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We study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder
geometry using the density matrix renormalization group (DMRG) method and the random phase
approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that
FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard
repulsion for doped ladders, when compared with the numerically exact DMRG results. However,
while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms
of weakly-interacting electron-hole excitations across the Fermi surface, at intermediate coupling
DMRG shows gapped spin excitations at large momentum transfer that remain gapless within the
FLEX approximation. For the charge response, FLEX can only reproduce the main features of the
DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away
from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations
at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such
as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and
resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.

I. INTRODUCTION

Thirty years since the discovery of high critical tem-
perature superconductivity in cuprates, understanding
the microscopic mechanism leading to pairing remains
a challenge. Progress on this problem has been hindered
mainly by the lack of a viable numerical solution of the
two dimensional Hubbard model [1], which shows compe-
tition between different phases in the weakly hole doped
regime, including d-wave superconductivity, pseudo-gap,
and charge-density-wave (stripes) phases[2–4]. The lim-
ited knowledge about the ground state of this model has
made the study of its magnetic and charge excitations
and their doping dependence even more challenging [5–8].
In this context, a set of surprising experimental results
have emerged from recent resonant inelastic x-ray scat-
tering measurements (RIXS) [4, 9]. In the hole-doped
cuprate families [10–16], high-energy magnons or param-
agnons on the antiferromagnetic zone boundary persist
from the parent compounds into the heavily overdoped
regime, showing little doping dependence up to 40% hole
doping, where the system is believed to exhibit Fermi-
liquid-like behavior. This observation is in contrast to
neutron scattering experiments [17–19], which find that
the low-energy magnetic excitations gradually disappear
around wavevector q = (π, π)/a with doping into the
overdoped regime. These observations have shown that
assessing the role of both the low- and high-energy mag-
netic excitations in the superconductivity of cuprates still
deserves further attention.

Because of these challenges, the study of quasi-one-
dimensional (1D) cuprate systems such as two-leg lad-

ders has become of interest as a simpler starting point for
understanding the layered two-dimensional systems [20–
22]. One of the reasons is that numerical calculations
can be done more accurately for model Hamiltonians in
1D or quasi-1D systems. Indeed, different many-body
techniques have successfully unveiled interesting proper-
ties of the Hubbard model in a two-leg ladder geometry
such as an unusual spin gap in the undoped state [23, 24],
and superconducting d-wave-like tendencies in the weakly
doped regime [25].

Experiments have verified many theoretical predictions
for these quasi-1D systems. For example, NMR [26–28]
and neutron scattering experiments [29] have observed
a robust gap upon doping in the so-called “telephone
number” compound Sr14−xCaxCu24O41 [30], while su-
perconductivity with a critical temperature of Tc = 12 K
has been reported in the same material under high pres-
sure [31, 32]. These results provide considerable support
to the notion that superconductivity in cuprates in the
weakly doped regime originates from antiferromagnetic
spin fluctuations. The magnetic excitations of the ground
state of the cuprate two-leg ladders have also been mea-
sured to a high degree of accuracy in the undoped regime.
Neutron scattering experiments have observed both one-
triplon and two-triplon excitations [33, 34], which are the
analog of magnon and bi-magnon excitations in the lay-
ered systems. Recent RIXS experiments have also suc-
cessfully observed the two-triplon excitations [35].

Much less is known about the cuprate two-leg ladders
at high doping levels. In the layered systems, one ex-
pects that spin excitations behave like weakly interacting
particle-hole excitations governed by the underlying free
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particle kinetic energy, with a minor influence from the
Hubbard interaction U . If this notion is correct, then
this high doping limit should be adequately described by
the random phase approximation (RPA) [7, 36]. Indeed,
many studies have assumed weak correlations in doped
cuprates in the layered geometry [37–44], and used the
RPA to study the spin and charge excitations in compar-
ison to neutron and Raman scattering experiments, as
well as the formation of a d-wave superconducting state.

In this context, quasi-1D systems provide an excellent
opportunity to explore how both spin and charge excita-
tions systematically evolve with doping throughout the
Brillouin zone. These same systems also offer a means
to assess the degree to which RPA can capture various
response functions that be evaluated with exact numer-
ical techniques such as density matrix renormalization
group (DMRG) [45, 46]. With this motivation, in the
present work we compute the dynamical spin and charge
response functions of the single-band Hubbard model on
a two-leg ladder geometry using DMRG [47, 48]. We then
compare the spin and charge structure factors to those
obtained with a fully self-consistent RPA formalism, in
which the interacting Green’s function is obtained within
the fluctuation-exchange approximation (FLEX) [49–52]
and the vertex corrections are neglected [53–55]. The
RPA formalism [38, 56, 57] was initially developed for
weakly interacting systems and is expected to become
an increasingly good approximation as the doping level
increases. FLEX has been applied to the case of the
one-band Hubbard model for cuprates [53, 54, 58–64],
and has been generalized to the multiband case (see
Refs. [49, 65]). Our calculations reveal that, while FLEX
describes well the spin response from weak to interme-
diate values of the Hubbard U , it fails to reproduce the
dispersion of the main features in the strong coupling
regime. On the other hand, FLEX can reproduce the
charge response only at weak coupling and high doping.
Nevertheless, FLEX works surprisingly well in the spin
sector up to an intermediate U even in the more challeng-
ing low-dimensional geometry of a two-leg ladder where
the correlation effects are larger due to a narrower band-
width.

This work is organized as follows: Section II and III
introduce the model and the methods, respectively. Sec-
tion IV presents the main results. Section IV.A ex-
plores the pairing symmetry in the ground state of the
two-leg ladder system. Section IV.B presents results for
the charge and spin dynamical structure factors of the
Hubbard two-leg ladder in the weak coupling regime.
Sec. IV.C and IV.D explore the excitation spectra in the
intermediate and strong coupling regimes. Finally, Sec-
tion V provides a summary of the results with a sketch
of the range of validity for the FLEX approximation, a
discussion about the implications of our results for neu-
tron scattering and RIXS experiments on two-leg ladder
cuprate compounds, and our conclusions.

II. MODEL

The Hamiltonian of the Hubbard model defined on a
two-leg ladder is

H =
(
− tx

∑
〈i,j〉
σ,γ

c†i,γ,σcj,γ,σ − ty
∑
i,σ

c†i,0,σci,1,σ

)
+ h.c.

+ U
∑
i,γ

ni,γ,↑ni,γ,↓, (1)

where c†i,γ,σ (ci,γ,σ) creates (annhilates) an electron at

leg γ = 0, 1 on site i = 0, ..., L/2 − 1 and with spin
σ =↑, ↓. L is the total number of sites, with L/2 sites
on each leg, and U is the strength of the Hubbard inter-
action. Following standard notation, tx and ty represent
the nearest-neighbor hopping parameters in the x (along
the leg) and y (along the rung) directions of the lad-
der. For simplicity, we denote the wavevector in the y
direction as qrung = 0, π/a and the wavevector in the x
direction as q. For our DMRG calculations, we consider
a ladder with open boundary conditions along the leg
direction, while our FLEX calculations assume periodic
boundary conditions along the leg direction and two sites
in each rung are treated as two orbitals within each unit
cell. In both cases, we adopt symmetric hopping inte-
grals tx = ty = t. Throughout we take t = 1 as our unit
of energy and a = 1 as our unit of length.

III. METHODS

Many techniques ranging from exact diagonalization
to DMRG [24] to bosonization [66–70] have been used to
study the physics of the Hubbard two-leg ladder. How-
ever, to our knowledge, a comparison between the FLEX
treatment of a two-leg Hubbard ladder and an exact nu-
merical approach like DMRG, has not been carried out.

A. FLEX

In this section, we summarize the multi-orbital FLEX
formalism used to compute the single particle and
anomalous self-energies. Our notation follows that used
in Refs. [49–52], which also provide a more detailed dis-
cussion of the formalism.

The central quantities in the Eliashberg equations with
FLEX interactions are the single particle Gl1l2(k) and
anomalous Fl1l2(k) Green’s functions, the single parti-
cle Σl1l2(k) and anomalous Φl1l2(k) self-energies, and
the particle-hole susceptibility χl1l2l3l4(q). Allowing for
a nonzero anomalous self-energy is necessary to obtain
meaningful results below the superconducting critical
temperature Tc. This also simplifies the comparison
with DMRG calculations for the ground state. Above,
lj are orbital-like indices (lj = 1 for leg 0 and lj = 2
for leg 1) and we have used the 4-vector notation with
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k ≡ (k, iωn) and q ≡ (q, iωm), where ωn = π
β (2n + 1)

and ωm = π
β 2m are used for fermion and boson Mat-

subara frequencies, respectively. For our two-leg ladder
problem, we have a two-orbital unit cell (equivalent to
a single rung of the ladder) and the Green’s functions
and self-energies are 2× 2 matrices in orbital space. For
the particle-hole irreducible susceptibility, the four in-
dices can be grouped as A = (l1l2) and B = (l3l4), such
that χA,B(q) can be written as a 4 × 4 matrix in or-
bital space with (l1l2) = (11, 22, 12, 21) for the rows and
(l3l4) = (11, 22, 12, 21) for the columns

¯
χp =


χp11,11 χp11,22 χp11,12 χp11,21
χp22,11 χp22,22 χp22,12 χp22,21
χp12,11 χp12,22 χp12,12 χp12,21
χp21,11 χp21,22 χp21,12 χp21,21

 . (2)

Here, we use the subscript p = 0, s (p = 0, c) for the irre-
ducible spin (charge) susceptibility, or s (c) for the spin
(charge) susceptibility. The irreducible spin and charge
susceptibilities are equal in the normal state but different
in the superconducting state due to nonzero anomalous
self-energies. The dynamical spin and charge suscepti-
bilities are respectively calculated from the RPA-like for-
mula in a generalized matrix form as follows

¯
χs(q) =

[
1−

¯
χ0,s(q)

¯
Us
]−1

¯
χ0,s(q),

¯
χc(q) =

[
1 +

¯
χ0,c(q)

¯
U c
]−1

¯
χ0,c(q),

(3)

where 1 denotes a 4 × 4 identity matrix, and
¯
Us and

¯
U c are the spin and charge interaction matrices. Note
that this matrix-RPA form generates Feynman diagrams
beyond the ring diagrams summed in the usual RPA-like
formula [71].

Since the Hamiltonian Eq. (1) only contains the on-
site Hubbard interaction, the interaction matrices take a
simple form

¯
Us =

¯
U c =

 U 0 0 0
0 U 0 0
0 0 0 0
0 0 0 0

 . (4)

¯
V n and

¯
V a define the effective FLEX interactions en-

tering into the equations for the normal Σl1l2(k) and
anomalous Φl1l2(k) self-energies, respectively. Due to the
form of the interaction matrix used here, these have the
simple form

¯
V n(q) =

3U2

2 ¯
χs(q) +

U2

2 ¯
χc(q)− U2

¯
χ0,G(q) + U1,(5)

¯
V a(q) =

3U2

2 ¯
χs(q)− U2

2 ¯
χc(q)− U2

¯
χ0,F (q) + U1,(6)

where
¯
χ0,G = (

¯
χ0,s +

¯
χ0,c)/2,

¯
χ0,F = (

¯
χ0,s −

¯
χ0,c)/2 and

each matrix is now defined in a 2 × 2 subspace of the
original two-orbital basis

¯
χp =

(
χp11,11 χp11,22
χp22,11 χp22,22

)
. (7)

The remaining susceptibilities do not enter into the for-
malism and do not need to be computed at this point.
This means that the particle and the hole must be in
the same orbital at the interaction vertex. For exam-
ple, this happens in the particle-hole ring-diagram, where
we do not have the interorbital Hubbard interaction in
the Hamiltonian. In this case, interorbital propagation
is still allowed because of the hopping along the rungs
of the two-leg ladder, and the Green’s functions are not
diagonal in the orbital space.

Introducing the short-hand notation χ0,s
l,m(q) ≡

χ0,s
ll,mm(q), the irreducible spin (charge) susceptibilities

are given by

χ0,s
l,m = − T

N

∑
k

[Glm(k + q)Gml(k) + Flm(k + q)F ∗ml(k)] ,

χ0,c
l,m = − T

N

∑
k

[Glm(k + q)Gml(k)− Flm(k + q)F ∗ml(k)] ,

where F ∗ denotes the complex conjugate of F . Since
the FLEX interactions for our model Hamiltonian sat-
isfy V

n(a)
ll′,mm′(q) = V

n(a)
l,m δll′δmm′ the normal and anoma-

lous self-energies can also be written in a compact form
without any summation over the orbital index as

Σlm(k) =
T

N

∑
q

V nl,m(q)Glm(k − q), (8)

and

Φlm(k) =
T

N

∑
q

V al,m(q)Flm(k − q). (9)

Equations (3)-(9) constitute the set of matrix FLEX
equations, which we solve self-consistently together with
Dyson’s equation in the Nambu-orbital space. Since the
momentum and frequency sums are in a convolution or
cross-correlation form, we use fast Fourier transforms
(FFT) to speed up the computation. We use a 128 × 1
k-grid and five times the bandwidth as the energy cutoff
for the Matsubara frequencies. During the self-consistent
loop, we also adjust the chemical potential µ to keep the
total electron filling n fixed. The total density is com-
puted from the electron Green’s function as

n =
2T

N

∑
l,k,n

Gll(k, iωn)eiωn0
+

, (10)

where 0+ denotes a positive infinitesimal number. Note
that the Hartree-Fock contribution to the self-energy for
our model is ΣHF11 (k) = Unσ11 and ΣHF22 (k) = Unσ22, which
is independent of momentum and Matsubara frequency
and independent of orbital index due to the degenerated
orbitals. This contribution can therefore be absorbed
into the chemical potential that is adjusted to fix the
electron filling n. A very low temperature T = 0.01t is
used in FLEX calculations, except that at half filling T =
0.05t is used to avoid the magnetic instability due to the
tendency to antiferromagnetic order at low temperature.
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B. DMRG

We employ the DMRG correction-vector method
throughout this paper [47]. Within the correction vector
approach, we use the Krylov decomposition [48] rather
than the conjugate gradient. An application of the
method to Heisenberg and Hubbard ladders at half-filling
can be found in Ref. [72], while Ref. [73] presents a study
of the pairing tendencies at finite hole-doping. In this
work, a L = 48 × 2 ladder has been simulated, using
m = 1000 DMRG states with a truncation error kept
below 10−5. The spectral broadening in the correction-
vector approach was fixed at η = 0.08t. The DMRG
implementation used throughout this paper has been dis-
cussed in detail in [72]; technical details are in the Sup-
plemental Material [74].

At each frequency ω, we compute the dynamical spin
structure factor of the two-leg ladder in real space

Sj,c(ω + iη) = 〈Ψ0|Szj
1

ω −H + Eg + iη
Szc |Ψ0〉, (11)

for all sites of the lattice, where Eg is the energy of the
ground state |Ψ0〉 of the Hamiltonian H. An analogous
definition exists for the dynamical charge structure factor
N(q, ω), where the contribution from the static average
densities is subtracted

Nj,c(ω + iη) = 〈Ψ0|(nj − 〈nj〉)
1

ω −H + Eg + iη
×

× (nc − 〈nc〉)|Ψ0〉.
(12)

Above, j ≡ (jx, jrung) corresponds to the two coordi-
nates of the site on the ladder, where jrung = 0 (1) for
the lower (upper) leg of the ladder. The center site is
c ≡ (L/4 − 1, 0). The above quantities are then Fourier
transformed to momentum space giving two components
(for brevity we report the formulas only for the dynami-
cal spin structure factor)

S((q, qrung = 0), ω) =

√
2

L/2 + 1

L/2−1∑
jx=0

sin((jx + 1)q)×

×
[
S(jx,0),c(ω + iη) + S(jx,1),c(ω + iη)

]
,

S((q, qrung = π), ω) =

√
2

L/2 + 1

L/2−1∑
jx=0

sin((jx + 1)q)×

×
[
S(jx,0),c(ω + iη)− S(jx,1),c(ω + iη)

]
,

(13)
where the quasi-momenta q = πn

L/2+1 with n = 1, .., L/2

are appropriate for open boundary conditions on each
leg.

IV. RESULTS

A. Ground state pairing properties

We begin by studying the ground state pairing prop-
erties obtained with DMRG and FLEX (the latter at low
but finite temperature) approaches.

Figure 1a shows the FLEX superconducting gap as a
function of space index j and leg index (α for leg 0 and β
for leg 1), indicating the d-wave-like character of the su-
perconducting ground state, which is characterized by a
non-zero order parameter at sufficiently low temperatures
and a gap sign change between site (jx, jrung) = (1, 0) and
(0, 1). As opposed to the FLEX approach that works
in the grand canonical ensemble, our finite-size DMRG
simulations are performed at fixed number of electrons
present in the system, and thus one cannot have a non-
zero superconducting order parameter 〈∆r(i)〉, where

∆r(i) =
1√
2

(
ci,0,↑ci,1,↓ − ci,0,↓ci,1,↑

)
(14)

for local singlet operators on a rung of the ladder. How-
ever, DMRG calculations have shown that in the weakly
hole-doped regime the doped Hubbard ladder exhibits
dominating superconducting tendencies: rung-singlet su-
perconducting correlations have the slowest power-law
decay as a function of distance [25]. This is the typi-
cal behavior of quasi-one dimensional systems, and one
assumes that the system is quasi-long-range ordered.
DMRG computations have also shown that supercon-
ducting quasi-order has d-wave-like character. We re-
port the results showing this behavior in Fig. 1(b), which
shows the pair-pair singlet correlations as a function of
the distance d along the leg of the ladder, fixing the Hub-
bard repulsion to strong coupling U/t = 6 and the elec-
tron filling to n = 0.875. We first fix the creation of a
singlet pair of electrons on a rung at the center of the
ladder (see the definition of the destruction operator in
Eq. (14)). We then consider three different possibilities
for the pair-pair correlations by destroying the pair (1)
along a rung [Eq.(14)], (2) along diagonal, and (3) along
a leg at a distance d from the center. The operators de-
stroying singlet pairs along the last two directions at a
position i on the ladder are defined as follows:

∆d(i) =
1√
2

(
ci,0,↑ci+1,1,↓ − ci,0,↓ci+1,1,↑

)
,

∆l(i) =
1√
2

(
ci,0,↑ci+1,0,↓ − ci,0,↓ci+1,0,↑

)
.

(15)

Pair-pair correlations are d-wave-like, showing a
change of sign going from the rung-rung to the rung-leg
directions. This result agrees with the d-wave charac-
ter of the superconducting ground state found in FLEX.
Within the FLEX approach, the superconducting pairing
strength can be quantified by evaluating the maximum
of the anomalous self-energy (see Fig. 1c). For low hole-
doping (6 10%), pairing tendencies increase when the
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Hubbard repulsion strength U/t is increased above inter-
mediate values, U/t ' 3.

Moreover, notice the occurence of a non-zero peak in
the maximal anomalous self-energy for electron filling
n = 0.666 and strong Hubbard repulsion U/t = 6. Un-
like the pairing state in low hole-doping cases, where 〈∆l〉
and 〈∆r〉 have opposite sign but similar magnitude from
the FLEX calculation, for n = 0.666 and U = 6 one has
|〈∆l〉| � |〈∆r〉|, i.e., the pairing along the rungs dom-
inates. The result at this filling n is reproducible with
larger k-grid, higher frequency cut-off, and stronger U
(no pairing for U/t ≥ 10, however) in the FLEX calcu-
lations, but the pairing is quite sensitive to even a small
deviation to the filling n, which does not coincide with
quarter filling n = 0.5. (The van Hove singularity gives
diverging density of states at the Fermi level of the non-
interacting bands at quarter filling.) We can explain the
occurrence of this peak at this particular value of the elec-
tronic doping by speculating that, in the FLEX approach,
the chemical potential is almost touching the lower edge
of the anti-bonding band, which is then populated by
only few electrons. In this configuration, the divergence
of the density of states (Van Hove singularity) is enhanc-
ing the pairing effects in the system.

Figure 1(d) computes the pairing correlation strength
with DMRG, which we estimate by evaluating the quan-
tity D̄ =

∑12
i=6 P (i)/P (1). (Note that 6 and 12 are arbi-

trary lower and upper bounds in the sum. The results are
qualitatively similar if we modify these bounds; choosing
6, as opposed to, e.g. 1, reduces artificial short-distance
effects while 12, as opposed to, e.g. 24, reduces edge
effects.)

Similar to FLEX, DMRG results also show that pair-
ing intensities are robust up to an electron doping which
is close to n ' 0.6. Except for the anomalous peak in the
FLEX self-energy, we observe overall a good qualitative
agreement between the pairing strength evolution with
doping found in DMRG and the maximum of anomalous
self-energy computed within the FLEX approach. In par-
ticular, pairing tendencies for small hole-doping intensify
as one increases the Hubbard U interaction from weak to
strong coupling. In fact, low-energy charge fluctuations
are suppressed while spin fluctuations become more ro-
bust for an increasing Hubbard U . In this regime, hole
pairing along the rungs of the ladder dominates [20].

B. Spin and charge excitations at weak coupling

Figures 2 and 3 display the spin and charge dynamical
structure factors, respectively, for our two-leg Hubbard
ladder in the weak Hubbard U regime (U/t = 2) for
three different values of the electron filling: half-filled n =
1.0, corresponding to the undoped regime; n = 0.9166,
corresponding to the weakly hole-doped regime (' 8%);
finally n = 0.666, corresponding to a heavily hole-doped
regime (' 33%). In each figure, spectra computed with
DMRG appear in panels (a-c) (with the response along
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FIG. 1: (a) Superconducting gap function (in units of t) com-
puted with FLEX as a function of space and leg index (α cor-
responds to lower leg, while β to upper leg). Here, U/t = 6.0,
electron filling n = 0.96. The inset in (a) is a pictorial rep-
resentation of the pairing gap at first few sites of the two-leg
ladder, with one of the electron fixed at site-0 of the lower
leg. The upward triangle means a positive gap and the down-
ward triangle means a negative gap and the size of the tri-
angle is proportional to the gap magnitude. (b) Rung-rung,
rung-leg, and rung-diagonal pair singlet correlation functions
computed with DMRG as a function of the distance from the
center of the ladder. Here, U/t = 6.0, n = 0.875. (c) Maxi-
mal anomalous self-energy (in units of t) in the first Brillouin
zone computed in FLEX as a function of electron filling and
different values of U , as indicated. (d) Pairing strength com-
puted with DMRG as a function of electron filling, for differ-
ent values of U , as indicated. The pairing strength is com-
puted from the rung-rung pair singlet correlation functions
as D̄ =

∑j=12
j=6 P (j)/P (1), where P (j) = 〈∆†r(c)∆r(c + j)〉.

The persistent background at U/t = 2 over a wide range of
doping originates in short distance correlations even in the
non-interacting limit.

the direction (q, 0) in the Brillouin zone reported) and
in panels (g-i) (with the momentum along the direction
(q, π)). Analogously, the panels (d-f) and (l-n) report the
spectra along the same momentum directions computed
with FLEX approximation.

At weak Hubbard repulsion (U/t = 2), FLEX cal-
culations well reproduce the magnetic excitation spec-
tra computed with DMRG. In the qrung = π compo-
nent in the undoped regime (panels (g) and (l)), one
can observe the typical one-magnon V-shape-like dis-
persion around (π, π), where the majority of the spec-
tral weight is located. Notice that, even though the
spectral weight is already concentrated at low energy
for U/t = 2 [72], the side branches corresponding to
weakly interacting electron-hole excitations across the
“Fermi surface” (which become gapless at scattering mo-
menta q ' π/3 and q ' 2π − π/3) are correctly cap-
tured by FLEX. In the qrung = 0 component, the disper-
sion and spectral weight of magnetic excitations, which
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correspond to intraband electron-hole excitations in the
U/t = 0 case, are also correctly reproduced. The DMRG
results, however, seem to indicate that a pseudogap for
momentum transfers around q = (π, 0) is already forming
(panels (a) and (d) of Fig. 2).
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FIG. 2: Magnetic excitation spectrum S(q, ω) for a L = 48×2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). U/t = 2.0, as indicated. The electron doping
n = N/L is shown in each panel. DMRG used m = 1000
states and η = 0.08. FLEX also used η = 0.08. FLEX used
Padé analytic continuation to obtain the complex function
S(q, ω + iη). In FLEX, qrung = 0 (π) component is obtained
from χs

+(−) = χ0,s
+(−)/(1 − Uχ0,s

+(−)), where χ0,s
+(−) = χ0,s

1,1 +

(−)χ0,s
1,2. Here +(−) denotes the qrung = 0(π) component.

In the weakly doped regime, incommensurate peaks
at positions proportional to the electronic density de-
velop around (π, π) (see also Ref. [73]). In this frequency-
momentum region, also notice the difference in spectral
weight distribution between DMRG in panel (h) and
FLEX in panel (m): FLEX shows that the magnetic
spectral intensity is even more substantial at very low en-
ergy, while the DMRG results show a maximum around
ω ' 0.6t. A similar behavior is observed for the gap-
less magnetic excitation branches at q ' (π±π/3, 0) (see
panels (b) and (e)). These follow closely the dispersion of
intraband electron-hole excitations in the U/t = 0 case,
as observed in the undoped regime.

In the overdoped regime, n = 0.666 (bottom row of
panels in Fig. 2), the FLEX approximation correctly cap-
tures the dispersion of magnetic excitations, which be-
have as weakly interacting electron-hole excitations. No-
tice the difference in spectral weight intensity between
DMRG and FLEX results: the spectra along both di-
rections in the Brillouin zone are plotted using the same
color intensity, and this makes the DMRG result appear
very weak. In particular, FLEX overestimates the spec-
tral weight of the magnetic excitations, as was the case
for small doping.

We now discuss the charge excitations reported in
Fig. 3: for all the dopings investigated N(q, ω) com-
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FIG. 3: Charge excitation spectrum N(q, ω) for a L = 48× 2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). U/t = 2.0, as indicated. The electron doping
n = N/L is shown in each panel. DMRG used m = 1000
states and η = 0.08. FLEX used also η = 0.08 in the Padé
analytic continuation.

puted with DMRG are well captured by FLEX. In par-
ticular, FLEX describes well the gapless excitations and
the concentration of spectral weight at high energy in
both qrung = 0 and qrung = π components. However,
as opposed to the case of the magnetic spectra, DMRG
predicts a more substantial spectral weight than FLEX.

The spectral features shown by DMRG and FLEX can
be easily understood in terms of non-interacting electron-
hole excitations across the Fermi surface of the ladder.
Notice that, for U/t = 0 and in the undoped regime
n = 1.0, both anti-bonding (higher energy) and bonding
(lower energy) bands are partially filled by electrons with
filling n1 = 1/3 (kF = π/3 measured from k = 0) and
n2 = 2/3 (kF = 2π/3 measured from k = 0), respec-
tively. The charge response along the direction (q, π)
corresponds to excitations across bonding and antibond-
ing bands. These describe the prominent excitation arc
starting from q = 0 and ω ' 2t, reaching a maximum for
q = π and ω ' 6t, where electrons from the bottom of the
bonding band are excited to the top of the anti-bonding
band (see panels (g) and (l)).

The low energy part of the spectrum has a mushroom-
like shape, and describe electron-hole excitations within
the energy interval 2ty giving the energy separation be-
tween bonding and anti-bonding bands. Notice that elec-
trons in the partially filled anti-bonding band can be
excited to states in the bonding band for small energy
and large momentum transfers as well. One can observe
finally the presence of gapless excitations for momenta
(π, π), (k∗, π), and (2π − k∗, π) with k∗ ' π/3. These
correspond to the minimum and maximum momentum
transfer allowed at zero energy for electron-hole excita-
tions, respectively. The charge response along the direc-
tion (q, 0), corresponds at U/t = 0 to electron-hole ex-
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citations within the bands of the ladder, which are both
partially filled as stated above.
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FIG. 4: Magnetic excitation spectrum S(q, ω) for a L = 48×2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). U/t = 4.0, as indicated. The electron doping
n = N/L is shown in each panel. DMRG used m = 1000
states and η = 0.08. FLEX used also η = 0.08 in the Padé
analytic continuation.

At finite hole-dopings, much of the observations given
above can be repeated. Notice, however, the appear-
ance of incommensurate peaks around (π, π) (see panels
(g-n)), which also change position as a function of elec-
tron filling, similarly to the case in the magnetic excita-
tion spectra. At the same time, both DMRG and FLEX
confirm that Fermi-surface effects give incommensurate
peaks around (q = 2kF, 0) = (2π/3, 0) and (4π/3, 0) (see
panels (a-f)).

C. Spin and charge excitations at intermediate
coupling

In the regime of intermediate Hubbard U (U/t = 4),
the main features of the magnetic excitation spectra are
also well captured by FLEX for all the dopings investi-
gated, as shown in Fig. 4.

In the undoped regime (panels (g) and (l)), we again
observe a V-shape-like dispersion band around (π, π),
where the majority of the spectral weight is concentrated.
However, while side branches corresponding to weakly
interacting electron-hole excitations across the “Fermi
surface” appear still gapless or weakly gapped at scat-
tering momenta q ' π/3 and q ' 2π − π/3 in FLEX,
these are gapped in the DMRG spectra. We can explain
this behavior by observing that larger Hubbard U cou-
plings start to affect first large momentum transfers in
electron-hole quasi-particle excitations. Analogously, in
the qrung = 0 component, the dispersion of the magnetic
excitation branches at q ' π ± π/3 appear gapped in
the DMRG spectral while they remain gapless in FLEX
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FIG. 5: Charge excitation spectrum N(q, ω) for a L = 48× 2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). U/t = 4.0, as indicated. The electron doping
n = N/L is shown in each panel. DMRG used m = 1000
states and η = 0.08. FLEX used also η = 0.08 in the Padé
analytic continuation.

(panel (a) and (d) of Fig. 4). Both DMRG and FLEX
give a gapped spectrum at q = 0 in the qrung = 0 compo-
nent, however. In the weakly doped regime, discrepan-
cies between DMRG and FLEX magnetic spectra greatly
reduce, both in the qrung = π and qrung = 0 compo-
nents. Finally, an excellent agreement between DMRG
and FLEX results is observed in the overdoped regime,
n = 0.666 (panels (c)-(f)-(i)-(n)). As in the weak Hub-
bard U regime, we notice a discrepancy in the spectral
weight of the magnetic excitations between DMRG and
FLEX. Specifically, for all the dopings investigated at
intermediate U , DMRG reports a slightly higher mag-
netic spectral weight of the magnetic excitations in the
qrung = 0 component. Instead, in the qrung = π compo-
nent, FLEX reports a magnetic spectral weight in very
good agreement with DMRG spectra.

Next, we consider the charge excitations spectra in
Figure 5. In the undoped case, we can observe in the
DMRG results (panel (a) and (g)) that a more substan-
tial Mott charge gap is present in the system in both the
qrung = 0, π components. However, the FLEX approach
misses this information, where we can only observe an in-
coherent band of excitations above some low energy exci-
tations which are still gapless. The picture that emerges
from the DMRG-FLEX comparison improves slowly with
doping. In the large doping regime, one can see that
the FLEX approach begins to capture the low energy
behavior of the DMRG spectra correctly. The high en-
ergy bands deviate less significantly from the DMRG re-
sults. We have verified that only at larger hole dopings
(' 50%) we start to see good qualitative agreement be-
tween DMRG and FLEX results. Overall, the FLEX sig-
nificantly underestimates the dynamical charge response
comparing to DMRG. We stress that the magnitude of



8

N(q, ω) is much smaller than S(q, ω) from both DMRG
and FLEX calculations for U/t > 2, and this indicates
that pairing is dominated by the spin-fluctuations.
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FIG. 6: Magnetic excitation spectrum S(q, ω) for a L = 48×2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). In this figure U/t = 6.0, as indicated. The
electron doping n = N/L is shown in each panel. DMRG
used m = 1000 states and η = 0.08. FLEX used also η = 0.08
in the Padé analytic continuation.

D. Spin and charge excitations at strong coupling

We finally consider the strong Hubbard U limit (U/t =
6). In this case, both magnetic and charge excitation
spectra computed with FLEX present qualitative differ-
ences from the spectra computed with DMRG, as ex-
pected.

In the qrung = π component in the undoped regime
(panels (g) and (l) in Figure 6), one can again observe a
V-shape-like dispersion around (π, π) in both DMRG and
FLEX magnetic excitation spectra. However, we notice
that the spectral weight distribution is different, while
at intermediate, up to high energies, the dispersion of
the magnetic excitations are completely different in the
two approaches. At finite doping, the agreement between
DMRG and FLEX does not improve significantly: in the
weakly doped regime, both the qrung = 0 and qrung = π
spectra span along the same interval of energies. How-
ever, the dispersion of low energy excitations is qualita-
tively different in the entire Brillouin zone. In the large
doping regime, the situation for the qrung = π compo-
nent of the spectrum is very different: FLEX spectrum
is gapped in both qrung = 0, π components, while DMRG
shows gapless excitations. Last, we only begin to see
qualitative similarities between the two approaches for
the qrung = 0 spectra at large doping. We also mention
a difference between DMRG and FLEX approached at
low T : while pairing fluctuations are included, there is
no finite pairing order in DMRG because a finite lattice

size is used; for FLEX, the anomalous self-energies are
not zero and may affect the S(q, ω) shown in panel (e)-
(m)-(f)-(n). Finally, we consider the charge excitations
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FIG. 7: Charge excitation spectrum N(q, ω) for a L = 48× 2
ladder from DMRG (panels (a-c) for qrung = 0, panels (g-i)
for qrung = π) and FLEX (panels (d-f) for qrung = 0, and (l-n)
for qrung = π). U/t = 6.0, as indicated. The electron doping
n = N/L is shown in each panel. DMRG used m = 1000
states and η = 0.08. FLEX used also η = 0.08, in the Padé
analytic continuation.

spectra in Fig. 7. In the FLEX approach, the N(q, ω)
spectrum looks completely incoherent and featureless.
Instead, DMRG results show that the spectra are rich,
with both high energy bands above the Mott gap, and
dispersive gapless excitations. For large U , the FLEX
approximation fails to give an accurate result for the dy-
namical charge response, which is an order of magnitude
smaller than the dynamical spin response according to
DMRG.

V. DISCUSSION AND CONCLUSIONS

Figure 8 summarizes our results in a diagram of the
region of n-U/t parameter space where we find qualita-
tive agreement between FLEX approximation and nu-
merically exact DMRG results. From the analysis, it has
emerged that the FLEX approach works better for mag-
netic than charge excitations. Nevertheless, we found
that spin excitations are affected: the magnetic excita-
tions became more gapped by increasing values of the
Hubbard U , and only in the large U regime became qual-
itatively different from the spectrum produced by weakly
interacting electron-hole excitations.

Our results further show that the magnetic excitations
in the intermediate coupling regime are qualitatively sim-
ilar to those found at strong coupling, for all dopings in-
vestigated. The same observation does not hold for the
charge excitations. Indeed, when the Hubbard repulsion
is of the order of the bonding/anti-bonding bandwidth,
smaller hole-doping concentrations are sufficient to trans-
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FIG. 8: (a) Sketch of the range of qualitative agreement be-
tween FLEX approximation for N(q, ω), when compared with
numerically exact DMRG results. (b) Same as in panel (a)
but referred to S(q, ω). Notice that DMRG-FLEX qualita-
tive agreement range is larger for S(q, ω), in the range of
parameter investigated in this work.

fer much of the charge spectral weight to low energy in-
traband excitations. We can naively explain these obser-
vations by noting that Hubbard U interactions directly
affect the charge degrees of freedom while it only indi-
rectly affects the spin degrees of freedom of the system
via the antiferromagnetic exchange interaction. More-
over, the FLEX approximation is expected to fail at large
U .

Our results are also of direct relevance to inelas-
tic neutron scattering (INS) and resonant inelastic x-
ray scattering (RIXS) experiments on two-leg ladder
cuprates [34, 35, 75–78]. The S(q, ω) spectra in the un-
doped case at strong coupling are in good qualitative
agreement with available experimental INS data, showing
one-triplon and two-triplon excitations [34, 35]. We be-
lieve that the dispersive incommensurate features found
in our magnetic excitation spectra at finite hole doping
may be detectable by INS in two-leg ladders telephone
number compounds (La,Sr,Ca)14Cu24O41.

Concerning the dynamical charge structure factors, our
DMRG results show good qualitative agreement with a
recent RIXS experiment on the hole-doped two-leg ladder
cuprate compounds (La,Sr,Ca)14Cu24O41 [75]. In this
experimental work, two kinds of excitations appear in
the RIXS spectra. One is attributed to an interband ex-
citation across the Mott gap, observed at 2–4 eV with a
dispersion relation that is independent of the hole-doping
concentration of the ladder. The second excitation ap-
pears as a continuum below the Mott gap energy 2 eV
when holes are doped, and its intensity is found to be
proportional to the hole-doping concentration. We ob-
serve this same qualitative behavior in our N(q, ω) spec-

tra in the strong couplig regime in both the qrung = 0
and π components for small hole-doping up to 10% [see
Fig 7(g)-(h)]. Moreover, the spectral weight of N(q, ω) is
redistributed to a low energy intraband excitations in the
overdoped regime [see spectra for U/t = 6 and n = 0.666,
corresponding to 33% hole-doping in Fig. 7(i)]. In our
N(q, ω) spectra, we found that most of the charge spec-
tral weight appears in a low energy band, that is quite
dispersive across the Brillouin zone in contrast to the re-
sults shown in Ref. [75].

Our study, although not applicable directly to 2D ma-
terials, could provide the motivation for future studies
of spin and charge dynamical spectra of doped multi-leg
Hubbard ladders. Indeed, a recent RIXS study at Cu
L3-edge of 2D cuprates has reported [15] the occurrence
of a collective gapped charge mode in the electron doped
regime, as opposed to the hole-doped case. The nature of
these excitations is still under debate due to the difficulty
of making theoretical predictions for spin and charge dy-
namical correlations functions of the 2D Hubbard model.
In this context, the spin and charge dynamical correla-
tions functions of the 2D Hubbard model as a function
of doping were studied in Ref. [7], where the authors
compared RPA with determinant quantum Monte Carlo.
Recently, Ref. [79] computed the dynamical charge and
spin spectra of a four-leg ladder t−J model with DMRG.
We believe that future investigations of multi-leg Hub-
bard ladders (which are closer to the 2D limit) compar-
ing fermionic-sign free approaches like DMRG with more
sophisticated analytical techniques, such as FLEX, are
important and should be pursued.
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shunov, M. Dressel, and J. Akimitsu, Physics Reports
428, 169 (2006).

31 M. Uehara, T. Nagata, J. Akimitsu, H. Takahashi, N. Mri,
and K. Kinoshita, Journal of the Physical Society of Japan
65, 2764 (1996).

32 T. Nagata, M. Uehara, J. Goto, J. Akimitsu, N. Mo-
toyama, H. Eisaki, S. Uchida, H. Takahashi, T. Nakanishi,
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