The lifetimes and MFPs are also predicted for
the membrane and nanopillar portions of the NPM sys-
tem by respectively considering atoms in only the mem-
brane or the nanopillar in the SED calculations. The re-
sults are close to the predictions made for the entire NPM
system. The quasiharmonic group velocities of the same
modes are also shown Fig. 7b for comparison. In Fig. 7c,
we carefully examine an energy peak for each of the uni-
form membrane and the NPM. The left subfigure shows a
frequency peak extracted from the SED data of the uni-
form membrane, which shows a sharp and distinguishable
peak. In contrast, for the NPM mode shown in the right
subfigure, the peak is broadened and thus the lifetimes
are reduced. The reductions in the lifetimes/MFPs, as
expected, are at and around the hybridization regions in
the phonon band structure. Decreases in these quantities
augment the reductions in the group velocities as well
as the presence of mode localizations in causing an over-
all reduction in the thermal conductivity (compared to a
corresponding uniform membrane).

In summary, it is of particular importance that the
added anharmonic scattering stemming from the erec-
tion of the nanopillars on a membrane do not prevent
the resonance hybridizations phenomenon from unfold-
ing in a silicon NPM at room temperature. This ob-
servation is noted not only in the discrete anharmonic
data in Fig. 7a, but also in Ref. [16] where a simi-
lar silicon-based NPM configuration was analyzed us-
ing SED (following the ® formulation) and the disper-
sion curves that emerged demonstrated clear evidence
of ample resonance hybridization features. The extent to
which each of the three mechanism—group velocity reduc-
tions, mode localization in the nanopillars, and decreases
in the lifetimes/MFPs at and around the hybridization
zones—relatively contribute to the overall thermal con-
ductivity reduction will be investigated in future studies.

IV. NPM PERFORMANCE: EXTREME
THERMAL CONDUCTIVITY REDUCTION

The size and geometry of the nanopillars are key to
increasing the intensity of the resonance hybridizations
effect, as demonstrated in Figs. 3 and 4. In this section,
we extend our investigation to the prediction of the
thermal conductivity and seek to further investigate the
conditions for its extreme reduction. EMD simulations
and the Green-Kubo (GK) method are used for the
thermal conductivity calculations; see Appendix A for
the implementation details. Lattice dynamics calcula-
tions together with the Boltzmann transport equation
following the single-mode relaxation time approximation,
and nonequilibrium molecular dynamics simulations,
are also utilized for additional analyses provided in
the appendices and these prediction methods too are
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FIG. 8. Thermal conductivity ratio k. versus the size parameter (scaling factor) « in (a), (b) and (d) and versus the ratio of top
and bottom nanopillar heights hr/hg in (¢). A membrane thickness of 6, 12, and 18 CC correspond to 3.26, 6.52, and 9.78 nm,
respectively. Thick arrows in (a) and (b) represent maximum upward and downward changes among the cases considered. In
each of (a), (b) and (d), the left inset shows k. versus the nanopillar-to-base membrane volumetric ratio V; (error bars not
shown for brevity), and the right inset plots V; versus . In (c), the top left inset shows k; versus V; as ht/hg increases, the
bottom left inset plots V; as a function of ht/hg, and the right inset shows the vibrons DOS of a single- versus double-pillared
NPM unit cell. Unlike in Fig. 3, here the vibrons DOS are extracted from the NPM band structure. In (d), 8 denotes the
nanopillar height divided by the membrane thickness. All trends clearly show that the performance of an NPM in reducing k.
is directly dependent on V; and the type of a-dependency. In the double-pillared configuration considered in (d), a two orders

of magnitude reduction in the thermal conductivity is recorded.

described in Appendix A.

A. NPM size, geometric, and temperature effects
on thermal conductivity reduction

In Fig. 8, we investigate using the EMD-GK scheme
the reduction in the in-plane thermal conductivity for
various NPM sizes and geometries. The reduction is rep-
resented by k;, the lattice thermal conductivity of a

membrane with nanopillar(s) in the unit cell divided
by that of a uniform membrane with the same thick-
ness. Key factors in this analysis are (i) V; and (ii) the
manner by which the geometry of the different NPM
components (membrane and nanopillar) change relative
to each other as the size is increased. Using « as a
size parameter, we refer to the latter factor as the “a-
dependency”. The mathematical representation of the
various a-dependencies considered, their corresponding
V; values, and other related quantities are given in Ta-
ble B.1 in Appendix B. A corresponding graphical repre-



sentation is provided in the insets of Fig. 8 in the form
of Vi vs. a, V; vs. hr/hg, and k, vs. V.

The results in Figs. 8a and 8b show that regardless
of the specific form of the a-dependency, k, increases
with size when V, is constant. We have shown in an
earlier study that this behavior correlates with the de-
gree by which the resonance hybridizations affect the
group velocities as a unit cell is proportionally upscaled
in size [17]. For k; to maintain its value with «, or pos-
sibly even drop in value, we need to introduce compen-
sation (as discussed in the previous sections) to the a-
dependency; that is, to select the dependency in a man-
ner such that V; increases as « increases. The strength
of this compensation is measured by v = dV;/da. We
observe that indeed k. drops, as desired, for the cases
exhibiting a compensatory a-dependency, e.g., k, drops
from 0.36 at « = 1 to 0.14 at a = 3 for the 6 x 6 x
18 + (6a — 2) x (6 — 2) x 18a CC model for which
Vi = a(l —1/3a)? and v = (1 — 1/9a2). This negative
trend in thermal conductivity reduction is attributed to
what we described earlier as the compensatory effect. The
connection between k, and the a-dependency, with and
without compensation, correlates directly to the reduc-
tion in the group velocities and the increase in mode
localizations that arise due to the resonance hybridiza-
tions. A demonstrative case study on these correlations
is provided in Appendix B.

In Fig. 8c, we examine the influence of adding a sec-
ond nanopillar (at the bottom) of the membrane. The
right inset demonstrates that this significantly increases
the spread in the vibrons DOS spectrum, and as a result
k,. drops from 0.25 to 0.12.

In Fig. 8d, we examine different nanopillar heights
by varying the parameter 3.3% It is shown that the
larger the value of 8 [i.e., the taller the nanopillar(s)],
the stronger the reduction in k,.—which allows us to at-
tribute additional incremental reductions in k, with in-
creases in nanopillar height to the wave-resonance cou-
pling phenomenon rather than boundary scattering. This
is consistent with observations in previous studies of
NPMs [16,23,39]. Pushing the compensatory effect fur-
ther, we show in Fig. 8d a reduction in the thermal con-
ductivity by a factor of 75 for a single nanopillar and a
factor of 130 for double nanopillars for a membrane 9.78-
nm thick with each nanopillar extending up to 586.5 nm
in height. The extent of these reductions is unprecedented
in the literature, and yet more reductions are possible
with further increases in nanopillar size and augmenta-
tion with conventional treatments such as optimized al-
loying [39].4°

Additional investigations of NPM design avenues are
summarized in Appendices C, D, and E. For example, in
Appendix E, the nanopillars are replaced by nanowalls
which are shown to provide yet further reduction in the
thermal conductivity.

Lastly, we examine the effect of temperature on the
performance of the best performing design considered in
Fig. 8d, namely the double-pillared membrane with a=3
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FIG. 9. Demonstration of the positive correlation between
the thermal conductivity reduction and the inverse of the
nanopillar-to-membrane volumetric ratio. This correlation
provides a simple geometric metric that may be used to obtain
a rough prediction of the trends of k. versus « for different
NPM unit-cell configurations.

and f=60. At a temperature of 700 K, we obtain a value
of k. = 0.0519 £ 0.0085 which corresponds to nearly a
factor of 19 reduction in the thermal conductivity com-
pared to a uniform membrane withe same thickness of
9.78 nm.

B. Correlation of NPM analytical geometric trends
with k, predictions from MD simulations

As explained in Section I and demonstrated in Sec-
tion IT and Appendix B, the resonance hybridization phe-
nomenon (1) causes the group velocities of many of the
base membrane phonon modes to reduce significantly,
and (2) adds numerous zero-group velocity modes (vi-
brons) to the system. It is shown in Section III that reso-
nance hybridizations also reduce the phonon lifetimes at
and around the coupling regions with the phonon band
structure. Each of these three factors contribute to the
reduction of k;. Since the intensity of these effects de-
pend on the number of vibrons added to the system, we
may predict the extent of the thermal conductivity re-
duction indirectly from V; (especially that we also saw,
from Fig. 4, that a rise in V, causes an increase in the
phonon-vibron conformity, i.e., a drop in Ry ). This cor-
relation is demonstrated in Fig. 9 which plots both &k, and
1/V; versus the size parameter « for the three different
double-pillar configurations considered in Fig. 8d.

It is observed that both trends decrease with increase
in o due to the compensatory effect. It is also observed
that this decrease takes place with a decreasing rate,
which is for the two following reasons. First, as more
vibrons are added, the effect of additional vibrons grad-
ually diminishes as the dispersion curves get saturated
with resonance hybridizations. This factor is evident in
both the &, and 1/V; trends. Second, as the NPM charac-
teristic size increases, this size compared to the MFP dis-



tribution increases, which in turn leads to a diminishing
of the effects of resonance hybridizations. The latter fac-
tor pertains to only the k, trends, and we indeed observe
a slightly less negative slope for the k. curves compared
to the 1/V} curves. As discussed earlier, the MFPs factor
for an NPM made of silicon will become practically in-
fluential in hindering wave and resonance phenomena at
significantly higher NPM dimensions than the dimensions
considered in this investigation. This factor becomes less
influential as the temperature is reduced.

V. CONCLUSIONS

In Ref. [15], a new type of nanostructured material
was introduced that enables a reduction in the lattice
thermal conductivity through the phenomenon of full-
spectrum resonance hybridizations. Unlike materials
that naturally exhibit local resonances from rattling
atoms, such as clathrates [41], an NPM includes artifi-
cially introduced local nanoresonators as substructures
that may be attached to the host material (for example,
nanopillars standing on a silicon membrane). With this
concept, and given that we can size the nanoresonators
as desired, we yield a tremendous number of hybridizing
resonances that may be engineered to span roughly the
entire spectrum of the host material. If the relevant
unit-cell dimensions fall within the range of the phonon
MFP distribution, each of these resonances will (1)
cause a reduction in the group velocities of existing
heat carrying modes (phonons), and (2) introduce
localized modes (vibrons) that absorb but not transfer
heat—these two effects work in tandem and could be
tuned to attain a significant reduction in the transport
medium’s thermal conductivity. Drops in the phonon
lifetimes also take place—at and around the hybdrization
zones in the phonon band structure—leading to further
reduction in the thermal conductivity. Direct evidence of
the existence of resonance hybridizations in nanopillared
silicon membranes at room temperature was provided in
a subsequent study using spectral energy density analysis
of atomic motion from MD simulations [16]. Therefore
the reductions in the lifetimes, while relatively significant
in the coupling regions, are still moderate enough overall
not to impede the occurrence of the phonon-vibron
couplings which are of coherent nature.

More recently, it was discovered that the perfor-
mance of an NPM deteriorates as the unit-cell size is
increased [17]. This property is detrimental because it
impedes the feasibility of upscaling to sizes that are
suitable for thermoelectric device integration, which
is needed to enable industrial-scale deployment for
waste heat conversion to electricity and for cooling
and refrigeration. Furthermore, parameter optimization
studies have shown that the inclusion of nanoresonators
could reduce the thermal conductivity by at most a
factor of five [17,23,39]. In this paper, we reveal a route
that reverses the unfavorable size-effect trend and causes
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the thermal conductivity reduction to increase, rather
than decrease, with size. The key is the notion of vibrons
compensation, that is, to enlarge the nanoresonator at a
higher rate than the base membrane as larger unit-cell
sizes are considered. In addition to enriching the band
structure with a higher vibron-to-phonon ratio, this
approach causes an increase, rather than a decrease, in
the conformity between the phonon and vibron DOS
distributions. The outcome is not only favorable for
upscaling, but it is also extremely advantageous in that it
allows the unit-cell design space to expand thus opening
up a path for a significant increase in the effectiveness
of the resonance hybridizations phenomenon, as quan-
titatively demonstrated in Fig. 4. Effective resonance
hybridizations lead to not only a magnification in the
intensity of phonon group-velocity reductions, but also a
boost in mode localizations (as explicitly demonstrated
in Fig. 5 and Appendix B), and a noticeable decrease
in a substantial fraction of the population of phonon
lifetimes (as shown in Fig. 7). This in turn grants us
a route for unprecedented reductions in the thermal
conductivity.

From our calculations, the thermal conductivity of
a 9.78-nm thick uniform silicon membrane is 3.7 £ 0.7
times lower than the bulk form. Multiplying this by
the factor of 130+ 28 for the best double-nanopillar
case reported in Fig. 8d gives a total factor of 481 £ 55,
which corresponds to roughly half the thermal conduc-
tivity of bulk amorphous silicon (see Appendix F). By
conservatively assuming the same k, value for a = 6
for this high performing configuration, a 19.55-nm thick
NPM would exhibit a thermal conductivity reduction by
a factor of 311 & 85 with respect to bulk silicon.*? As-
suming a one-to-one mapping between the thermal
conductivity reduction and the increase in ZT—as
demonstrated by the experimental characterization
of similarly sized freestanding silicon membranes [11]
and silicon nanowires [13],*3 and given that the ZT
of moderately doped bulk silicon at 7' = 300 K is
0.01 [44,45], we obtain a projected room-temperature
ZT value of 3.1 4 0.9.46 This is significantly higher than
any previously reported ZT value at any temperature,
47 not only for silicon but for thermoelectric materials
in general.

ACKNOWLEDGMENTS

This research was partially supported by the National
Science Foundation (NSF) CAREER Grant No. 1254931
and the Smead Faculty Fellowship program. The authors
thank current group member Mr. Dimitri Krattiger and
GULP developer Dr. J. D. Gale for their insights on
the LD calculations, and former group member Dr. Lina
Yang for setting up and conducting the NEMD simula-
tions presented in Appendix A. This work utilized the
Janus supercomputer, which is supported by NSF Grant



No. CNS-0821794 and the University of Colorado Boul-
der. This work also used the Extreme Science and En-
gineering Discovery Environment (XSEDE) Bridges re-
source at the Pittsburgh Supercomputing Center through
allocation DMR160036P, which is supported by National
Science Foundation grant number ACI-1548562 [48].

Appendix A: Thermal conductivity prediction
methods

Equilibrium molecular dynamics simulations

Thermal conductivity predictions in this inves-
tigation are obtained primarily using equilibrium
molecular dynamics simulations and the Green-Kubo
method [49,50,51,52]. In the GK method, the lattice ther-
mal conductivity tensor kj is calculated from the heat
current auto-correlation function (HCACF) by

1

b= [ DO I@) (A
where kp is the Boltzmann constant, V' is the total vol-
ume of the system including both membrane and nanopil-
lar portions (i.e., volume of the unit cell a4, x ad, x d+
bxbxht+bxbxhg in a simulation domain consisting of a
single unit cell), J is the heat current vector (in the units
of energy times length per unit time) computed over all
atoms in the system, and ® denotes the tensor product
operation. As defined earlier, T is the temperature and
t is the time. The integrand (J(0) ® J(t)) represents the
time average of the HCACF.

Throughout the investigation, we recall that the crys-
tals are assumed to be defect-free and interatomic inter-
actions are modeled using the Stillinger-Weber empirical
potential [26]. All simulations are performed using the
LAMMPS software and the heat current vector is evalu-
ated using the stress-based formula

J = *ZS@’UZ‘,

where S; and wv;, respectively, denote the virial stress
tensor and the velocity vector for atom ¢ [53]. The com-
putational domain for the NPM models and the uniform
membrane models consists in each case of one unit cell
with standard periodic boundary conditions applied at
the in-plane boundaries leaving the surfaces free in the
z-direction [16, 17]; see Fig. 1 for an illustration of the
unit-cell geometries considered and the associated nota-
tion. The computational domain for the bulk case con-
sists of a cubic unit cell with periodic boundary condi-
tions applied in all three directions.

The systems are initially equilibrated for 1 ns, with a
time step At = 0.8 fs, at room temperature (7' = 300 K)
under the NPT ensemble (zero pressure cell size based
on constant number of atoms, pressure, and tempera-
ture). The simulations are subsequently allowed to run
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FIG. A.1. EMD-GK: (a) Normalized HCACF for the double-
pillared NPM system with size and pillar-to-membrane as-
pect ratio parameters of @ = 3 and 8 = 60, respectively. The
uniform-membrane and bulk HCACFs are also shown in the
background. The same curves are provided in the inset with
the time axis plotted in logarithmic scale. (b) Calculated lat-
tice thermal conductivity for the NPM system considered in
(a). Twelve thermal conductivity predictions are shown in
light red, and the average value is in dark red. The dashed
box highlights the converged value of k. In the inset, the
uniform-membrane and bulk thermal conductivities are also
shown along with boxes indicating the convergence regions.

under the NV E ensemble for an additional 6 ns to col-
lect heat fluxes that are recorded every 4 fs. The 6-ns
time span is sufficiently long compared to the longest
phonon lifetime to reliably predict the thermal conductiv-
ity. With these parameters, the HCACFs generally con-
verge within the first 1 ns, with the rate of convergence
depending on the type of the material system [e.g., bulk,
uniform membrane, or NPM]. The smaller the value of
the predicted thermal conductivity, the shorter the con-
vergence time. The z-direction HCACF (normalized with
respect to its initial value) for the NPM system with
the best performance (double pillared with a = 3 and
B = 60) is shown in Fig. A.la. The normalized HCACFs
of a corresponding uniform membrane (i.e., a silicon
membrane with the same thickness but without nanopil-
lars) and the bulk case are also shown. The z-direction
thermal conductivity (denoted k;) for the NPM system,
which is observed to have converged within the 100 to
200 ps window, is plotted in Fig. A.1b; and in the in-
set, the thermal conductivities of the uniform-membrane
and bulk cases are shown as well. To minimize model-
ing errors, the quantity reported is k, which as defined
earlier is the NPM lattice thermal conductivity divided



by that of a corresponding uniform membrane with the
same thickness. For each prediction of k., an average
value is obtained from six independent simulations with
different initial velocities. Furthermore, both the z- and
y- in-plane directions are considered for all NPM and
uniform membrane calculations—effectively resulting in
an averaging over twelve predicted values. For bulk sil-
icon, the reported thermal conductivities are the aver-
age of values obtained by simulating three unit cells of
different sizes, each simulated also six times, and, in
addition, evaluations are made over the z-, y- and z-
directions—effectively resulting in an averaging over fifty-
four predicted values. The unit cells considered for the
bulk simulations are 6 x 6 x 6 CC, 12 x 12 x 12 CC,
and 18 x 18 x 18 CC—the predicted thermal conductiv-
ity for each is 412432, 319428, and 397436 Wm 1K1,
respectively. Thus no discernible computational size ef-
fect is observed among these three unit-cell sizes, which
is consistent with what others have observed in similar
investigations [54, 55].

The thermal conductivities predicted using the EMD-
GK method and the adopted empirical potential are
overestimated in terms of absolute quantities; however,
this method is able to reliably predict accurate physical
trends [50, 54, 55]. In all the EMD simulations, the re-
ported error bars are calculated using the standard error
of the mean, S.

For uncertainty quantification of any multivariate
function Q (k1 £ Sk, , ko = Sk,, ...), where kq, ko, etc., rep-
resent the thermal conductivity of a specific system, and
each of Sk, , Sk,, ... denotes the corresponding error—for
example, considering ) as the ratio of NPM thermal
conductivity with respect to that of the uniform mem-
brane, @ = (kxpm £ Skypar)/ (EMemb £ Skygon, ) —the fol-
lowing formula is used [56]:

Sa = |2 (s (A3)

%

Using this simulation framework, the thermal conduc-
tivity of a uniform membrane is predicted and listed in
Table A.1 for various thicknesses d. These values are iden-
tical to those reported in Ref. [17], and the prediction
for bulk silicon is in good agreement with other predic-
tions in the literature where the simulation setup is sim-
ilar [54, 57].

Nonequilibrium molecular dynamics simulations

Another commonly used technique for lattice ther-
mal conductivity predictions is based on nonequilib-
rium molecular dynamics (NEMD) simulations and
direct application of Fourier’s law of heat conduc-
tion [51, 54, 58]. While this route is not used in any of
the analyses presented in the main sections or the other
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a | d(CC) dmm)|k (Wm K™

1 6 3.26 4749

2 12 6.52 76+ 11

3 18 9.78 101 + 19

6 36 19.55 157 + 27
Bulk - - 376 £ 19

TABLE A.1. Thermal conductivity of uniform silicon mem-
branes and bulk silicon using EMD simulations and the GK
method. The membrane unit-cell size is 6a x 6a x d CC,
where « is a size parameter (scaling factor) and d = 6« is
the thickness. Three unit-cell sizes are considered for the bulk
case: 6 Xx6x 6 CC, 12x12x 12 CC, and 18 x 18 x 18 CC. The
bulk thermal conductivity value is averaged over these three
sizes.

appendices, here we briefly review the technique and pro-
vide some results to enable a comparison with predictions
based on the EMD-GK approach.

For a system subjected to a spatial temperature
gradient VT across its boundaries, the Fourier’s law of
conduction states that the steady-state heat current den-
sity vector j (which is a microscopic vector of an effective
heat current density defined as a quantity of energy per
unit time per unit area) is

J=-kVT. (A4)
Equation (A4) is a general form of the law that de-
fines volumetric heat current and is applicable even when
the medium does not exhibit a uniform cross-sectional
area. For an NPM, the quantity j is related to J [which is
the total nonvolumetric effective heat current vector cal-
culated using Eq. (A2)] by j = J/V, where V as stated
earlier is the volume of the entire system—including both
the base membrane portion and the nanopillar portion.
The technique applies to a finite, multiple unit-cell
system. As an example, we consider the five unit-cell
model of an NPM shown in Fig. A.2a and consider the
x-component of kj. A pair of Langevin heat baths is
used to create a temperature gradient 97/0z, where
T = 1/(3kaB)Z£§1 mi”vi”Q» Ny = Nypase Or Ny =
Nz base + Ng pillar is the number of atoms over the entire
cross section at position x, and m; and v; denote, respec-
tively, the mass and velocity vector of the ith atom (in
our model m; is constant and is equal to the mass of a sili-
con atom which, as defined earlier, is denoted by m). The
temperature definition shows that, at each position x, the
kinetic energy of all the atoms should be considered (in-
cluding the atoms in the nanopillar as they have nonzero
velocity) to correctly obtain the correct temperature pro-
file through the system. This is done by setting the tem-
perature of the left and right ends at 7, = 310 K and
Tr = 290 K, respectively. Periodic boundary conditions
are applied in the y-direction and the surfaces are kept
free along the z-direction. We simulate this nonequilib-
rium system for 0.8 ns to reach the steady state and then
run it for another 9.6 ns to obtain the average heat flux
and temperature profile.
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FIG. A.2. NEMD-Fourier: (a) Schematic of NEMD simulation setup consisting of N, =5 and N, = 1 NPM unit cells along
the z- and y-directions, respectively. (b) Temperature profile with linear fit (top), temperature profile in high resolution (middle),
and temperature gradient (bottom) across the finite dimension. The piecewise variation in the temperature profile is due to the
division of the system into membrane-only segments and pillared membrane segments. (¢) Thermal conductivity as a function
of number of unit cells along the direction of the temperature gradient (shown in normalized form in the inset). The curved
dashed lines represent exponential fittings. The horizontal lines represent average values for the EMD-GK results (dashed) and
converged values for the NEMD-Fourier results (solid). This figure is similar to Fig. 4 in Ref. [17] except here the total volume
of the NPM unit cell is considered in the NEMD-Fourier k; predictions, rather than the volume of the base membrane portion

only.

As shown in Fig. A.2, the temperature profile emerg-
ing from simulations along the direction of periodicity
is not smooth; this is because the value of the cross-
sectional area changes in a piecewise mnanner as the heat
is transported along the membrane, based on whether or
not there is a nanopillar. Thus in using the Fourier law
to calculate ky, Eq. (A4) is replaced with j = —k1 VT,
where VT, represents a linear fit of the temperature
gradient along the multiple unit-cell system. The re-
ported thermal conductivity values are the average of
two independent simulations.

Because the NEMD-Fourier technique is based on a
finite system with fixed boundaries, a relatively large
number of unit cells is usually required to adequately
remove erroneous size effects [52,54]. In Fig. A.2b, k
is predicted as a function of the totall number of unit
cells in the z-direction N., (in a layout consisting

of only one cell in the y-direction.). Estimates of
the converged values of the thermal conductivity are
obtained by performing an exponential extrapolation
on the data points. By comparing these results with
counterparts from the GK-EMD method, it is seen
that the thermal conductivity values predicted by
NEMD-Fourier are lower than the corresponding EMD-
GK predictions. However, importantly, the predicted
thermal conductivity reductions from the two methods
agree well (see the inset of Fig. A.2b). The k, values
computed by EMD-GK are at most 15% smaller than
the corresponding NEMD-Fourier predictions.?®



Boltzmann transport equation

In some cases, whenever stated in the text, the lattice
thermal conductivity is predicted using the Boltzmann
transport equation (BTE) under the assumptions of the
single-mode relaxation time (SMRT) approximation [60]
and an isotropic Brillouin zone. In this method, k; is
evaluated by

Kmax

1 A
=g |

mo9

C(k, m)vg(/@, m)7(k,m)kdk, (Ab)

K,

where A, is the unit-cell base area (i.e., area spanned by
the region aA, x aA, of the unit cell), C' denotes the spe-
cific heat, and V, vg, and 7 are as before the total volume
of the system (including the base membrane and nanopil-
lar portions), the group velocity, and the scattering time
constant (lifetime), respectively. The integration is over
all phonon wavenumbers from k£ = 0 to Kpax = 7/(aA,)
[or m/(aA,)] for branch number m and the summation is
over all the phonon branches. The nonvolumetric lattice
thermal conductivity is denoted Kj.

In Eq. (A5), the phonon specific heat C for each mode
is computed according to the Bose-Einstein distribution,

x2ex

C(k,m) = kBW,

(A6)

where x = x(k,m) = hw/kgT and h is the reduced
Planck constant. In the classical limit as T — oo,
Eq. (A6) approaches kp. The phonon band structure
and group velocities are obtained by performing quasi-
harmonic lattice dynamics (LD) calculations [61]. For
unit-cell models featuring a large number of degrees
of freedom, these calculations are accelerated using the
RBME technique [27]. In the present implementation of
the RBME technique, a 3-point expansion is conducted
whereby eigenvectors are selected at the I', A, and X
points within the irreducible Brillouin zone to form re-
duced bases which are then used for the calculations at
other wavenumbers. This procedure generates dispersion
curves along the I'-X path at more than an order of mag-
nitude higher speed with errors less than 1% compared to
the full (non-reduced) calculations. Finally, the scatter-
ing time constants are modeled following Matthiessen’s
rule

7 Hr,m) =5t b+t (AT)
where 7y, 71, and 7 denote specific relaxation time
constants associated with umklapp scattering, impurity
scattering, and boundary scattering, respectively. For
each of these quantities, we follow our earlier model in
Ref. [15] where 75! = ATw?e~B/T, 77! = Duw* and
5" = |vg|/l. The length parameter is selected to rep-
resent non-specular surfaces, i.e., [ = d. The material
parameters A, B, and D are obtained from curve fits to
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Thickness, d (CC) | 6 12 18 | Bulk
A [x107%9] (s/K) | 4190.00  80.20  30.10 | 2.20
B (K) 705.62  373.90 299.15 |178.15
D [x107%] (s%) 1.32 1.32 1.32 1.32

TABLE A.2. Empirical relaxation time parameters used in
the BTE-SMRT models

experimental data on uniform silicon membranes as de-
tailed in Ref. [15] and summarized in Table A.2 for mem-
branes with a thickness of d = 6, 12 and 18 CC. These
scattering parameters are used for both uniform and pil-
lared membrane models.

Definition of NPM volume V in thermal
conductivity models

In all the three methods described above for thermal
conductivity prediction, namely, the GK-EMD, NEMD-
Fourier, and the BTE-SMRT methods, we have empha-
sized that the total volume V of the NPM system (or
unit cell if the computational domain consists of only a
single unit cell) consists of both the base membrane and
the nanopillars portions. In all these formulations, the
normalization by the total volume V is necessary to cor-
rectly express the volumetric heat capacity csys of the
NPM nanostructure—which is a quantity influenced by
the motion of all the atoms and the characteristics of all
the modes in the system. This point is elucidated in the
following short review of pertinent fundamental formula-
tions from statistical thermodynamics.

In real space, which is relevant to the EMD-GK and
NEMD-Fourier methods, the nonvolumetric heat capac-
ity for a single DOF of atomic motion at a constant vol-
ume is defined as C; = 0F,/0T, where E, is the total
energy (potential energy plus kinetic energy) of the gth
DOF. Thus the volumetric heat capacity for a system
with N atoms (each atom has 3 DOF) is calculated as
Csys = (1/V)(OE/IT), where E = 22]:\[1 E, is the total
energy of the system [62].

Considering the mechanics of a quantum-harmonic os-
cillator, the energy of the gth DOF is defined as [63,64]

1
Eq = hwq[§ + féo)], (A8)
where w, is the oscillator frequency, féo) =1/(eXa —1) is
the Bose-Einstein equilibrium distribution function, and
Xq = hwy/ksT. Upon differentiation with respect to T,
the nonvolumetric heat capacity of the gth DOF is

0
ofy”
“or -
It follows that the corresponding quantity per unit vol-

ume is

Cy=hw

(A9)

)
v oor’

(A10)



and the volumetric heat capacity of the system is

3N (0)
1 0fq
Coys = V;:lhwq o (A11)

The motion of all the atoms in the system, including
the base membrane and nanopillar portions, necessarily
contribute to the definition of ¢y because both portions

form a contiguous integrated internal structure.
By taking the classical limit of féo) as T — o0,

Eq. (A11) is simplified to

oys = 202, (A12)

Although Eq. (A12) describes a classical-harmonic heat
capacity while the heat capacity in MD simulations is
inherently a classical-anharmonic quantity, it is a rea-
sonable assumption to approximate the heat capacity of
each DOF by kg when predicting properties of silicon
(for both bulk and nanostructures) at room temperature
[65,66].

In phonon space, which is relevant to the BTE-SMRT
method, the energy of each mode is similarly defined as
[67]

1
E(k,m) = hw(k,m)[5 + FO(r,m)]. (A13)
Here, for simplicity, we drop the index and identify each
mode by a particular wave vector k and branch number
m. From Eq. (A13), the nonvolumetric heat capacity of

a mode is

9f O (k,m)
oT ’

which upon simplification takes the form expressed in

Eq. (A6) for a wavenumber at a given direction. Thus
the heat capacity for a mode per unit volume is

C(k,m) = hw(k,m) (A14)

fw(k,m) Of ) (k,m)
Vv or

and, by extension, the volumetric heat capacity of the
system in phonon space is

CWSZVZZMnmaf(;(;m)

m=1 K

c(k,m) = (A15)

(A16)

where the first summation is over 3N because the total
number of modes at a given wave vector k is equal to
the total number of DOF in the system. The cqys quan-
tity is formulated by incorporating the contributions of
all modes in the system, including the modes exhibit-
ing localized motion in the nanopillar portion(s). This
is because the totality of modes directly corresponds to
the totality of DOF of the contiguous integrated internal
structure comprising both the membrane and nanopillar
portions.
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Another important quantity that is defined in phonon
space is the local heat flux density vector j which
has been related to the temperature gradient in
Eq. (A4). The statistical mechanics definition of j is

3= 1 305 Bl m) (s, m)wg o, m),

where f is the phonon distribution function and vy is the
group velocity vector. Similar to Eq. (A16), this quantity
is also formulated by incorporating the contributions of
all modes in the system, including both phonon and vi-
bron modes. Under the relaxation-time approximation,
Eq. (A17) is written as

hw 0 f©
22 v

where, for brevity, the mode-dependency terms (x,m)
for w, £, vg, and 7 are dropped, and in preparation
for the next step, V has been inserted inside the summa-
tions. Substituting Eqs (A15) into Eq. (A18) gives

J=->.> cvg@vg 7 VT.

m K

(A17)

vg ®vg T VT, (A18)

(A19)

In the above formulations, the total volume of the
NPM (incorporating both the base membrane and
nanopillar portions) is used to obtain valid expressions
for the volumetric heat capacity in real [Eq. (A11)] and
phonon [Eq. (A16)] space and for the heat flux density
in phonon space [Eq. (A19)]. Thus the definition of
V = VBase + Vpilar (Where Viase and Vpiar denote the
volume of the base membrane and nanopillar portions,
respectively) is necessary for satisfying the thermody-
namic balance laws inherent in the thermal conductivity
prediction models described by each of Egs. ((A1), (A4),
and (A5).

Appendix B: Analysis of the compensatory effect in
NPM upscaling

A pivotal quantity in our analysis of size and geometric
effects in Section IV is the ratio of pillar-to-membrane
DOF:

DOFpijar

Vi= =~
DOFBase

(B1)
For our all-silicon NPM unit cell, this quantity is equal
to the volumetric ratio mathematically defined as

bXbX(hT+hB)
aly x alAy xd

Vpillar
‘/r = =
VBase

(B2)

Also of importance is the derivative of this quantity with
respect to a,

av

- (B3)

’Y:



which quantifies the strength of the compensatory effect,
i.e., the rate by which the nanopillar(s) size grows com-
pared to the base membrane as the overall unit-cell size
is increased. This effect is introduced and utilized in Sec-
tion IV. The filling fraction of the nanopillar(s) with re-
spect to the area of the surfaces of the base membrane
(per unit cell) is defined as

[b X b]T
[CLA;C X aAy]T

[b X b}B
[aAw X aAy]B’

A = (B4)

where we recall the subscripts T and B refer to the top
and bottom surface of the membrane, respectively. Only
one term is retained for the case of a single-sided pil-
lared membrane. This quantity is beneficial for fabrica-
tion planning [68].

The A;, Vi, and v quantities for all the cases consid-
ered in Fig. 8 are presented as a function of « in Ta-
ble B.1. In Fig. 8d in particular, the compensatory effect
is taken advantage of and shown to comfortably enable
two orders of magnitude reductions in the thermal con-
ductivity. Table B.2 lists the numerical values of k, for
all the curves presented in Fig. 8d.

To illustrate the size and compensatory effects shown
in Fig. 8, we use EMD simulations and the GK method
to plot in Fig. B.la the thermal conductivity reduction
k. as a function of nanopillar height (normalized with
respect to the base membrane thickness) for a specific
NPM configuration, 6a x 6a x d+4a x 4a X hy CC, and
considering three sizes: a = 1, 2 and 3. For all cases, we
observe first a reduction in k, with increase in nanopil-
lar height, which confirms that the cause of the thermal
conductivity reduction is not limited to boundary scat-
tering but is also due to the resonance effects. This is
consistent with observations in Fig. 8d and in previous
studies of NPMs [16,23,39]. We also observe, for all three
cases, an eventual leveling of k, with increase in nanopil-
lar height which is due to the saturation of the impact
of the resonance hybridizations effect with increase in
V, [17]. If we now examine a specific value of hr/d (e.g.,
hr/d = 1), where V; is constant, we observe that the ex-
tent of the thermal conductivity reduction deteriorates
with increase in NPM size—which is a characteristic of
the system as thoroughly reported in Ref. [17]. On the
other hand, if we examine the three data points marked
with a cross and joined by a dashed line in Fig. B.1a,
we observe that k, does not increase but in fact reduces
in value. These three data points represent three differ-
ent NPM sizes (i.e., three different o values) but with
nanopillar heights that grow in size at a higher rate than
that of the base membrane as « is increased. The increase
in the thermal conductivity reduction (reduction in k)
among these three data points demonstrates the com-
pensatory effect. A consequence of this effect is that the
larger the size of the unit cell, the less quickly the per-
formance saturates with increasing nanopiller height. In
other words, the rewards of increasing the nanopillar
height become more significant for larger sized NPM unit

17

cells. This is observed by comparing the rate of satu-
ration in the o = 3 curve versus the @ = 1 curve in
Fig. B.1a. The compensatory effect is further elucidated
in Figs. B.1b and B.lc in terms of the changes to the
group velocities and in Fig. B.1d in terms of the changes
to the mode localizations.

In Fig. B.1b, it is clearly seen that the increase
in V; intensifies the concentration of group velocity re-
ductions and thus compensates (when v = 0), and in
some cases overcomes (when v > 0), the deterioration
in performance due to increase in size. To provide fur-
ther insight, we show in Fig. B.1c the frequency distri-
bution (from 0 to 1 THz) of the cumulative nonvolumet-
ric thermal conductivity K of an NPM divided by the
same quantity for a corresponding uniform membrane,
obtained by the BTE-SMRT technique. The numera-
tor and denominator quantities are obtained by evaluat-
ing the integrals fow Kypum(w')dw and fow KMemb (w')dw',
respectively. The normalized quantity, K™, is plot-
ted for each of the three data points considered in
Fig. B.1b. Membrane and bulk scattering constants (see
Table A.2) are used in the left and right subfigures,
respectively. And as a reference, vertical lines are in-
cluded to represent the total thermal conductivity re-
duction values obtained by EMD simulations and the
GK method.%® We observe that the compensatory ef-
fect takes hold rather strongly within the plotted low-
frequency range. The effect takes place throughout the
rest of the spectrum as well, but it weakens at higher
frequencies and hence the small; yet still negative-slope,
change in the total k, value among the three data points
as « increases.

The compensatory effect manifests itself also in the
changes that take place in the nanopillar-generated mode
localizations, as demonstrated in Fig. B.1d. Here we
quantify the mode-localization phenomenon by comput-
ing the mode participation ratio p,, which is defined for a
mode at wave vector k and branch number m by [70,23]

1
N @5k, m) i (6, m)]2

where ¢;;(k,m) is the displacement component corre-
sponding to atom ¢ and direction j of the normalized
mode shape. The first summation is over the total
number of atoms N in the system, which in our
LD calculations consists of a single unit cell (i.e.,
N = Npase + Npillar) and the second summation is over
the three directions of motion per atom. The factor p,
indicates the degree of localization over the entire system
without being specific to a particular region, e.g., the
nanopillar or base membrane portion of the unit cell. In
Section II, we use the mode weight factor to investigate
the degree of regional localization [30-32].

It is clearly observed in Fig. B.1d that most of the p,
values for the NPMs are significantly lower than those
for the corresponding uniform membranes—this is due to
the high mode localizations that take place within the
nanopillars, as illustrated in Fig. 2. As discussed earlier,

pe(k,m) = , (B5)
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(a) Thermal conductivity reduction versus normalized nanopillar height for NPMs of three different sizes. The

compensatory effect is evident by comparing the three data points marked with a cross and linked with a dashed line. (b) Group
velocity frequency distribution for these data points demonstrating the contrast between uniform and pillared membranes
and the increased intensity of the group velocity reductions due to the compensatory effect. (c) Frequency distributions of
the cumulative nonvolumetric thermal conductivity ratio KC"™ for the same data points demonstrating the strength of the
compensatory effect at the 0-1 THz frequency range. This quantity, which is obtained using LD and the BTE-SMRT technique,
is predominantly influenced by the changes that occur to the group velocities. The thermal conductivity ratios k. obtained
from the EMD-GK method are plotted for comparison. The k, values are based on the total volume V' and therefore account
for both the group velocity reductions and the mode localization effect. (d) Mode participation ratios for the same data points
demonstrating the contrast between uniform and pillared membranes and the decrease in the delocalization ratio due to the

compensatory effect.
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Fig. 8a
Unit cell (CC) A, Vi v =dV,/da
6o X 6 X 18 + 4o X 4av X 18 4/9 4/9 0
6 x 6a x 18 4 (6a — 2) x (6 — 2) x 18 (1—1/3a)? (1—1/3a)? (2/30*)(1 — 1/3a)
6 X 6 X 18 + 4o X 4a X 18« 4/9 4/9« 4/9
6 X 6a X 18 + (6 — 2) x (6 — 2) x 18« (1—-1/3a)? | a1 —1/3a)? (1—1/902)
Fig. 8b
6x6x6a+4x4x6a 4/9 4/9 0
6 X 6 X 6 + 4o X 4o X B 4/9 4/9 0
6a X 6a X 6a + (6 — 2) X (6a — 2) x 6 (1—-1/3a)? (1—1/3a)? (2/30*)(1 — 1/3a)
6a x 6 x 6a + da x da x 602 4/9 4/9a 4/9
6 x 6a X 6 + (6o — 2) x (6a — 2) x 6a2 (1-1/3a)?| a(l—1/3a)? (1—1/902)
Fig. 8c
12 x 12 x 18+ 10 x 10 x 18 + 10 x 10 x hs | 25/18  [(25/18)(1+hs/h1)] —
Fig. 8d
6a x 6 x 6a + (6a — 2) x (6a — 2) x 6 (1-1/3a)? | B -1/3a)* [(28/3a%)(1 —1/3a)

6a x 6a x 6a + (6o — 2) x (6o — 2) x 6aB + (6a — 2) x (6a — 2) x 6aB]2(1 — 1/3a)?

28(1 —1/30)*  |(48/302)(1 — 1/30)

TABLE B.1. Explicit form of the A,, V;, and « functions for the NPM configurations considered in Fig. 8

Fig. 8d

Unit cell (CC)

ke (x107%)
(e}
1 2 3

6o X 6a X 6 + (6 — 2) x (6 — 2) X 6af

20 |38.70+£7.91 38.16+6.19 33.93+7.02
30 |34.23£7.38 22.43+4.01 21.60£4.62
60 |21.48+£4.12 13.51+1.99 13.31+£2.53

20 [18.92+3.74 14.41£2.35 14.40+3.11

6a x 6a x 6a + (6a — 2) X (6a — 2) X 6af + (6 —2) X (6 —2) X 6B | 30 |17.0143.86 11.0241.94 10.26+2.15

60 [11.06£3.04 7.74£1.29 7.69£1.67

TABLE B.2. Thermal conductivity reduction values k, for the NPM configurations considered in Fig. 8d

these mode localizations contribute to the reduction in
the thermal conductivity because each localized mode
adds to the total heat capacity of the system yet exhibits
effectively zero group velocity. To quantify this effect, a
localization ratio LR is defined as the number of modes
for which p, is less than or equal to 0.5, divided by
NNy Where n, is the number of wave-vector points
considered and n,, is the number of dispersion branches
considered. Conversely, the delocalization ratio LR is
defined as the number of modes for which p, is greater
than 0.5, divided by nkng,. Thus the sum of these
two quantities is equal to unity, i.e., LR + LR = 1. A
decrease in LR implies more localized modes. In anal-
ogy to our quantification of a net effect in the group
velocities due to the addition of the nanopillars, we
consider a normalized delocalization ratio defined as
LR, = LRnxpm/LRyemb. This metric is evaluated in
Fig. B.1d for the low-frequency range of 0-1 THz. Sim-

ilar to the group velocities, we again see a reduction in

——=(0—1THz . . .
LRE ) as a function of Vi (considering the same

three unit cells marked by crosses in Fig. B.la). This
confirms the existence of the compensatory effect also in
the context of the mode localization phenomenon.

Appendix C: Addition of a nanopillar on membrane
bottom surface

In Figs. 8c and 8d, we have shown that the addition of
a nanopillar, in the unit cell, to the bottom surface of a
membrane that already has a nanopillar on the top sur-
face reduces the thermal conductivity further. Here we
note that the combination of identical nanopillars (one
extending from the top and one extending from the bot-
tom) will not produce a spectrum where each particular
nanopillar resonance is duplicated, but instead new res-
onances/vibrons will emerge—which is a favorable out-
come. The emergence of new resonances/vibrons is ex-
plained by the fact that the overall dynamics of a double-
pillared membrane—where the nanopillars are coupled to



a common base membrane, and as such are indirectly
connected to each other—will be different than one where
there is only a single nanopillar on one surface and the
other surface being free. In other words, if we start with
a membrane with a nanopillar standing on one surface,
by adding a new nanopillar to the other surface we would
be modifying the dynamical properties of a system with
already altered inertial and stiffness properties. This is
in contrast to the case of adding a nanopillar to only one
surface where the default dynamical properties are that
of a uniform membrane.

In this section, we again consider a double-pillared sili-
con NPM and examine more closely the underlying cause
of the reduction in k, as the height of the second (bottom)
nanopillar is varied. We focus on changes in k; along the
z-direction. For this purpose, we consider as an example
the unit-cell configuration 6 X6 x6+2x2Xhr+2Xx2X hg
CC, fix hy = 6 CC, and allow hp to vary from 0 to 6
CC in increments of 1 CC. The values of k, for each of
these cases are obtained by the BTE-SMRT technique
and plotted as a function of ht/hp in Fig. C.la. The
trend is consistent with that obtained by EMD-GK for
the similar analysis shown in Fig. 8c. In comparison, the
ratio of the average group velocity of the NPM to that
of the corresponding uniform membrane versus hr/hg is
shown in Fig. C.1b. The quantity G, is evaluated as in
Section IT A. The trends in Figs. C.1a and C.1b are clearly
highly correlated. Thus we observe a direct link between
the extent of the group-velocity reductions and the over-
all thermal conductivity reductions within the NPM con-
sidered [17]. Furthermore, adding one more nanopillar in-
creases the number of the localized modes, which in turn
leads to an additional reduction in the thermal conduc-
tivity. This is what we expect from the nanostructure-
induced resonance hybridizations effect.

(a) (b)
1 1
o 6x6%x6+2x2xh,. 6x6x6+2x2xM,
‘é 0.8} +2x2xh.CC S 08} +2x2xhCC
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FIG. C.1. (a) Thermal conductivity and (b) average group ve-
locity reduction due to addition of a second (bottom) nanopil-
lar to a membrane unit cell that already has a nanopillar on
the top surface. In both subplots, the ordinate is plotted ver-
sus the height of the bottom nanopillar, hg, normalized by
the height of the top nanopillar, hr, which in this analysis is
set to 6 CC.
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The results of Fig. 8d and Fig. C.1 raise a practical
question from a fabrication and device design points of
view (see, for example, Ref. [71] which examines the
fabrication of silicon nanopillars with high aspect ra-
tios). Which is a better configuration, one with a single
tall nanopillar or one with two nanopillars (at the top
and at the bottom) where each is half the height of the
nanopillar of the first configuration? The answer is given
in Table B.2. Comparing, for o = 3, the single nanopil-
lar case with 8 = 60 to the double nanopillar case with
£ = 30 shows that the latter gives a superior performance
in reducing the thermal conductivity by roughly 23%.

Appendix D: Multiple thin nanopillars versus single
thick nanopillar

In this section, we investigate one more design option
for pillared membranes. We compare the performance
of a multiple-pillared silicon membrane, where several
thin nanopillars are standing on one surface within
the unit cell, to an equivalent membrane with only a
single nanopillar in the unit cell. In this context, two
NPM configurations are considered equivalent if the
multiple nanopillars in the first system have the same
total number of DOF to that of the single nanopillar
in the second system. As an example, we consider a
NPM with four nanopillars on the top surface and
select the dimensions such that the configuration is
equivalent to a 6x6 x 642 x 2x6 CC NPM with a single
nanopillar; see Fig. D.1a. The base membrane and the
nanopillars have 5,184 and 576 DOF, respectively. For
the four-pillared NPM, the nanopillars’ heights are de-
noted hi, hs, hs and hy, respectively, the nanopillars are
equally spaced at 2 CC, and each nanopillar has a square
cross section of 1x1 CC. The four nanopillar heights
have a mean value of = 6 CC and a standard deviation
of o5. We choose seven sets as examples, each of which
has distinct heights as shown in Table D.1. These sets
are sorted in ascending order for the values of oy (Set I
to Set VII). We compute the thermal conductivity ratio
k. and the average group velocity ratio G, for these
different cases using the BTE-SMRT technique and LD

Set | hi ha hs ha| os/u
I |6 6 6 6 |0.00
I |4 5 7 81030

mr |2 5 8 9| 053
IV |2 4 6 12/ 072
Vv |1 2 8 13| 093
VI |1 3 4 16/ 1.13

VII |1 2 3 18] 1.34

TABLE D.1. Seven sets are considered for the four-pillared
NPM shown in the left side of Fig. D.la, sorted here in as-
cending order of os/u. The nanopillars’ heights are in units
of CC.
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FIG. D.1. (a) Four-pillared NPM compared to (b) an equiv-
alent single-pillared NPM with the same total volume. The
mean value of the nanopillar heights is p = 6 CC. Each
nanopillar has a square cross section of 1x1 CC. The equiv-
alent single-pillared NPM has a nanopillar of size 2x2x6
CC. (c) Vibrons DOS for the considered nanopillars where
each case is labeled by its height: h1, ha, hs, hs, or heq. To
allow direct comparison with the vibrons DOS distribution
for the thick heq nanopillar, a superposition of all the vibrons
DOS for each of the four thin nanopillars is included and
labeled h;—1...4. In all these calculations, a nanopillar is ex-
amined as an independent nanostructure with free boundary
conditions (as done in Figs. 3 and 4). The phonons DOS of the
base membrane (without any nanopillars attached) is shown
in the foreground in red in all subplots.

calculations, respectively. As shown in Fig. D.2, there is
a decreasing trend for each of k, and G, as the ratio o/
is increased. This indicates that a multi-frequency spread
emerges that is distinct for each particular combination
of the different heights of the nanopillars and its unique
vibration resonance distribution. We also compute k;
and G, for the equivalent single-pillared system (6x6x6
+ 2x2x6 CC) and note that it has lower values of each
quantity compared to all the four-pillared systems. This
indicates that a single-pillared NPM is most likely to
be more effective in reducing the thermal conductivity
than an equivalent four-pillared NPM with the same
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FIG. D.2. (a) Thermal conductivity and (b) average group
velocity reduction of the four-pillared NPM and its equiva-
lent single-pillared NPM. The coefficient of variation listed in
Table D.1 forms the horizontal axis.

total number of vibrons. For a better understanding of
this comparison, the vibrons DOS of each of the four
thin nanopillars and the equivalent thick nanopillar are
shown in Fig. D.1b. It is clear that the equivalent thick
nanopillar has a broader and more phonon-conforming
vibrons distribution than the combination of the four
single nanopillars (R, for the heq case is 14% lower than
the h;—1.4 case). Thus the analysis shown in Fig. 3,
where the phonon-vibron correlation is examined for a
single nanopillar with various dimensions, is an effective
approach for designing a high performing NPM unit cell
for thermal conductivity reduction. The structure in
the left side of Fig. D.1a, on the other hand, features a
sharpened multi-band distribution of vibrons—which we
envisage to be useful for applications that require acute
phonon filtering across certain regions in the frequency
spectrum.72

Appendix E: Replacement of nanopillars by
nanowalls

As mentioned in Section I, the resonating substruc-
tures in an NPM may take a variety of forms. An al-
ternative to nanopillars is the introduction of nanowalls
with a finite thickness along one direction along the plane
of membrane and extended to infinite in the orthogonal
direction. A schematic of this modified NPM configura-
tion is shown in Fig. E.1a where a nanowall extends along
the full length of the periodic unit cell in the z-direction
and has a specified thickness along the y-direction. Com-
pared to a squared nanopillar with the same thickness as
the nanowall, the latter has more DOF, thus the NPM
exhibits a higher value of V. and is therefore expected
to have a lower value of k,. Furthermore, the asymmetry
of the nanoresonator is expected to produce anisotropic
phonon properties and anisotropic planar thermal con-
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walled membranes. (¢) Thermal conductivity along the z-
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ductivity.

To confirm and quantify these expected results,
we investigate a nanowalled membrane with dimentions
6x6x6 + 6x4x6 CC and a corresponding nanopillared
membrane with dimensions 6x6x6 + 4x4x6 CC. The
nanowall on top of the membrane has the same length
as the unit cell along the z-direction and it therefore
an extended structure in this direction due to the ap-
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plication of the periodic boundary conditions. Along the
y-direction, both the nanowall and nanopillar have the
same thickness. In Fig. E.1b, the dispersion curves for
a uniform, a nanopillared, and a nanowalled membrane
are shown; for the nanowalled case, dispersion diagrams
are shown for wave propagation along both the I'X and
T'Y directions. We observe, the I'X dispersion diagram
is highly similar to that of a uniform membrane; indeed
there is no periodicity in that direction and the walled
membrane is in fact a uniform waveguide along the x-
direction. The I'Y dispersion diagram, on the other hand,
is comparable to the pillared case because the nanowalls
form a periodic system with freely substructures that ex-
hibit a wide range of the resonance modes.

In Fig. E.1, the I'X and I'Y thermal conductivities of
the walled membrane are computed using the EMD-GK
method and compared to the pillared case. A total of
six simulations were run for each case. It is clear that the
pillared membrane is practically isotropic with respect to
the x- and y- directions. The walled membrane, on the
other hand, displays two distinct values of the thermal
conductivity. In the z-direction, the thermal conductivity
of the walled system is noticeably smaller than the pil-
lared case and reduces with increasing nanowall height
(following a similar saturating trend as for pillared mem-
brane). For a nanoresonator height of hp = 15 CC, we
predict an average k, value of 0.1966 + 0.0572 for the
two pillared cases, and k, values of 0.3157 £ 0.06368 and
0.1255 + 0.0255 for the I'X and I'Y walled cases, respec-
tively. The additional reduction in the thermal conduc-
tivity brought about by the nanowalls is a direct outcome
of increasing the volume of the nanoresonator. In sum-
mary, replacing the nanopillars by nanowalls is shown
(i) to reduce the thermal conductivity significantly (by a
nearly 30% in the present example) and (ii) introduces a
sharp planar anisotropy in the thermal conductivity (by
nearly a factor of two in the present example). Furhter-
more, adopting nanowalls might be advantageous over
nanopillars in terms of ease of nanofabrication.

Appendix F: Comparison with bulk amorphous
silicon thermal conductivity

To put the significance of the reductions in the thermal
conductivity reported in Fig. 8d further in perspective,
here we make a comparison with the thermal conductiv-
ity of bulk amorphous silicon at room temperature.

A model of bulk amorphous silicon is produced
by the melt-quench technique in the framework of
EMD [73]. During a 100-ps process, a model of bulk
crystalline silicon is melted by increasing the temper-
ature from 300 to 3500 K under an NVT ensemble
(constant number of atoms, volume, and tempera-
ture). The melted silicon is then quenched back to 300 K
at a rate of 1 K/ps. Following this approach, we run six
different samples and report the results in Table F.1. The
quality of the produced samples is assessed by computing



the radial distribution function which gives the average
coordination number, CN. Our calculations produce a
CN value around 4.22, which is slightly higher than the
experimental value of approximately 4. This is primarily
because of the interatomic potential used. As reported
by others, the Stilinger-Weber potential overpredicts
the average CN [73]. The calculated density of our
samples is 2.329 gem ™3, which is practically the density
of crystalline silicon.

We note from Table F.1 that there is no significant
computational size effect for the unit cells considered. We
therefore average the predictions and obtain a thermal
conductivity value of k; = 1.42 +£0.01 Wm~'K~!. This
averaged value agrees well with other investigations
in the literature on amorphous silicon [73,74]. Upon
comparing with the highest performing 9.78-nm thick
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double-pillared membrane investigated in Fig. 8d, we
find that the NPM has a thermal conductivity that
is precisely 1.82 4+ 0.19 times lower than that of bulk
amorphous silicon.

a Agyz (CC)  aAgy. (nm) | b (Wm ™ K™)

1 6 3.26 1.39 £ 0.03

2 12 6.52 1.48 + 0.03

3 18 9.78 1.38 £0.03

4 24 13.03 1.40 + 0.03

5 30 16.29 1.47 + 0.02
Average - — 1.42 £0.01

TABLE F.1. Thermal conductivity of bulk amorphous silicon
predicted using a unit cell of size 6 X 6 X 6«
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