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Abstract

The excited conduction electrons, conduction holes and valence holes in monolayer

electron-doped germanene exhibit the unusual Coulomb decay rates. The deexcitation

processes are studied using the screened exchange energy. They might utilize the

intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon

modes, depending on the quasiparticle states and the Fermi energies. The low-lying

valence holes can decay by the undamped acoustic plasmon, so that they present

very fast Coulomb deexcitations, the non-monotonous energy dependence, and the

anisotropic behavior. However, the low-energy conduction electrons and holes are

similar to those in the 2D electron gas. The higher-energy conduction states and the

deeper-energy valence ones behave similarly in the available deexcitation channels

and the dependence of decay rate on wave vector k.
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I. INTRODUCTION

A lot of two-dimensional (2D) materials have been successfully synthesized since the

first discovery of graphene in 2004 using the mechanical exfoliation of Bernal graphite [1].

They are very suitable for exploring the diverse physical, chemical, and material proper-

ties. Specifically, the 2D IV-group systems possess the high-symmetry honeycomb lattice

and the nano-scaled thickness, in which few-layer graphenes have been verified to exhibit

the rich and unique properties, such as the massless/massive fermions [2–5], the quantized

Landau levels [6–9], the magneto-optical selection rules [10–13], and the quantum Hall ef-

fects [14–17]. Recently, few-layer germanene, silicene and tinene are, respectively, grown on

[Pt(111), Au(111) & Al(111)] surfaces [18–21], [Ag(111), Ir(111) & ZrBi2] surfaces [22–24],

and Bi2Te3(111) surface [25]. Monolayer germanene and silicene, with a stable
√

3×
√

3

geometric structure, have been clearly identified from the STM measurements [20,21]. Such

systems possess the buckled structures and the significant spin-orbital couplings (SOCs),

leading to the rich and unique essential properties [26,27]. They are expected to present the

unusual Coulomb excitations/deexcitations arising from many-particle electron-electron in-

teractions. The Coulomb scattering rates of the excited states in monolayer electron-doped

germanene are chosen for a model study in this work, especially for their relations with the

single-particle and collective electronic excitations.

For germanene, silicene and graphene, the low-lying electronic structures mainly arise

from the outmost pz orbitals [4, 27]. The Dirac-cone structures, being created by the

hexagonal symmetry, might be separated or gapless as a result of the significant/negligible

SOCs. From an effective Hamiltonian of the tight-binding model (discussed later in Eq.

(1)) [27–30], germanene and silicene are predicted to be narrow-gap semiconductors with

band gaps of Eg∼ 93 meV and ∼ 7.9 meV, respectively, reflecting the strengths of SOCs.

Moreover, according to the first-principles calculations indicate that the extra Ge adatoms

on monolayer germanene could form the dumbell reconstruction structures [31], and there

exist very complicated energy bands initiated from the distinct high-symmetry points. On
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the other hand, graphene has linear valence and conduction bands intersecting at the Dirac

point in the absence of SOC. The calculated band structures could be examined from the

angle-resolved photoemission spectroscopy (ARPES) measurements, as done for few-layer

germanene grown on Au(111) surface [19]. The experimental observations indicate that

the multiple Dirac-like energy dispersions might be caused by the folding of germanene’s

Dirac cones. The high-resolution ARPES measurements also provide the full information

on the energy widths of the excited states [19, 32,33].

The electron-electron interactions are one of the main-stream topics in condensed-

matter systems [34–38], since they are responsible for a lot of physical properties, e.g.,

the effective Coulomb potential, the impurity screening, the correlation energy, the effec-

tive mass, and the mean free path. The Coulomb interactions create the many-particle

electronic excitations and thus have strong effects on the energies and lifetimes of quasi-

particle states. The previous calculations predict that monolayer electron-doped germanene

exhibits the diverse momentum- and frequency-dependent phase diagrams [38]. The rich

Coulomb excitations, as shown Figs. 1(a) and 1(b) at EF = 0.2 eV, cover the anisotropic

excitation spectra, the intraband single-particle excitations (SPEs), the interband SPEs,

the strong acoustic plasmon at small momenta (q’s), the second kind of plasmon (the un-

damped mode at large q’s by the blue arrow in Fig. 1(a)), and the third kind of plasmon

accompanied with the intraband Landau damping (the purple arrow in Fig. 1(b)). They

might become the effective deexcitation channels of the excited electrons/holes, depending

on the wave vectors, valence/conduction states, and Fermi energies. It is worthy of a sys-

tematic investigation on the main features/mechanisms of the Coulomb decay rates, and

the significant differences among the emergent 2D materials.

The screened exchange energy characterized by the Matsubara’s Green functions is

used to calculate the Coulomb scattering rates of the excited states in monolayer electron-

doped germanene, in which the deexcitation channels are evaluated from the random-phase
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approximation (RPA). The decay processes and their dependence on the wave vector, va-

lence/conduction states, and Fermi energy/doping density are explored in detail. A com-

parison with monolayer graphene is also made. This work shows that the intraband SPEs,

the interband SPEs, and the distinct plasmon modes play critical roles in determining

the deexcitation behaviors. The unusual Coulomb decay rates are revealed as the oscilla-

tory energy dependence, the strong anisotropy, the non-equivalent valence and conduction

Dirac points, and the similarity with 2D electron gas for the low-energy conduction elec-

trons and holes. The predicted Coulomb decay rates could be directly verified from the

high-resolution ARPES measurements on the energy widths of quasiparticle state at low

temperatures [19, 32,33].

This work is organized as the following sections. The zero-field Hamiltonian and the

RPA self-energy of monolayer electron-doped germanene are derived and discussed in Sec.

II. Section III covers the evaluated Coulomb decay rates, the fundamental mechanisms, the

experimental examinations, and the comparisons with graphene. Section IV is concluding

remarks, accompanied with the effects due to the electron-hole asymmetry, the measured
√

3×
√

3 structure, and the predicted dumbbell reconstruction structures.

II. THE RPA SELF− ENERGY

Monolayer germanene has a buckled hexagonal lattice with the Ge-Ge bond length of

b = 2.32 Å, as shown in Fig. 2(a). There are two equivalent sublattices of A and B, being

separated by a distance of l = 0.66 Å (details in [38]). The low-lying electronic structure

is dominated by 4pz orbitals. The Hamiltonian, which is built from the sub-space spanned

by the four spin-dependent tight-binding functions, is expressed as

H = −t
∑
〈i,j〉,α

c†iαcjα + i
λso

3
√

3

∑
〈〈i,j〉〉,α,β

νijc
†
iασ

z
αβcjβ − i

2

3
λR

∑
〈〈i,j〉〉,α,β

µijc
†
iα(~σ × d̂ij)cjβ. (1)

The first term, the summation on all the pairs 〈i, j〉 of the nearest-neighboring lattice

sites, is the kinetic energy with the hopping integral of t = 0.86 eV [27]. c†iα (cjα) can
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(a)

(b)

Interband SPEs

Interband SPEs

Intraband SPEs

Intraband SPEs

Figure 1: The momentum- and frequency-dependent excitation spectra of germanene with

EF = 0.2 eV under (a) θq = 0◦ and (b) 30◦, in which θq is the angle between the transferred

momentum and ΓM (Fig. 2(b)). The second and third kinds of plasmon modes are,

respectively, indicated by the blue and purple arrows in (a) and (b). kF,x is the Fermi

momentum along ΓM.
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create (annihilate) an electron with spin polarization α (β) at the i-th (j-th) site. The

second term represents the effective SOC with the summation on all pairs 〈〈i, j〉〉 of the

next-nearest-neighboring sites, and its strength is λSO = 46.3 meV. ~σ = (σx, σy, σz) is

the Pauli spin matrix. νi,j = (~di × ~dj)/|~di × ~dj|, where νi,j = +1 and −1, respectively,

correspond to the anti-clockwise and clockwise cases from the cross product of the two

nearest-neighboring bonding vectors ~di and ~dj. The third term denotes the Rashba SOC

with λR = 10.7 meV, ui,j = +1(−1) for the A (B) lattice sites, and d̂ij is the unit vec-

tor connecting two sites i and j in the same sublattice (Fig. 2(a)). State energies are

characterized by Ec,v(k) (Eh(k )), where c and v represent conduction and valence states,

respectively. They remain doubly degenerate for the spin degree of freedom in the presence

of SOC, in which there exists the spin-up- and spin-down-dominated configurations.

The free carrier density and temperature can greatly enrich the electronic excitations

of monolayer germanene. Under the perturbation of Coulomb interactions, electrons are

excited from the occupied states to the unoccupied ones during the dynamic charge screen-

ing. For an intrinsic germanene, only the interband SPEs, being described by the imaginary

part of the dielectric function, can survive at zero temperature. The collective excitations

are revealed in the loss function as a prominent peak when the free carrier density or

temperature is sufficiently high [38]. The extrinsic germanene, with electron doping, is

predicted to exhibit three kinds of plasmon modes. There exist intraband and interband

SPEs (Figs. 1(a) and 1(b)), in which the former and the latter are, respectively, associated

with the conduction and valence carriers. The first kind of plasmon, which behaves as a

2D acoustic mode at small transferred momenta, will make much contribution to Coulomb

decay rates. At large q’s, it experiences the heavy interband Landau damping and then

disappears. Specifically, the second and third kinds of plasmons come to exist only under

the sufficiently large momenta. The above-mentioned single- and many-particle excitation

channels are available in the inelastic Coulomb scatterings, as discussed later.
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(a) (b)

(c)

Figure 2: (a) Geometric structure of monolayer germanene shown in the top and side views,

(b) the first Brillouin zone, and (c) low-lying energy bands along the high-symmetry points,

accompanied with those near the Dirac points in the inset.
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The incident electron beam/electromagnetic field has strong interactions with charge

carriers and thus creates the excited electrons (holes) above (below) the Fermi level. Such

intermediate states could further decay by the inelastic electron-electron scatterings. The

Coulomb decay rate (1/τ) is dominated by the effective interaction potential (V eff ) between

two charges, in which the dynamic e-e interactions could be understood from the RPA. By

using the Matsubara Green’s functions [39], 1/τ is evaluated from the quasiparticle self-

energy, the screened exchange energy

Σ(k, h, ikn) = − 1

β

∑
q,h′,iωm

V eff (q, iωm;k, h, h′)G(0)(k + q, h′, ikn + iωm), (2)

where β = (kBT )−1, ikn = i(2n + 1)π/β (complex fermion frequency), iωm = i2mπ/β

(complex boson frequency) and G(0) is the noninteracting Matsubara Green’s function.

V eff (q, iωm;h, h′,k) = Vq|〈h′,k + q|ei~q·~r|h,k〉|2/ [ε(q, iωm)] is the screened Coulomb inter-

actions with the band-structure effect, where Vq is the 2D bare Coulomb potential energy

and ε(q, iωm) is the RPA dielectric function. It should be noticed that the SOC leads to

the superposition of the spin-up and the spin-down components. However, it does not need

to deal with the spin-up- and spin-down-dependent Coulomb decay rates separately, since

they make the same contribution. That is, it is sufficient in exploring the wave-vector-,

conduction/valence- and energy-dependent self-energy (Eq. (2)). Under the analytic con-

tinuation ikn → Eh(k), the self-energy can be divided into the line part and the residue

part:

Σ(k, h, Eh(k)) = Σ(line)(k, h, Eh(k)) + Σ(res)(k, h, Eh(k)), (3)

in which

Σ(line)(k, h, Eh(k)) = − 1

β

∑
q,h′,iωm

V eff (q, iωm;k, h, h′) (4)

×G(0)(k + q, h′, Eh(k) + iωm), (5)
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and

Σ(res)(k, h, Eh(k)) =− 1

β

∑
q,h′,iωm

V eff (q, iωm;k, h, h′)

× [G(0)(k + q, h′, ikn + iωm)

−G(0)(k + q, h′, Eh(k) + iωm)]. (6)

The imaginary part of the residue self-energy determines the Coulomb decay rate, being

defined as

ImΣ(res)(k, h, Eh(k)) =
−1

2τ(k, h)

=
∑
q,h′

Im[−V eff (q, ωde;k, h, h
′)]

× {nB(−ωde)[1− nF (Eh′(k + q))]− nB(ωde)[nF (Eh′(k + q))]}

=
−1

2τe(k, h)
+

−1

2τh(k, h)
. (7)

ωde = Eh(k)−Eh′(k + q) is the deexcitation energy. nB and nF are the Bose-Einstein and

Fermi-Dirac distribution functions, respectively. Equation (7) indicates that an initial state

of (k, h) can be deexcited to all the available (k + q, h′) states under the Pauli exclusion

principle and the conservation of energy and momentum. The excited states above or below

the Fermi level are, respectively, related to the electron and hole decay rates (the first and

second terms in Eq. (7)). By detailed calculations, the zero-temperature Coulomb decay

rates of the excited electrons and holes are

1

τe(k, h)
+

1

τh(k, h)
= −2

∑
q,h′

Im[−V eff (q, ωde;k, h, h
′)]

× [−Θ(ωde)Θ(Eh′(k + q)− EF ) + Θ(−ωde)Θ(EF − Eh′(k + q))].

(8)

where EF is the Fermi energy. Θ is the step function that describes the available deexcita-

tion channels. In addition, the decay rate is double the energy width of quasi-particle state.

III. COULOMB DECAY RATES

9



(a) (b) (c) (d)

(e) →

→

→

→

Figure 3: The available deexcitation channels of the specific excited states are indicated for

(a) the conduction electrons, (b) the conduction holes, and the valence holes scattered into

the (c) same and (d) distinct bands. Furthermore, the relations between the deexcitation

energies and transferred momenta are illustrated in (e).
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Germanene displays the feature-rich band structure due to the significant SOC and the

buckled honeycomb lattice. The conduction band is symmetric to the valence one about

the zero energy under an effective Hamiltonian in Eq. (1) (Fig. 2(c)). These two bands

present parabolic energy dispersions near the K point (Fig. 2(b)), in which the separated

Dirac points have an energy spacing of ED = 93 meV because of SOC (inset in Fig. 2(c)).

The state energy, (Eh(k)), is measured from the middle of energy spacing. Energy bands

are gradually changed into the linear dispersions in the increase of state energy. Band

structure is anisotropic at sufficiently high energies (|Ec,v| > 0.2 eV), as observed along

the KΓ and KM directions. With the increasing wave vector, the former exhibits more

obvious changes, compared with the latter. The anisotropic energy spectrum will play an

important role in the Coulomb scatterings related to the available deexcitation channels.

The Fermi energy/free carrier density dominates the main features of electronic excita-

tions and thus determines the Coulomb decay channels. When EF is in the middle of energy

spacing, the excited electrons/holes at zero temperature can decay into conduction/valence

band states only by using the interband SPEs. The increase of EF creates the intraband

SPEs and plasmon modes, and induces the drastic changes in the interband SPEs. Such

Coulomb excitations can greatly diversify the decay channels. As for the excited conduc-

tion electrons, the final states during the Coulomb deexcitations only lie between the initial

states and the Fermi momentum (a red arrow in Fig. 3(a)), according to the Pauli exclusion

principle and the conservation of energy and momentum. The available deexcitation chan-

nels, the intraband SPEs, make the most important contributions to the Colomunb decay

rates for the low-lying conduction electrons, corresponding to the orange part in Fig. 3(e).

But when the initial state energy is high, the interband SPEs and the second/third kind

of plasmon modes might become the effective deexcitation mechanisms (discussed later in

Figs. 5(a) and 4(c)). Concerning the excited holes in the conduction band, they could be

de-excited to the conduction states (c→c; a blue arrow in Fig. 3(b)) through the intraband

SPEs, mainly owing to the low deexcitation energies and transferred momenta, as shown

11



(a)

(b)

Figure 4: The Coulomb decay rates of the quasi-particle states along the special directions

of (a) KM and (b) KΓ are taken into consideration under EF = 0.2 eV.

by the green part in Fig. 3(e). On the other hand, the valence holes present two kinds of

decay processes: v→v and v→c in Figs. 3(c) and 3(d), respectively. Their available decay

channels, respectively, cover [intraband SPEs, interband SPEs & the second/third kind of

plasmon modes] and [interband SPEs & acoustic plasmon modes], corresponding to the

blue and red parts in Fig. 3(e). Specifically, the latter has the large deexcitation energies

at small momenta and is thus expected to exhibit the efficient and unusual Coulomb decay

rates.

The Coulomb decay rates are very sensitive to the quasiparticle state (k, h). As to

the excited conduction electrons, the c→ c intraband process is available as state energy

gradually increases from the Fermi level. The intraband SPEs make the main contributions

to this process (the orange part in Fig. 3(e)); therefore, the decay rate monotonously grows
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with Ec, as shown in Figs. 4(a) and 4(b) by the orange curves. When the excited states are

close to EF (|Ec −EF | ≤ 0.5 EF ), 1/τe is roughly proportional to (Ec −EF )2ln|Ec −EF |,

according to the numerical fitting. Such an energy dependence is characteristic of a 2D

electron gas [40, 41]. This is not surprising, since as Ec → EF , the deexcitation energy is

essential linear in q−whether the energy band has a linear or a quadratic energy disper-

sion. Furthermore, the low momentum-frequency intraband SPEs are the only deexcitation

channels. It is for such reasons that the widths of germanene and electron gas near the

Fermi level share a similar character.

For the higher-energy conduction states, the Coulomb decay rates depend on the anisotropic

energy bands. Along the KM direction (Fig. 4(a)), 1/τe increases and then reaches a sat-

urated value after Ec > 3EF (an orange arrow). But for the KΓ direction (Fig. 4(b)), it

is getting large in the further increase of Ec (a green arrow). This important difference

between two directions lies in whether the interband SPEs are the effective deexcitation

channels. The higher-energy electronic states have the stronger energy dispersions along

KΓ (Fig. 2(c)), so that their deexcitation energies at large transferred momenta are con-

sistent with those of the interband SPEs. For example, the conduction state of Ec = 3EF

along KΓ has a lot of deexcitation channels indicated by the green curve in Fig. 5(a) at

θq = 0◦. The similar results are revealed in the different momentum directions, e.g., the

green curves at θq = 30◦ in Fig. 5(c). The effective deexcitation channels cover the in-

traband and interband SPEs. The latter is responsible for the enhanced Coulomb decay

rates in the high-energy conduction states along KΓ. On the other hand, the Ec = 3EF

conduction electron along KM has the lower deexcitation energies and thus only exhibits

the intraband SPEs, as illustrated by the orange curves in Figs. 5(a) and 5(c).

The deexcitation behaviors of the excited holes strongly depend on whether they belong

to conduction or valence states. Concerning the conduction holes, the Coulomb decay rates

are isotropic, as indicated by the almost identical τ−1h,c−c’s along KM and KΓ (green curves

13



(a)

(c)

(b)

(d)

Figure 5: The available deexcitation spectra due to the specific states indicated by the

arrows in Figs. 4(a)-4(b) are shown for (a) θq = 0◦ and (c) θq = 30◦. The details of the

θq-dependent deexcitation energies are illustrated in (b) and (d). The curves are defined

by the conservation of energy and momentum.
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in Figs. 4(a) and 4(b)). Furthermore, the energy dependence is similar to that of the low-

lying conduction electrons (2D electron gas). Such results directly reflect the fact that the

intraband SPEs are the only available deexcitation channels, e.g., the gray curves related

to the conduction Dirac point (Figs. 5(a) and 5(c)). Specifically, the K point (a gray arrow

in Fig. 4(b)) has the largest Coulomb decay rate among all the excited conduction holes.

On the other side, the decay rates of the valence holes exhibit the unusual k-dependences.

The valence Dirac point has a significant decay rate (a purple arrow in Fig. 4(b)), being

much higher than that of the conduction one. It only presents the v → c decay process, in

which the deexcitation channels mainly come from the interband SPEs and the undamped

plasmon modes, as indicated in the purple curves in Figs. 5(a) and 5(c). They create

the important difference between the valence and the conduction Dirac points. With the

increase of the valence-state energy, two decay processes, v → c and v → v, contribute to

the Coulomb decay rates simultaneously. As to the former, the available range of the strong

acoustic plasmon grows and then declines quickly for the low-lying valence holes, leading

to an unusual peak structure in τ−1h,v−c at small Ev’s (the red curve in Figs. 4(a) and 4(b)).

For example, the Ev = −0.4 EF valence state along KM has the widest plasmon-decay

range associated with the blue curves in Figs. 5(a) & 5(c), so that it can exhibit the fast

Coulomb decay (a blue arrow in Fig. 4(a)). The plasmon-induced deexcitations are almost

absent for the deeper valence states (e.g., Ev < −1.5 EF along KM). The interband SPEs

also make some contributions to τ−1h,v−c, and they dominate the Coulomb decay rates of the

deeper-energy states, e.g., the red curves along KM and KΓ at Ev < −2EF . Specifically,

for the v → v process, the excited valence holes (the blue curves in Figs. 4(a) and 4(b) be-

have as the excited conduction electrons (the orange curves) in terms of the k-dependence

and the deexcitation channels. The intraband SPEs are the dominating mechanisms in

determining τ−1h,v−v of the low-lying valence states (Ev > −2EF ). They are replaced by the

intraband SPEs and interband SPEs for the deeper valence states along KΓ. This accounts

for the anisotropic Coulomb decay rates along KΓ and KM.
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The effective deexcitation channels deserve a closer examination. Each excited state

could decay along any directions, as clearly indicated by the summation/2D integration

of q in Eq. (7), in which the transferred momentum is a function of q (magnitude) and

θq (azimuthal angle in the range of 2π). By means of the specific excitation spectrum, it

might exhibit several dispersion relations (less than six ones) in the q-dependent deexci-

tation energies for a fixed θq. The main reason is that the Coulomb excitations/energy

bands possess the hexagonal symmetry; that is, the excitation spectra are identical for θq,

θq + π/3, θq + 2π/3, θq + 3π/3, θq + 4π/3 and θq + 5π/3. For example, the excited valence

hole state, with the highest Coulomb decay rate along KM/KΓ, shows three/four indepen-

dent dispersive functions (blue curves) for θq = 0◦ (θq = 30◦). The other excited states in

Figs. 5(a) and 5(c) exhibit the similar behaviors. The total decxcitation regions consist

of the θq-dependent dispersion relations; that is, they are very sensitive to the direction

and magnitude of q, as expected from the basic scattering pictures. Specifically, Figs. 5(a)

and 5(c) clearly show that the excited states along KM and KΓ do not utilize the second

and third plasmons as the effective deexcitation channels since the deexcitation energies are

insufficient. However, the excited electrons along KΓ, with energies higher than 5EF , could

decay by the second kind of plasmon mode (not shown). If they are in between KM and

KΓ, their energies larger than 3EF will be able to de-excite by the third kind of plasmon

mode.

The wave-vector- and Fermi-energy-dependent Coulomb scattering rates, as clearly

shown in Figs. 6(a)-6(f), deserve a closer examination. The decay rates of the valence

holes exhibit the oscillatory energy dependence along any wave-vector directions, mainly

owing to the complicated deexcitation channels. The strongest Coulomb scatterings, being

associated with the undamped acoustic plasmons, appear at valence states below the Dirac

point (the dashed blue curves in Figs. 6(a), 6(c) and 6(e)). The valence-state decay rates

strongly depend on the direction of k, in which they are, respectively, lowest and highest
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The wave-vector-dependent Coulomb scattering rates of (a) the valence holes and

(b) the conduction holes and electrons at EF = 0.2 eV. Similar plots at EF = 0.3 eV and

0.1 eV, are respectively, shown in [(c) & (d)] and [(e) & (f)].
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along KM and KΓ. Apparently, there exist the anisotropic Coulomb decay rates for any

valence-state energies. This is closely related to the strong anisotropy of the deeper valence

band.(Fig. 2(c)). As for conduction holes and electrons, the Coulomb scattering rates, as

measured from that of the Fermi-momentum state, present the monotonous energy depen-

dences. The anisotropic deexcitations come to exist only for the higher-energy conduction

states.

It is relative to observe the oscillatory energy dependence and the anisotropic behav-

ior at the higher Fermi energy. Electronic excitations and Coulomb decay rates are very

sensitive to the changes in free carrier densities, as revealed in Fig. 6. The momentum-

frequency excitation spectra are drastically altered by the Fermi energy. For example, the

fully undamped intraband plasmon, the almost isotropic excitations, and an obvious ex-

citation gap between the intra- and inter-band SPEs are revealed at the sufficiently low

Fermi level, e.g., excitation spectra at EF = 0.1 eV [38]. These are directly reflected in

the Coulomb decay rates. For larger EF , the available momentum-frequency deexcitation

range of the strongest acoustic plasmons and the interband SPEs is enhanced, since both of

them could coexist together. This leads to the stronger dependence of decay rates on state

energy and direction of k, as clearly indicated from Fig. 6(c) at EF = 0.3 eV and Fig. 6(e)

at EF = 0.1 eV. The EF -induced differences are further illustrated by the Coulomb decay

rates of the specific states. For example, the largest decay rates are, respectively, 0.074 eV

and 0.081 eV along KM and KΓ at EF = 0.3 eV, while they become 0.022 eV and 0.024 eV

at EF = 0.1 eV. Furthermore, the conduction and valence Dirac points present the similar

differences in the magnitude of decay rate and the anisotropic behavior.

The effective Hamiltonian in Eq. (1) and the RPA self-energy in Eqs. (2)-(8) are suit-

able for monolayer germanene, silicene, and graphene, with pz-dominated band structures.

The first system possesses the smallest hopping integral and the largest SOC, so that the

essential properties are relatively easily tuned by the external factors, e.g., the carrier dop-
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ing, electric field, and magnetic field. Specifically, graphene, with the strongest hopping

integral (∼ 2.6 eV), exhibits a pair of linearly intersecting valence and conduction at the

gapless Dirac points in the absence of SOC, in which the isotropic Dirac-cone structure

is further used to investigate the rich and unique physical properties [42–45]. However,

there are important differences between germanene and graphene in electronic excitations

and Coulomb decay rates. Germanene is predicted to present the anisotropic excitation

spectra, the second and third kinds of plasmons, a fully undamped acoustic plasmon under

the low doping, and the SOC-dependent excitation boundaries, Such features are absent in

graphene [38]. The theoretical calculations have been done for the excited conduction and

valence electrons in graphene, indicating the isotropic behavior and a vanishing Coulomb

decay rate at the Dirac point [45]. Apparently, the calculated results are different from

those in this work.

The predicted scattering decay rates could be examined from the high-resolution ARPES

measurements, as successfully done for potassium adsorption on monolayer graphene [33].

The ARPES spectra are measured along KM and KΓ directions for various doping concen-

trations in monolayer electron-doped graphene, clearly indicating the quasi-particle energy

dispersions and the linewidth variations. They are further utilized to get the doping-

dependent momentum distribution curves (MDCs). The Lorentzian peak structures are

centered at the quasi-particle energies, and they present the full width at half-maximum

identified as −2ImΣ(res) (the scattering rate). The SPEs and plasmons, as well as the

electron-phonon scatterings at finite temperatures, are proposed to explain the unusual

energy dependences of MDC linewidths. The ARPES measurements at low temperatures

could provide the Coulomb-scattering-dominated MDCs to verify the theoretical predic-

tions. The experimental examinations on monolayer electron-doped germanene are useful

in understanding the main features of Coulomb decay rates and the critical deexcitation

mechanisms.
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IV. CONCLUDING REMARKS

In this work, the Coulomb scattering rates in monolayer electron-doped germanene are

investigated using the screened exchange energy, in which the excitation spectra are evalu-

ated within the RPA. The excited states cover the conduction electrons, conduction holes,

and valence holes, respectively, creating the decay processes: c→ c, c→ c, and [v → c

& v → v]. The low-lying conduction electrons/holes present the isotropic scattering rates,

mainly owing to the dominating intraband SPEs. Furthermore, they behave as 2D elec-

tron gas in the energy-dependent Coulomb decay rates. The other excited states exhibit

the rich and unique k-dependence, including the oscillatory energy dependence and the

strong anisotropy. Specifically, the low-energy valence states have the largest decay rates

by means of the undamped acoustic plasmon modes, especially for that along KΓ. Such

deexcitation modes also lead to the important difference between the valence and conduc-

tion Dirac points. The deeper valence states and the higher conduction states have the

similar deexcitation channels, and so do the k-dependent decay rates. The intraband SPEs

are replaced by the intraband SPEs, the interband SPEs and the second/third kind of

plasmon mode during the variation from KM to KΓ directions. This is responsible for the

anisotropic decay rates. It is relatively easy to observe the unusual Coulomb decay rates

at higher Fermi energies. Germanene is different from graphene in excitation spectra and

decay rates, being closely related to the strengths of hopping integral and SOC. The theo-

retical predictions on the energy-band-dominated Coulomb decay rates could be examined

from the APRES measurements on the energy widths of quasi-particle states.

As to the symmetric electron-hole band structure (Fig. 2(c)), the momentum- and

frequency-dependent excitation spectra are identical for electron and hole dopings, and so

do the Coulomb scatterings. That is, the Coulomb decay rates of the excited conduction

electrons, conduction holes, and valence holes are, respectively, the same with those of the

excited valence holes, valence electrons and conduction electrons under the interchange of

electron and hole dopings. On the other hand, the asymmetric valence and conduction
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bands about the zero energy might be induced by the partial multi-orbital hybridization

(the weak sp3 bonding), the complicated/interlayer hopping integrals in a buckled system,

and the significant interactions with substrate [46, 47]. They might have significant ef-

fects on electronic excitations, including the momentum-frequency ranges of intraband and

interband SPEs, the diversified plasmon modes (with splitting), the existence of Landau

damping (the co-existence of plasmons and SPEs), the spectral anisotropy due to the mo-

mentum direction, and the distinct excitation spectra for electron and hole dopings [48].

The available deexcitation channels will become more complicated; therefore, the main

features of Coulomb decay rates, the oscillatory energy dependence, and the anisotropic

behavior, are expected to be greatly enhanced.

The geometric structures strongly affect the energy bands and thus the electron-electron

Coulomb interactions. The measured
√

3×
√

3 geometric structure [20,21] will induce the

zone-folding effect on the band structure. More energy subbands and even energy spacings

could create complicated excitation spectra and Coulomb scatterings, such as the various

intra-band/interband single-particle excitations/deexcitations, and the subband-dominated

Coulomb decay rates. Concerning the predicted dumbbell structures [31], the distinct en-

ergy bands near the K, Γ and M points arise from the multi-orbital bondings due to the

highly buckled structure. Their band structures are quite different from that of the pristine

system, and so the other essential properties. The Coulomb excitations and deexcitations

will be dramatically changed in terms of the momentum-frequency excitation phase dia-

grams and the symmetry-point-dependent decay rates.

The RPA is frequently used to study the Coulomb excitations and deexcitations of

condensed-matter systems, especially for the high-density carriers in 3D, 2D and 1D mate-

rials [34–38,43–45]. This method might induce the poor results at low free carrier density in

certain many-particle properties, mainly owing to the insufficient correlation effects. Some

models have been proposed to modify the electron-electron interactions, e.g., the Hubbard
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and Singwi-Sjolander models for electronic excitation spectra, and the Ting-Lee-Quinn

model for Coulomb decay rates [39]. As to the time-dependent first-principles methods,

accompanied with the Bethe-Salpeter equation, are further developed to explore the excita-

tion and deexcitation phenomena in detail [49,50]. Such calculations could account for the

experimental measurements on excitation spectra and energy widths under a sufficiently

large energy/momentum scale. However, it might be difficult to provide much information

about the critical mechanisms/pictures from the numerical calculations. Whether the cal-

culated results are suitable/reliable at low energy is worthy of detailed examinations.

Acknowledgement

This material is based upon work supported by the Air Force Office of Scientific Research

under award number FA2386-18-1-0120. We would also like to acknowledge the financial

support from the Ministry of Science and Technology of the Republic of China (Taiwan)

under Grant No. 105-2112-M-006 -002 -MY3.

22



References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva, and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films,

Science 306, 5696, 666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grig-

orieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac

fermions in graphene, Nature 438, 197 (2004).

[3] I. Pletikosi, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. NDiaye, C. Busse, and

T. Michely, Dirac Cones and Minigaps for Graphene on Ir(111), Phys. Rev. Lett. 102,

056808 (2009).

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The

electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).

[5] P. R. Wallace, The band theory of graphite, Physical Rev. 71, 622 (1947).

[6] Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P.

Kim, and H. L. Stormer, Infrared Spectroscopy of Landau Levels of Graphene, Phys.

Rev. Lett. 98, 197403 (2007).

[7] C. L. Lin, R. Arafune, R. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y.

Kim, M. Kawai, and N. Takagi, Substrate-Induced Symmetry Breaking in Silicene,

Phys. Rev. Lett. 110, 076801 (2013).

[8] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Magnetoelectronic properties of

bilayer Bernal graphene, Phys. Rev. B 77, 085426 (2008).

[9] C. Lin, J. Wu, Y. Ou, Y. Chiu, and M. Lin, Magneto-electronic properties of multilayer

graphenes, Phys. Chem. Chem. Phys 17, 26008 (2015).

23



[10] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S.

Novoselov, and A. C. Ferrari, Rayleigh Imaging of Graphene and Graphene Layers,

Nano Lett. 7, 9, 2711 (2007).

[11] Y. Kim, Y. Ma, A. Imambekov, N. G. Kalugin, A. Lombardo, A. C. Ferrari, J. Kono,

and D. Smirnov, Magnetophonon resonance in graphite: High-field Raman measure-

ments and electron-phonon coupling contributions, Phys. Rev. B 85, 121403 (2012).

[12] M. Koshino and T. Ando, Magneto-optical properties of multilayer graphene, Phys.

Rev. B 77, 115313 (2008).

[13] C. Lin, T. Do, Y. Huang, and M. Lin, Optical Properties of Graphene in Magnetic

and Electric fields, IOP Book, ISBN 978-0-7503-1566-1.

[14] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the

quantum Hall effect and Berry’s phase in graphene, Nature 438, 201 (2005).

[15] C. Chang, J. Zhang, X. Feng, and J. Shen, et al. Experimental Observation of the

Quantum Anomalous Hall Effect in a Magnetic Topological Insulator, Science 340,

6129, 167 (2013).

[16] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett.

95, 226801 (2005).

[17] T. Do, C. Chang, P. Shih, and M. Lin, Stacking-enriched magneto-transport properties

of few-layer graphenes, Phys. Chem. Chem. Phys 19, 29525 (2017).

[18] L. Li, S. Z. Lu, J. Pan, Z. Qin, Y. Wang, Y. Q. Wang, G. Cao, S. Du, and H. Gao,

Buckled Germanene Formation on Pt(111), Adv. Mater. 26, 4820 (2014).

[19] N. B. M. Schrter, M. D. Watson, L. B. Duffy, M. Hoesch, Y. Chen, T. Hesjedal, and

T. K. Kim, Emergence of Dirac-like bands in the monolayer limit of epitaxial Ge films

on Au(111), 22D Mater. 4, 031005 (2017).

24



[20] M. E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: a novel

two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16,

095002 (2014).

[21] M. Derivaz, D. Dentel, R. Stephan, M. C. Hanf, A. Mehdaoui, P. Sonnet and C. Pirri,

Continuous Germanene Layer on Al(111), Nano Lett. 15, 2510 (2015).

[22] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio,

A. Resta, B. Ealet, and G. Le Lay, Silicene: Compelling Experimental Evidence for

Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett. 108, 155501 (2012).

[23] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W.

A. Hofer, and H. J. Gao, Buckled Silicene Formation on Ir(111), Nano Lett. 13, 685

(2013).

[24] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang and Y. Y. Takamura, Ex-

perimental Evidence for Epitaxial Silicene on Diboride Thin Films, Phys. Rev. Lett.

108, 245501 (2012).

[25] F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. Zhang, and J. Jia,

Epitaxial growth of two-dimensional stanene, Nature Materials 14, 1020 (2015).

[26] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and Jing Lu,

Tunable Bandgap in Silicene and Germanene, Nano Lett. 12, 113 (2012).

[27] C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit

coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84, 195430

(2011).

[28] M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomo-

geneous electric field, New Journal of Physics 14, 033003 (2012).

25



[29] S. M. Huang, S. T. Lee, and C. Y. Mou, Ferromagnetism and quantum anomalous

Hall effect in one-side-saturated buckled honeycomb lattices, Phys. Rev. B 89, 195444

(2014).

[30] J. Zheng, F. Chi, and Y. Guo, Exchange and electric fields enhanced spin thermoelec-

tric performance of germanene nano-ribbon, Journal of Physics: Condensed Matter

27, 295302 (2015).

[31] V. Ongun zelik, E. Durgun, and Salim Ciraci, New Phases of Germanene, J. Phys.

Chem. Lett. 5 , 2694 (2014).

[32] C. Heske, R. Treusch, F. J. Himpsel, S. Kakar, L. J. Terminello, H. J. Weyer, and E.

L. Shirley, Band widening in graphite, Phys. Rev. B 59, 4680 (1999).

[33] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics

in graphene, Nature Physics 3, 36 (2007).

[34] E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-

dimensional graphene, Phys. Rev. B 75, 205418 (2007).

[35] J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Coulomb excitations

in AA- and AB-stacked bilayer graphites, Phys. Rev. B 74, 085406 (2006).

[36] C. J. Tabert and E. J. Nicol, Dynamical polarization function, plasmons, and screening

in silicene and other buckled honeycomb lattices, Phys. Rev. B 89, 195410 (2014).

[37] H. R. Chang, J. Zhou, H. Zhang, and Y. Yao, Probing the topological phase transition

via density oscillations in silicene and germanene, Phys. Rev. B 89, 201411 (2014).

[38] P. H. Shih, Y. H. Chiu, J. Y. Wu, F. L. Shyu, and M. F. Lin, Coulomb excitations of

monolayer germanene, Scientific Reports 7, 40600 (2017).

[39] G. D. Mahan, Many-Particle Physics, Plenum, New York, 3rd ed. (2000).

26



[40] A. V. Chaplik, Energy Spectrum and Electron Scattering Processes in Inversion Layers,

Journal of Experimental and Theoretical Physics 33, 5, 997 (1971).

[41] G. F. Giuliani and J. J. Quinn, Lifetime of a quasiparticle in a two-dimensional electron

gas, Phys. Rev. B 26, 4421 (1982).

[42] T. Ando, Screening Effect and Impurity Scattering in Monolayer Graphene, J. Phys.

Soc. Jpn. 75, 074716 (2006).

[43] O. Roslyak, G. Gumbs, and D. Huang, Plasma excitations of dressed Dirac electrons

in graphene layers, Journal of Applied Physics 109, 113721 (2011).

[44] Q. Li and S. Das Sarma, Finite temperature inelastic mean free path and quasiparticle

lifetime in graphene, Phys. Rev. B 87, 085406 (2013).

[45] E. H. Hwang, B. Y. K. Hu, and S. Das Sarma, Inelastic carrier lifetime in graphene,

Phys. Rev. B 76, 115434 (2007).

[46] Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Germanene and stanene on two-

dimensional substrates: Dirac cone and Z2 invariant, Phys. Rev. B 86, 075427 (2017).

[47] Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, The electronic structure of quasi-

free-standing germanene on monolayer MX (M = Ga, In; X = S, Se, Te), Phys. Chem.

Chem. Phys 17, 19039 (2015).

[48] C. W. Chiu, S. H. Lee, S. C. Chen, and M. F. Lin, Electronic excitations in doped

monolayer graphenes, Journal of Applied Physics 106, 113711 (2009).

[49] C. H. Park, F. Giustino, C. D. Spataru, M. L. Cohen, and S. G. Louie, First-Principles

Study of Electron Linewidths in Graphene, Phys. Rev. Lett. 102, 189904 (2009).

[50] L. Hung, F. H. da Jornada, J. Souto-Casares, J. R. Chelikowsky, S. G. Louie, and S.

Ogut, Excitation spectra of aromatic molecules within a real-space GW-BSE formal-

ism: Role of self-consistency and vertex corrections, Phys. Rev. B 94, 085125 (2016).

27


