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In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two dimensional
topological phases, it is relatively easy to describe only single fluxon excitations, but not the charge
and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in
(doubled) topological phases, an extension of the LW models is proposed in this paper. We first
enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex, to describe
the internal charge degrees of freedom at the vertex. Then we study the full dyon spectrum of the
extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle
excitations. The local operators associated with the dyonic excitations are shown to form the so-
called tube algebra, whose representations (modules) form the quantum double (categoric center)
of the input data (unitary fusion category). In physically relevant cases, the input data is from a
finite or quantum group (with braiding R-matrices), we find that the elementary excitations (or
dyon species), as well as any localized/isolated excited states, are characterized by three quantum
numbers: charge, fluxon type, and twist. They provide a “complete basis” for many-body states in
the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the
electric-magnetic duality existing in the models is addressed.

PACS numbers: 05.30.-d 05.30.Pr 71.10.-w 71.10.Pm

I. INTRODUCTION

In recent years two-dimensional topological phases
have received increasing attention from the science com-
munity. These phases represent a novel class of quan-
tum matter at zero temperature1, whose bulk proper-
ties are robust against weak interactions and disorders.
They may be divided into two families: doubled (with
time-reversal symmetry, or TRS, preserved), and chiral
(with TRS broken). Chiral phases were first discovered
in integer and fractional quantum Hall (IQH and FQH)
liquids. Mathematically, their effective low-energy de-
scription is given by Chern-Simons gauge theory or, more
generally, topological quantum field theory (TQFT)2,3.
Doubled topological phases include topological insulators
and some states in quantum spin liquids. Either chiral
or doubled phases may be exploited to do fault-tolerant
(or topological) quantum computing4–7.

The (chiral) Chern-Simons theories are formulated in
the continuum and have no lattice counterpart. On
the other hand, doubled topological phases do admit a
discrete description. The first such formulation in the
physics literature was the Kitaev’s toric code model4.
(In the mathematical literature, a discrete version of
TQFT had been constructed a bit earlier by Turaev and
Viro8, which by now is known to describe certain doubled
phases.) About ten years ago, Levin and Wen (LW)9 con-
structed a wide class of discrete models on a trivalent lat-
tice/graph, with an exactly solvable Hamiltonian, for two
dimensional doubled topological phases. The model is
now believed to be a discretized version of doubled Chern-

Simons theory10, which is mathematically the same as
the Turaev-Viro TQFT7,11,12. The original motivation of
the LW model was to generate ground states that exhibit
the phenomenon of string-net condensation13 as a physi-
cal mechanism for topological phases. The ground states
in this model can be viewed as the fixed-point states of
some renormalization group flow14, which look the same
at all length scales and thus have no local degrees of free-
dom. Like Kitaev’s toric code model4, we expect that the
subspace of degenerate ground states in the LW model
can be used as a fault-tolerant code for quantum compu-
tation.

Two of us have studied, in a previous joint paper with
another author15, the ground state degeneracy (GSD) of
the LW model on a (discretized) closed oriented surface
M . Usually in TQFT the GSD is examined as a topolog-
ical invariant of the 3-manifold S1×M11,12,16. In the LW
Hamiltonian approach, our computation of the GSD be-
came accessible to physicists. In this paper, we attack the
problem of solving the full spectrum of quasiparticle exci-
tations in the LW models with the input data being a uni-
tary fusion category (see below for details). This problem
is of significance for further interdisciplinary study of the
models in physics, mathematics and quantum computa-
tion codes. It is generally believed that the quasiparti-
cle excitation species are related to the quantum dou-
ble that classifies the degenerate ground states. Several
proposals about excitation spectrum in the LW models
have been made in the literature9,17–19. In this paper,
we will present a new approach to understanding the full
elementary excitation spectrum of the LW models, that
addresses both the quantum numbers and corresponding
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states (or wave functions) explicitly for all quasiparticle
species. In particular we want to accommodate the needs
in physics and quantum computation codes for concrete
and explicit expressions to play with.

Several new developments feature our analysis. Usu-
ally for a single (pure) fluxon, it is easy to character-
ize/specify their quantum numbers. See, for example,20.
However, the fusion of two or more (pure) fluxons, gener-
ally leads to the appearance of charge quantum numbers.
(Some examples are shown later in Sec. VII.) Namely the
set of single fluxon species are not closed under fusion!
So how to represent all dyon (charge-fluxon composite)
species in the LW model presented a challenge. Our way
to solve this problem is to enlarge the original Hilbert
space of the LW model. We explicitly introduce internal
charge degrees of freedom (d.o.f.) at each trivalent vertex
by adding a tail on one of its edges. This has greatly fa-
cilitated the treatment of fusion outcomes. In this way,
the LW model is actually extended, with the underlying
graph(s) involving univalent vertices. The second impor-
tant development is that we have identified the operator
algebra for the local operators, that can be used to gener-
ate all quasiparticle excitations, to be the Tube algebra
constructed by Ocneanu22–25. Using the Tube algebra,
the relationship of quasiparticle species to the irreducible
representations (simple modules) of the quantum double
becomes relatively easy to establish, and the above men-
tioned complicated situations for fusion of non-abelian
anyons become easier to handle. It has been shown25 that
a half-braiding in the quantum double (or center) cate-
gory corresponds to an irreducible representation (simple
module) of the Tube algebra. This not only enables us
to define the string operators, but also to account for
charged as well as dyonic excitations. Our present anal-
ysis has clarified and emphasized the importance of sup-
plementing the twist, as quantum number in addition to
the usual charge and fluxon-type, to the characterization
of quasiparticle species in extended LW models. Indeed,
generally there may exist quasiparticle excitations which
have the same charge and fluxon-type but have differ-
ent twists and, therefore, should be counted as different
species.

A similar operator algebra approach for quasiparti-
cles in topological phases has been proposed by Lan and
Wen19. The Q-algebra they independently invented is
a presentation of the Tube algebra. In their approach,
they added an extra (charge) index at each vertex for its
internal charge d.o.f., while we want to add a (charge)
tail at one of the links attached to a vertex. This dif-
ference makes the two formulations have complimentary
technical advantages and disadvantages.

Because of the interdisciplinary interests in the LW
models, we have tried to adapt our presentation in this
paper to audience with different backgrounds. Of course,
the basic audience in our mind is physicists, and we have
tried hard to make the presentation accessible to physi-
cists. However, whenever a reference of the terminology
or of the idea can be made to the mathematical litera-

ture, we will do it to help readers of mathematical back-
ground. (Readers with physics background can safely
skip these mathematical remarks without harming their
further reading.) The last section is also devoted to the
relationship between our approach and TQFTs.

We will use some terminology in category theory lan-
guage for convenience of physicists, because this language
could be used widely in future physics, just like group
theory has become the language of contemporary physics.
Condensed matter physicists do not need to be worried.
Whoever has learned angular momentum or crystal group
theory in quantum mechanics is familiar with at least
one fusion category, which is nothing but the category
formed by all finite-dimensional unitary representations
of the rotation group or its discrete subgroups in three-
dimensional Euclidean space! The decomposition of the
(tensor) product of two irreducible representations into
a (direct) sum of irreducible representations just gives to
the fusion algebra, with the non-negative integral coef-
ficients in the direct-sum decomposation as the fusion
(rule) coefficients. The 6j-symbols are well-known in
group theory. So the fusion category is a straightforward
generalization of the representation theory of groups (or
group algebras) to more complicated algebras (more pre-
cisely, weak Hopf algebras). Up to now only fusion cate-
gories associated with a finite group or a quantum group
appear in the literature of condensed matter physics.

The paper is organized as follows. In Section II we
briefly review the LW models and set up our notations.
In Section III we review the topological symmetry of the
ground states, i.e. the invariance under Pachner muta-
tions of the (spatial) graph. Then we begin our study of
excited states by introducing an extension of the Hilbert
space of the LW models, as well as the extended Hamil-
tonian in Sec. IV. We devote Sec. V to the central issue
of the paper, i.e. the study of elementary (quasiparti-
cle) excitations, using local operators preserving topo-
logical symmetry, which is shown to form the tube al-
gebra. Minimal projection operators and simple mod-
ules (irreducible representations) of the tube algebra are
introduced. A dyon species is identified with an irre-
ducible representation (simple module) of the Tube alge-
bra, and fusion of all dyon species gives rise to the quan-
tum double (or the categoric center) of the input fusion
category. String operators are generalized to dyon-pair
creation, hopping operators etc, and their properties that
are related to important observables, such as twist and
S-matrix, are studied using graphic calculus. Next two
sections, Sec. VI and Sec/ VII, are devoted to study-
ing excitation spectrum and emergent braiding statistics
from the above-established set-up. In Sec. VIII, with
possible a pplications in anyon condensation, we exam-
ine the particular case – the braided LW models – with
the input fusion category equipped with an R-matrix.
Physically these models are actually a generalized gauge
theory with gauge “group” being a finite or quantum
group. In Sec. IX, we present several examples, includ-
ing cases with input data from an abelian group, from a
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non-abelian group S3, from the Kitaev’s quantum dou-
ble model as well as from a modular category, such as
the double semion model and double Fibonnaci model.
Sec. X addresses the electric-magnetic duality between
two particular LW models with two seeming different sets
of input data involving the same finite group. In Sec. XI
we elaborate the relation to topological quantum field
theory for the convenience of readers with mathematical
background. The final section (Sec. XII) is devoted to
conclusions and discussions. In addition to summarizing
our main results, we present arguments that our extended
models, though with enlarged Hilbert space and modified
Hamiltonian, give rise to the same topological phase at
zero temperature as the Levin-Wen models, while hav-
ing different perspective for properties, phases and phase
transitions at finite temperatures involving charged and
dyonic excitations. We also emphasize that the local
(string-like) operators we have defined in this paper and
their algebra may be useful, even when the Hamiltonian
is deformed away from our modified Hamiltonian (pro-
vided that the gauge symmetry,or the input category is
not changed).

II. LEVIN-WEN MODELS

Let us briefly review the Levin-Wen models. The input
data to define the model, i.e., to specify the Hilbert space
and the Hamiltonian, is the unitary fusion category C.
More specifically, we will use the tensor description of C
in terms of 6j-symbols.

The model is defined on a trivalent graph embedded to
a closed oriented surface. The Hilbert space is spanned
by the degrees of freedom on edges. See Fig.1. For each
edge, we assign a label j (called string type), which runs
over a finite set of integers L = {j = 0, 1, ..., N}. The
Hilbert space is spanned by all configurations of the labels
on edges. Each label j has a “conjugate” j∗, which is
also an integer and satisfies j∗∗ = j. If we reverse the
direction of one edge and replace the label j by j∗ on
this edge, we require the state to be the same. See Fig.1.
There is unique “trivial” label j = 0 satisfying 0∗ = 0.

To specify the Hamiltonian, we introduce the structure
on string types as follows.

A fusion rule on L is a function N : L × L × L → N
such that for a, b, c, d ∈ L,

N b
0a = N b

a0 = δab, (1)

N0
ab = δab∗ , (2)∑

x∈L
Nx
abN

d
xc =

∑
x∈L

Nd
axN

x
cd. (3)

A fusion rule is multiplicity-free if N c
ab ∈ {0, 1} for all

a, b, c ∈ L. We restrict to the multiplicity-free case
throughout this paper unless specified. We define δabc :=
N c∗
ab which has the symmetric properties: δabc = δbca and

δabc = δc∗b∗a∗ . We say a triple (a, b, c) is admissible if
δabc = 1.
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FIG. 1: A configuration of string types on a directed triva-
lent graph. The configuration (b) is treated the same as (a),
with some of the directions of some edges reversed and the
corresponding labels j conjugated j∗.

Given a fusion rule on L, a quantum dimension is a
map d : L→ R such that da∗ = da and∑

c∈L
dcδabc∗ = dadb. (4)

In particular, d0 = 1. Let αj = sgn(dj) which takes
values of ±1 for each label j, and require:

αiαjαk = 1, if δijk = 1. (5)

Given a fusion rule and a quantum dimension on L, we
may define 6j-symbols, often denoted as G. A tetrahe-
dral symmetric unitary 6j-symbol is a map G : L6 → C
satisfying the following conditions:

Gijmkln = Gmijnk∗l∗ = Gklm
∗

ijn∗ = αmαnG
j∗i∗m∗
l∗k∗n ,∑

n dnG
mlq
kp∗nG

jip
mns∗G

js∗n
lkr∗ = Gjipq∗kr∗G

riq∗

mls∗ ,∑
n dnG

mlq
kp∗nG

l∗m∗i∗
pk∗n =

δiq
di
δmlqδk∗ip,

(6)

The data {dj , δijk, Gijmklm} can be derived from the rep-
resentation theory of a group, or more generally a quan-
tum group. (More generally, such a set of data is from a
unitary fusion category.) For instance, we take the labels
j to be the irreducible representations of a finite group.
The trivial label 0 is the trivial representation. The fu-
sion rule tells whether the tensor product j1 ⊗ j2 ⊗ j3
contains the trivial representation or not. The number
αj is the Frobenius-Schur indicator telling if the represen-
tation j is real or complex, or pseudoreal, dj = αjdim(j)
the dimension dim(j) of the corresponding representa-
tion space multiplied by the Frobenius-Schur indicator
αj . The number Gijmkln the (symmetrized) Racah 6j sym-
bol for the group. In this example, the LW model can be
mapped to the Kitaev’s quantum double model.

One important property of the 6j-symbols is that

Gijmkln = Gijmkln δijmδklm∗δlinδnk∗j∗ . (7)

To prove this, one can rewrite the orthogonality condition
by ∑

n

(
vnvqG

mlq
kp∗n

)(
vnviG

mlq
kp∗n

)
= δiqδmliδk∗ip. (8)
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When q = i, the equality implies that Gmlikp∗n must varnish
unless δmlqδk∗ip = 1. By using the tetrahedral symmetry,

one arrives at Eq. (7). Here vj =
√

dj is a choice of a
square root of the quantum dimension. The number vj
is either real or pure imaginary, depending on the sign
αj = sgn(dj).

Depending on how the square root is taken, vj is de-
termined up to a sign. We fix the sign as follows. From

the conditions in Eq. (6), we have (Gijk0kjvjvk)2 = δijk. It

is possible to fix the sign of vj such that Gijk0kjvjvk = δijk.
We define

vj :=
1

Gj
∗j0

0 0 j

. (9)

In particular, v0 = 1 because d0 = 1 (from Eq. (4))
and thus G000

000 = 1 from Eq. (6). Indeed, we can verify
v2
j = dj directly from the orthogonality condition in Eq.

(6) together with d0 = 1. The definition in Eq. (9) also
implies

Gijk0kjvjvk = δijk, (10)

which can be proved by the pentagon identity

d0G
ijk
0kjG

j∗j0
0 0 jG

k∗k0
0 0 k = Gijk0kjG

j∗i∗k∗

k∗0j and the orthogonality

djG
ijk
0kjG

j∗i∗k∗

k∗0j = 1
dk
δijk.

There are two types of local operators, Qv defined at
vertices v and Bsp (indexed by the label s = 0, 1, ..., N)
at plaquettes p. Let us first define the operator Qv. On
a trivalent graph, Qv acts on the labels of three edges
incoming to the vertex v. We define the action of Qv on
the basis vector with j1, j2, j3 by

Qv

∣∣∣∣∣ OO j1

||
j2

""
j3

〉
= δj1j2j3

∣∣∣∣∣ OO j1

||
j2

""
j3

〉
(11)

where the tensor δj1j2j3 equals either 1 or 0, which deter-
mines whether the triple {j1, j2, j3} is “allowed” to meet
at the vertex. Since δj1j2j3 is symmetric under permuta-
tions of the three labels: δj1j2j3 = δj2j3j1 = δj1j3j2 , the
ordering in this triple {j1, j2, j3} is not important.

The operator Bsp acts on the boundary edges of the
plaquette p, and has the matrix elements on a triangle
plaquette,〈

""j5
|| j6

OOj4

oo
j′3
GG j′2��j

′
1

∣∣∣∣∣Bsp
∣∣∣∣∣
""j5
|| j6

OOj4

oo
j3
GG j2��j1

〉
=vj1vj2vj3vj′1vj′2vj′3G

j5j
∗
1 j3

sj′3j
′∗
1
G
j4j
∗
2 j1

sj′1j
′∗
2
G
j6j
∗
3 j2

sj′2j
′∗
3
. (12)

The same rule applies when the plaquette p is a quadran-
gle, a pentagon, or a hexagon and so on. Note that the
matrix is nondiagonal only on the labels of the boundary
edges (i.e., j1, j2, and j3 on the above graph).

The operators Bsp have the properties

Bs†p = Bs
∗
p , (13)

BrpB
s
p =

∑
t

δrst∗B
t
p, (14)

Both can be verified by using conditions (6).
The Hamiltonian of the model is (here D =

∑
j d2

j )

H = −
∑
v

Qv −
∑
p

Bp, Bp =
1

D

∑
s

dsB
s
p (15)

where the sum run over vertices v and plaquettes p of the
trivalent graph.

The main property of Qv and Bp is that they
are mutually-commuting projection operators: (1)
[Qv, Qv′ ] = 0 = [Bp, Bp′ ], [Qv, Bp] = 0; (2) and QvQv =
Qv and BpBp = Bp. Thus the Hamiltonian is exactly
soluble. The elementary energy eigenstates are given
by common eigenvectors of all these projections. The
ground states satisfies Qv = Bp = 1 for all v,p, while the
excited states violate these constraints for some plaque-
ttes or vertices.

In particular, if {d, δ, G} arises from the representation
theory of groups or quantum groups, we have δrst∗ =
δsrt∗ . Then the Bsp’s commute with each other,

[Brp1 , B
s
p2 ] = 0 (16)

which can be verified by the conditions in (6) when p1
and p2 are the two nearest neighboring plaquettes, and
by Eq. (14) together with δrst∗ = δsrt∗ when p1 = p2.

III. TOPOLOGICAL SYMMETRY FOR
GROUND STATES

To characterize the topological phases, we study the
topological observables. Examples include the topologi-
cal degeneracy of ground states. Behind them the topo-
logical symmetry plays an important role: topological
observables are those invariant under mutations of the
spatial graph. In continuum theory, they are observables
invariant under the smooth deformation of the space-time
manifold. In the following we analyze the mutation sym-
metry for the ground states.

Let us begin with any two arbitrary trivalent graphs
Γ(1) and Γ(2) discretizing the same surface (e.g., a torus).
It is known that they can be mutated to each other by a
composition of the Pachner moves21:

f1 : → , (17)

f2 : → , (18)

f3 : → . (19)

See Fig.2 for instance.
We can associate two different Hilbert spaces to Γ(1)

and Γ(2), respectively, as described in the previous sec-
tion. Denote by H(1) the Hilbert space on Γ(1), and H(2)

on Γ(2).
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7→ 7→

FIG. 2: A mutation two graphs that discretize the same man-
ifold. The left one is mutated to the middle one by a compo-
sition of f1 moves, and the middle one is mutated to the right
one by a f3 move.

To the elementary moves f1, f2, and f3, we associate
linear maps between the corresponding Hilbert spaces as
follows:

T̂1 :

∣∣∣∣∣ GGj2 WWj3ooj5��
j1 ��j4

〉
→
∑
j′5

vj5vj′5G
j1j2j5
j3j4j′5

∣∣∣∣∣ 77j2 ggj3OOj′5''j1 ww
j4

〉
, (20)

T̂2 :

∣∣∣∣∣ OO j2

||
j3

""
j1

〉
→

∑
j4j5j6

vj4vj5vj6√
D

Gj2j3j1j∗6 j4j
∗
5

∣∣∣∣∣
""j1
|| j3

OOj2

oo
j6
GG j5��j4

〉
,

(21)

T̂3 :

∣∣∣∣∣|
""j1
|| j3

OOj2

oo
j6
GG j5��j4

〉
→ vj4vj5vj6√

D
G
j∗3 j
∗
2 j
∗
1

j∗4 j6j
∗
5

∣∣∣∣∣ OO j2

||
j3

""
j1

〉
. (22)

Note that since we can reverse any edge by conjugat-
ing the corresponding label, the above formulas do not
depend on the edge directions.

Between the Hilbert spaces H(1) and H(2) on any
two graphs, there is a mutation transformation by a
composition of these elementary maps. In particular,
Bp = D−1

∑
s dsB

s
p is a special example. In fact, on the

particular triangle plaquette p as in (22), we can verify

Bp=O = T̂2T̂3.
The ground states have properties:

1. The mutations are unitary in the ground-state sub-
space.

2. The ground states are invariant under mutations.

By unitarity O1 = O†2 we mean 〈φ|O1 |φ′〉 =

〈φ′|O2 |φ〉. For example, T̂2
†

= T̂3 can be verified by〈
""j1
|| j3

OOj2

oo
j6
GG j5��j4

∣∣∣∣∣T̂2
∣∣∣∣∣ OO j2

||
j3

""
j1

〉
=
vj4vj5vj6√

D
Gj2j3j1j∗6 j4j

∗
5

=
vj4vj5vj6√

D
G
j∗3 j
∗
2 j
∗
1

j∗4 j6j
∗
5

=

〈
OO j2

||
j3

""
j1

∣∣∣∣∣T̂3
∣∣∣∣∣
""j1
|| j3

OOj2

oo
j6
GG j5��j4

〉
, (23)

using condition (6), Gj2j3j1j∗6 j4j
∗
5
∝ δj∗4 j1j6 , and αj1 = αj4αj6 .

IV. EXTENSION OF THE MODEL

To study the spectrum of Levin-Wen models, we will
extend the Hilbert space. An elementary excitation |ψ〉

(a) (b)

FIG. 3: Extension of the Hilbert space by extra tails.

##
l1

�� l2

{{

l3

cc

l4
OOl5

;;
l6

;;
j1
##
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�� j3

{{

j4
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OOj6

(a)

$$
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��l6
��k6

q6//

zz

l5

dd

l4

OOl3

OOk3
q3//

::

l2

zz
j1

dd
j6

OO

OO

OO

k5

j5

k4

q5//

q4//

::

j4
$$

j3

��
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��

k2

j2

k1

q2//

q1//
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FIG. 4: Around each vertex, two extra d.o.f. are needed: q is
assigned to the tail, and k to the line connecting the vertex
and the tail.

supports two types of quasiparticles, charge at vertex v
if Qv |ψ〉 = 0, and fluxon at plaquette p, if Bp |ψ〉 = 0.
We extend the local Hilbert space at v to support distin-
guished charges and internal degrees of freedom between
them.

Let us start with a trivalent graph, e.g., the hexagonal
lattice in Fig.3(a). There are three edges connected to
each vertex. To each vertex, we associate an open edge
called a tail and attach it to one of the three connected
edges. For example, in Fig.3(b) each vertex carries a tail.
To define the Hilbert space it does not matter which one
of the three edges neighboring to the vertex we choose to
attach the tail.

The Hilbert space is spanned by the string types j ∈ I
on all the edges of the tailed graph. With the tails, there
are two more d.o.f. around each vertex. For example, in
Fig.4(b), these extra d.o.f. are labeled by k and q near
each vertex. Each vertex of the spatial graph in Fig.3(a)
is actually presented by two vertices in Fig.3(b). Around
each new vertex in Fig.3(b), we require the fusion rule
δijk = 1 for the three neighboring edges labeled by i, j,
and k connecting to the vertex. For example, at the
left upper corner of the plaquette in Fig.4(b), we require
δj1l1k∗1 = 1 and δk1j∗2 q∗1 = 1.

The Hamiltonian has two terms:

H = −
∑
v

Qv −
∑
p

Bp. (24)
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The first term is

Qv
∣∣∣∣∣ q1

q2

##
i
{{

j

OO

OO

OO

k2

l

k1 //

//

〉
= δq1,0

∣∣∣∣∣ q1

q2

##
i
{{

j

OO

OO

OO

k2

l

k1 //

//

〉
. (25)

The second term is

Bp =
1

D

∑
s

dsBsp, (26)

with

Bsp

∣∣∣∣∣
$$

l1

��l6
��k6

q6//

zz

l5

dd

l4

OOl3

OOk3
q3//

::

l2

zz
j1

dd
j6

OO

OO

OO

k5

j5

k4

q5//

q4//

::

j4
$$

j3

��

��

��

k2

j2

k1

q2//

q1//
〉

=δq1,0δq2,0
∑

j′1j
′
2j
′
3j
′
4j
′
5j
′
6k
′
1k
′
3k
′
4k
′
6

vj1vj2vj3vj4vj5vj6vj′1vj′2vj′3vj′4vj′5vj′6×

vk4vk5vk′4vk′5G
l1k
∗
1j1

s∗j′1j
′∗
2
G
l2j
∗
3k2

s∗j′2j
′∗
3
G
k3j
∗
4 j3

s∗j′3j
′∗
4
G
l4k
∗
4j4

s∗j′4k
′∗
4
G
l5j
∗
6k5

s∗k′5j
′∗
6
G
k6j
∗
1 j6

s∗j′6j
′∗
1
×

G
q4j
∗
5k4

s∗k′4j
′∗
5
G
q5k
∗
5j5

s∗j′5k
′∗
5

∣∣∣∣∣
$$

l1

��l6
��k6

q6//

zz

l5

dd

l4

OOl3

OOk3
q3//

::

l2

zz
j′1

dd
j′6

OO

OO

OO

k′5
j′5

k′4

q5//

q4//

::

j′4

$$

j′3

��

��

��

j′2

j′2

j′2

0

0

〉
.

(27)

The operator Bsp is a straightforward extension of the
Levin-Wen operator Bsp in Eq. (12). The two tails la-
beled by q4 and q5 are viewed as two external legs of the
plaquette. With q1 = 0 = q2, the plaquette is effectively
treated as having 8 boundary vertices. Acting on this
effective plaquette by Bsp defined in Eq. (12), we arrive
at 16 of v’s and 8 of 6j-symbols in the Eq. (27).

If we restrict to the Q = 1 subspace, we recover the
traditional Levin-Wen model. Take Fig.4(b) for an ex-
ample, in the subspace with q = 0 fixed for all tails, we
have k1 = j2 = k2, k4 = j5 = k5, k3 = l3, k6 = l6, etc.
Hence, Q = 1 subspace in Fig.4(b) is identified with the
usual Q = 1 subspace in Fig.4(a). In such a case, Bsp
becomes the usual Bsp.

The model is exactly solvable because the local terms
in the Hamiltonian (24) are mutually commuting projec-
tion operators.

V. ELEMENTARY EXCITATIONS

We study elementary excitations by algebra of local
operators preserving topological symmetry. Excitations
support quasipartciles, which are identified with the irre-
ducible representations of the algebra and are classified
by the quantum double category.

Elementary excitations are mutual eigenvectors of all
Q’s and B’s. In particular, the ground states are Q =
1 and B = 1 eigenvectors. Since the Q = 1 subspace
recovers traditional Q = 1 Levin-Wen Hilbert subspace,
the ground states in the extended model are exactly the
same as in the traditional Levin-Wen model.

Elementary excitations support local quasiaprticles. If
an excitation |ψ〉 is a Qv = 0 eigenvector, we say there is
a charge quasiparticle living at v, which is identified by a
nontrivial tail label. On the other hand, if Bp = 0 (with
Qv = 1 around the plaquette) we say there is a fluxon
quasiparticle at p. We call a generic quasiparticle a dyon
– a composite of charge and fluxon.
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A. Topological symmetry and tube algebra of
observables

As discussed above, when all tail labels are trivial, the
extended Hilbert space becomes the traditional one with-
out tails. The ground states have mutation symmetry as
discussed in Sec III. In the following we explore the topo-
logical symmetry in excitations. The corresponding topo-
logical observables under such symmetry form the “tube
algebra”. This enable us to classify the elementary exci-
tations. In particular, the good quantum numbers can be
identified by the irreducible representations of the tube
algebra, which are formulated by the quantum double of
the input category.

Excitations have less symmetry. In the presence of a
nontrivial quasiparticle at the triangle plaquette in Eq.
(21) and (22), excited states are not invariant under T̂2
and T̂3, because T̂2T̂3 = Bp=O = 0.

In the generic case, the tail label — called a charge —
within a plaquette is nontrivial. States are not invariant
under T̂2 and T̂3. But they still have T̂1 symmetry. An-

other symmetry with respect to the tail is to move a tail
along the plaquette boundary. Define

T̂4 :

∣∣∣∣∣
$$

l1

��l6
��k6
q6//

OOl3

OOk3
q3//

::

l2

zz
j1
dd
j6

OO

::

j4
$$

j3

��

��

��

k2

j2

k1

q2//

q1//
〉
→
∑
k′1

vk1vk′1G
j∗2 q
∗
1k1

j1l1k′1

∣∣∣∣∣
$$

l1

��l6
��k6
q6//

OOl3

OOk3
q3//

::

l2

zz
j1
zz

k′1

q1
��

dd
j6

OO

::

j4
$$

j3

��

��

k2

j2
q2//

〉
,

(28)

which has a similar form to T̂1. The tail q1 can freely
move along the plaquette boundary, as long as it does
not cross another tail, e.g., the one labeled by q2 above.

We are interested in topological observables, i.e., local
operators that preserve T̂1 and T̂4 transformations. Con-
sider elementary excitations with at most one quasipar-
ticle at the plaquette for simplicity. Hence we consider
only one tail for simplicity as follows. Define

Bqsq′u

∣∣∣∣∣
$$

l1

�� l6

zz
l5

dd l4

OO l3

::l2

zz
j1
dd
j6

OO j5

::

j4
$$

j3

��

��

j2

k
q//

〉
=

∑
j′1j
′
2j
′
3j
′
4j
′
5j
′
6k
′

vj1vj2vj3vj4vj5vj6vkvj′1vj′2vj′3vj′4vj′5vj′6vk′×

Gl1k
∗j1

sj′1k
′∗G

l2j
∗
3 j2

sj′2j
′∗
3
G
l3j
∗
4 j3

sj′3j
′∗
4
G
l4j
∗
5 j4

sj′4j
′∗
5
G
l5j
∗
6 j5

sj′5j
′∗
6
G
l6j
∗
1 j6

sj′6j
′∗
1
×

(
G
kj∗2 q

∗

su∗j′∗2
G
j′∗2 u

∗k
sk′q′∗

) ∣∣∣∣∣
$$

l1

�� l6

zz
l5

dd l4

OO l3

::l2

zz
j′1
dd
j′6

OO j′5

::

j′4

$$

j′3

��

��

j′2

k′
q′//

〉
.

(29)

This operator has a graphical presentation of fusing a
string labeled by s along the plaquette boundary, per-
formed by T̂ transformations (up to some normalization
factor), see Fig.5.

The topological observables preserving T̂1 and T̂4 are
linear combinations of Bpkqt. Denote such a generic op-
erator by

x =
∑
pkqt

xpkqtBpkqt, (30)

where the summation runs over p, k, q, t with δpqt∗ = 1 =
δkqt∗ (otherwise Bpkqt = 0). These operators satisfy the

multiplication rule x · y = z where z is given by:

zpkqt = dkdt
∑
mnlrs

xlnqrypmlsG
m∗sl∗
nr∗t G

m∗tr∗
q∗n∗kG

s∗pm
kn∗t (31)

which can be verified in graphical presentation in
Fig.5(a). The operators in Eq. (30) equipped such a mul-
tiplication rule form the tube algebra A.

The local operator Bsp in the Hamiltonian is a special
element in A:

Bsp = dsB0s0s. (32)

Which fuses a loop to the plaquette boundary. See
Fig.5(b).

Quasiparticles in elementary excitations are identified
by projection operators Π · Π = Π where Π is minimal.
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//
q
//
u
//
q′

��s

(a)

��
s

(b)

00
q

(c)

FIG. 5: Graphical interpretation of Bqjq′s and Bsp. (a) Bqsq′u
attaches a string and fuses it along the plaquette boundary
by T̂1 and T̂3. (b). With q = q′ = 0, Bqjq′s is reduced to
B0s0s = Bsp. (c) With u = 0, Θ performs a rotation of a tail
along the plaquette boundary.

Here minimal means that if Π is a combination of projec-
tion operators Π = Π1 + Π2 then Π1 or Π2 is zero. Each
projection Π projects onto states with a specific quasipar-
ticle at p called a dyon. A ground state is a

∏
p Bp = 1

eigenstate; we say such a p has a trivial dyon which we
identify with the projection Bp. Dyons identified by all
other projections Π 6= Bp carry higher energy, because
Bp is a special minimal projection and Bp ·Π = 0.

Consider dyons with charge q at the tail fixed. Oper-
ators on such states form a subalgebra Aq with elements
x =

∑
kt xqkqtBqkqt. If we express a projection in Aq by

Πq =
∑
kt

ΠqktBqkqt, (33)

then Πq ·Πq = Πq implies

Πqkt = dkdt
∑
mnrs

ΠqnrΠqmsG
m∗sq∗

nr∗t Gm
∗tr∗

q∗n∗kG
s∗qm
kn∗t . (34)

Each minimal projection Πq identifies a dyon at p and
is in one-to-one correspondence with an irreducible rep-
resentation of Aq.

B. Quantum double theory of dyons

The dyons with fixed charge q are identified with irre-
ducible representations of Aq. However, the dyon species
are identified with the irreducible representations of tube
algebra A. A dyon with fixed charge q does not form
a species itself, because a generic topological observable
Bqkq′t transforms the dyon with charge q to other dyon(s)
with charge q′. A dyon species is identified with a set
of dyons that are invariant under A, i.e., with an irre-
ducible representation of A. Such irreducible representa-
tions form quantum double category, with each represen-
tation identified with a quantum double label. Hence the
natural algebraic theory of dyons is the quantum double
category theory.

In the rest of this subsection we expand on the ideas of
the previous paragraph. The irreducible representations

of tube algebra form a quantum double category. The
key structure in the latter is the half braiding. A half-
braiding tensor z satisfies the naturality condition

∑
lrs

drdszlnqrzpmlsG
m∗sl∗
nr∗t G

s∗pm
jn∗t G

m∗tr∗
q∗n∗k = δmnj∗

δjk
dj
zpjqt.

(35)

A minimal solution to this equation is associate with
a quantum double label J . Each J is one-to-one
corresponding to an irreducible representation of tube
algebra25. Denote each minimal solution by zJpjqt.

Quantum double labels classify dyon species. Each
dyon species may carry different charges q just like each
spin may carry different magnetic components. In this
case, we say these dyons belong to the same dyon species,
denoted by a quantum double label J . A dyon species
is identified by a minimal central projection in A. Here
“central” means it commutes with all topological observ-
ables in A. It is a sum

ΠJ =
∑
q

ΠJ
q , (36)

where q runs over all dyons that belong to J .

Each dyon that belongs to species J has the projection
ΠJ
q arising from zJ by

ΠJ
qkt

ΠJ
q0q

=
dkdt
dq

zJqkqt. (37)

There may be several projections Πp, Πq, . . . , arise from
the same J , with p 6= q.

In general, each J may carry multiple copies of a charge
q, denoted by index α in ΠJ =

∑
q,α ΠJ

q,α. Throughout
this paper for simplicity, we assume each q appears at
most once in all J .

C. Dyon string operator

In this subsection we define dyon-pair creation and an-
nihilation operators. In the Q = 1 subspace, all tails are
labeled by the trivial string type q = 0. We draw the
dotted line to present the trivial label 0 for convenience.
Fix an edge e, and consider a state |Ψ〉 with no charge at
either of the two vertices of e. For such an edge we can
define a creation operator. For example, in the follow-
ing diagram, we create a pair of dyons across the middle
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vertical edge labeled by j2. Define creation operator by

W J;pq∗
e

∣∣∣∣∣
$$
j7

��l6
��l6

0//

zz

l5

$$

l4

OOl3

OOl3
0//

::

j11

zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

OO

OO

OO

j2

j2

j2

0//

0//

::

j8

dd

j10

OO

OO

OO

j9

j9

j9

0//

0//

��l1
��l1

0//

OOl2

OOl2
0//

$$

l8

::

l9

〉

=
∑
j′2

vj′2
vj2

zJpj′2qj2

∣∣∣∣∣
$$
j7

��l6
��l6

0//

zz

l5

$$

l4

OOl3

OOl3
0//

::

j11

zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

OO

OO

OO

j2

j′2

j2

p oo

q∗//

::

j8

dd

j10

OO

OO

OO

j9

j9

j9

0//

0//

��l1
��l1

0//

OOl2

OOl2
0//

$$

l8

::

l9

〉
.

(38)

The resulting state W J;pq∗
e |Ψ〉 has charge p at the

lower left vertex, and charge q∗ at the upper left vertex.
The two plaquettes are occupied by a pair of dyons.

The generated state is normalized to:

〈Ψ|W J;pq∗
e

†
W J;pq∗
e |Ψ〉 = dpdq/dJ〈Ψ |Ψ〉 . (39)

Given a ground state, W J;pq∗
e enables us to explicitly

write down the elementary excitation wavefunction.

Now we develop the dyon string operator, which cre-
ates a pair of dyons at the end of the string. First, we
create two dyon-pairs across two edges respectively, e.g.,
the two labeled by j9 and by j2 as follows.

∑
q′

W J;pq′∗
e1 W J;q′q∗

e2

∣∣∣∣∣
$$
j7

��l6
��l6

0//

zz

l5

$$

l4

OOl3

OOl3
0//

::

j11

zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

OO

OO

OO

j2

j2

j2

0//

0//

::

j8

dd

j10

OO

OO

OO

j9

j9

j9

0//

0//

��l1
��l1

0//

OOl2

OOl2
0//

$$

l8

::

l9

::

dd

OO

OO

OO

//

//

��

��

//

OO

OO

//

$$

::

〉

=
∑
q′j′9j

′
2

zJpj′9q′j9
zJq′j′2qj2

vj′9
vj9

vj′2
vj2

∣∣∣∣∣
$$
j7

��l6
��l6

0//

zz

l5

$$

l4

OOl3

OOl3
0//

::

j11

zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

OO

OO

OO

j2

j′2

j2

q′ oo

q∗//

::

j8

dd

j10

OO

OO

OO

j9

j′9

j9

q′∗//

p oo

��l1
��l1

0//

OOl2

OOl2
0//

$$

l8

::

l9

::

dd

OO

OO

OO

0//

0//

��

��

//

OO

OO

//

$$

::

〉
.

(40)

The resulting state has the first pair of dyons occupying
the left and the middle plaquette, and the second pair
occupying the middle and the right plaquette. Next we
annihilate the two charges in the middle plaquette. By T̂1
followed by a sequence of T̂4 moves, we can move the tail
q′ to be at the same edge with q′∗. Then we annihilate
the charge by

∣∣∣∣∣ j

k1

k2

q

q∗//

//

;;

##

��

��

��

cc

{{ 〉
7→ δk1k2δqk1j∗2

vj
vk1

∣∣∣∣∣ k1
k1

k1

//

//

;;

##

��

��

��

cc

{{ 〉
, (41)

The desired string operator is the composition of the
following: we first create two dyon-pairs as in Eq. (40),
second we move the two tails in the middle plaquette to
be at the same edge, and third we annihilate the two
charges as in Eq. (41). This procedure defines a string
operator across two edges. We can repeat this procedure
to define a string operator along a longer string.

The process to annihilate charge pairs q and q∗ and
sum over q at the middle plaquette is called the con-
traction of charges. After the contraction, no nontrivial
quasiparticle is left at the middle plaquette. The string
operator defined is path independent: two string opera-



10

•
•

J
e

;; ;;
p

q∗

(a)

•
•

•
•J J

99 99 99 99
=p

q∗

•
•J

$$ $$p
q∗

(b)

•
•

J

OOOOp

q∗

(c)

FIG. 6: (a) A ribbon presents a pair of dyons created at
two plaquettes across edge e. (b) Two dyons are created.
The dotted line presents the contraction of the charges at the
middle plaquette. The resulting state is dyon pair state with
two dyons at the two ends of the ribbon string. (c). Creation
along two isotopic strings result in the same dyon pair state if
no nontrivial quasiparticle exists in the area enclosed by the
two strings. The two string operators in (b) and (c) are the
same.

tors along two isotopic paths result in the same final state
if the final position of the dyon is the same and there is
no non-trivial quasiparticle in the area enclosed by the
two paths.

We use ribbon strings to represent creation and string
operators. In Fig.6(a), the ribbon string represents the
creation by W J;pq∗

e of a dyon pair across an edge e. There
are charges p and q∗ at the two ends of this string.
In Fig.6(b) the dotted line presents the contraction of
charges at the middle plaquette. Here the charge con-
traction connects two strings to a new one. The two
string operators in Fig.6(b) and Fig.6(c) are equal, illus-
trating the path independence of the string operator.

D. Twist and modular S matrix

In this subsection, we analyze some topological observ-
ables in terms of the string operators to characterize the
dyon species.

We need a special choice of zJ to write down the cre-
ation operator (or equivalently the elementary excitation
wavefunction). This amounts to picking a specific repre-
sentation in which the state transforms under the tube

algebra A. On the other hand, the topological observ-
ables that characterize topological properties of dyon ex-
citations do not depend on specific choices of zJ . In
the following, we explore the topological properties using
ΠJ , which are uniquely determined by the 6j-symbols
and does not depend choices of zJ .

The simplest invariant is obtained by contraction of
the charges at the two ends of a string, leading to a loop
operator. If no nontrivial quasiparticle exists in the area
enclosed by the loop, the closed string operator gives a
multiple of the identity matrix:

•
•

OOOOJ = OOOOJ = dJ1, (42)

where dJ is called the quantum dimension of J , defined
by

dJ =
∑
q∈J

dq. (43)

The next topological observable is the twist: define the
twist by

Θ =
∑
q

dqBqq∗q0. (44)

It commutes with all dyon projections, and hence is a
good quantum number of a dyon state. For states with
dyon identified by ΠJ

q , the eigenvalue is solved to be

θJ =
1

dqΠJ
q0q

∑
t

ΠJ
qqt. (45)

The twist θJ is the same for all dyons in the same species
J , even with different charges q.

This scalar is a U(1) number which we identify with θJ .
The definition in Eq. (44) has a graphical presentation of
a self rotation of the tail. See Fig.5(c). Hence θ is identi-
fied with the dyon’s statistical spin s via θ = exp(2πis).

If we apply the twist in Fig.6(b), we obtain a string
operator as in Fig 7. Twisting either dyon in the mid-
dle plaquette of Fig. 6(b) before the charge contraction
leads to the string operators in Fig 7(a) and Fig 7(b) sep-
arately. Therefore the twist θJ of a dyon can be detected
by the string operators

•

•
J
MM MM

= θJ

•

•

JOOOO =

•

•
J
QQQQ

. (46)

Since the string operators are path independent, it is not
important where on the spatial graph we put the string.
The crossing matters, which indicates the path order of
creation and charge contraction operators. Therefore it is
safe to draw only the ribbon strings without mentioning
the underlying spatial graph.

Another important topological observable is the mod-
ular S matrix, as defined as follows. First, we create
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•
•J

����

p
q∗

(a)

•
•

JXXXXp
q∗

(b)

FIG. 7: A dyon twist is presented by a twist of the ribbon
string.

• •Koooo

(a)

• •K

J

oooo

?? ??

(b)

•
• •

•
K

J

K

oooo

?? ??

66 66

(c)

FIG. 8: Three steps to evaluate S matrix: (a) create a pair
of K-dyons; (b) wound around a K-dyon by J-dyon closed
string operator; (c) contract the two ends of the K-string.

a dyon-pair. Second, we add a closed string operator
around on end point of the previously created dyon-pair.
Third, we contract the ends of the dyon-pair. See Fig.8.
If no nontrivial quasiparticle exists in the area enclosed
both strings, the final operator is a multiple of the iden-
tity matrix. Presented in terms of the ribbon strings,
they are

J K

iiii vvvv
= J K

iiii vvvv
= SJK1. (47)

The S matrix characterizes the holonomy effect of
winding dyon J around K, or equivalently, exchanging
J and K twice.

The S matrix turns out to be independent of choices
of zJ . It evaluates to be

SJK =
∑
p,q,t

(
ΠJ
pqtΠ

K
qpt

ΠJ
p0pΠ

K
q0q

)
1

dt
. (48)

Sometimes it is useful to define the T matrix by

TJK = δJKθJ . (49)

Therefore, the twist θJ is actually an eigenvalue of the T
matrix. In our approach, the T matrix is realized as the

operator that moves the quasiparticle around the pla-
quette by one turn. This operator commutes with the
Hamiltonian, and thus its eigenvalue is a good quantum
number.

Modular matrices S and T are believed to characterize
the quantum double category, and contain all information
on the good quantum numbers of the dyon species.

E. Fusion and hopping operators

Dyon species are closed under fusion. Here the fu-
sion process is described as follows: when two pairs of
dyons of species J and K are created on the same two
plaquettes, the resulting state is a linear combination of
ones obtained from the creation of one pair of dyons. If
the dyon-pair state L appears in this linear combination,
then we define δJKL∗ = 1 and δJKL∗ = 0 otherwise.

Next we consider another way to describe the fusion
process that results in elementary three-dyon states (on
the sphere). In terms of string operators, we create three
pairs of dyons of species J,K and L, with three dyons at
one end of each pair meeting at the same plaquette. If
we annihilate these three dyons, the resulting state is the
zero vector or a nonzero three-dyon state. See Fig.9(a).
We define the fusion rule by δJKL = 1 if we obtain a
nonzero three-dyon state and δJKL = 0 otherwise. (In
general, there may be more than one fusion channels,
but throughout the paper we consider the multiplicity
free cases for simplicity.)

Let us consider the later fusion process in more detail.
To do this we define the fusion of charge by

∣∣∣∣∣
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〉
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∗
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k∗2q
∗
2q
′
1
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��k6
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l5
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OOl3

OOk3
q3//

::
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j6
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q4//

::

j4
$$

j3

��

��

��

k2

k2

k1

0//

q′1//
〉
, (50)

where the charge q2 is moved upward and fused with q1,
resulting a linear combination of charge q′1 state.

The fusion process is illustrated in Fig.9(a) and de-
scribed as follows. First, we create three pairs of dyons
by W J;pj ,WK;qk and WL;rl, with summation over p, q
and r. Second, we annihilate the three charges at the
middle plaquette by composition of T̂1 moves and the
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above charge fusion given in Eq. (50). Then we apply
the projection Qv. Finally, we apply Bp at the plaquette
to annihilate the fluxon. If δJKL = 1, the nonzero result-
ing state is graphically presented by a riboon three-valent
tree structure. See Fig. 9(b).
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FIG. 9: (a). Create three pair of dyons, and fuse three dyons
at the middle plaquette by annihilating charges and fluxons.
The dotted line presents charge annihilation and dashed line
presents fluxon annihilation. (b). If δJKL = 1, the fusion
process results in a elementary three-dyon excitation.

The fusion rule is completely determined by the S ma-
trix (known as Verlinde formula26):

δJKL =
1

D2

∑
N

SJNSKNSLN
S0N

. (51)

We end this subsection by describing the hopping op-
erator : First, we create two dyon pairs, both of species
J , with two particular charges k and k∗ are at the same
plaquette. See Fig.10. Second we annihilate charge using
Eq. (41) and fluxon using Bp.

The hopping operator is equal to the composition of
dJ
dk
W J;kk∗ with the charge and fluxon annihilation. We

•

•
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FIG. 10: Hopping Operator: the dash circle represents fluxon
annihilation.

present this equality graphically by

• •
• •

J J

k

k∗
_

}
�

2
S k

�

%
A_

)) )) (( ((

=
dk
dJ
• •

• •
J J
)) )) && &&

=
dk
dJ
• •

J
55 55

(52)

VI. EXCITATION SPECTRUM

In Sec. V E, we showed how to generate a three-dyon
excitation from a ground state. In this section we study
the full spectrum for all excitations.

We consider models on the sphere only. There is only
one ground state15. We claim all excitations can be gen-
erated from the ground by string operators and annihi-
lation operators.

To reveal the structure of the spectrum, it is convenient
to consider unit cells of one vertex (including one charge)
and one plaquette. For simplicity, let us first consider
a simplified situation: each plaquette contains at least
one tail. At each plaquette, we only consider nontrivial
charge at a particular tail. This amounts to enforcing
all other tails at each plaquette to be labeled by trivial
charge. Then each plaquette together with the tail form
a unit cell that supports exactly one dyon. See Fig.11(a)
for example.

By applying T̂1 moves, one can always mutate the
graph to have a tree-like graph as in Fig.11(b). All pla-
quettes are transformed to P − 1 bubbles except the last
one. (The outside region forms one plaquette on sphere.)
These bubbles are the new unit cells that support ex-
actly one dyon. All (good quantum numbers of) dyons
at bubbles are preserved during the mutation.

A typical excitation can be generated by P − 1 pairs
of dyons across the bubbles. Let us denote the dyons
inside bubbles by {Jp, qp}p≤P−1. But the P − 1 dyons
outside the bubbles form a huge multiplicity. Similar
analysis based on fusion process in Sec. V E implies that
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(a)

...
p1 p2 p3 pP−1

(b)

FIG. 11: (a). Each plaquette has one tail that may take

nontrivial charge. (b) Unitary T̂1 moves mutate the graph to
a tree-like graph, with P the total number of plaquettes.

this multiplicity can be organized by tree structure:

• • •

•

• •

◦

◦

◦

◦

...

...
J1q1 J2q2 J3q3 JP−1qP−1JP−2qP−2

JP qP

K1

KP−3

. (53)

The fusion channels that occur outside region are diag-
onalized by {Ke}1≤e≤P−3. These K degrees of freedom
describe how the P − 1 dyons are fused into linear com-
bination of JP qP dyons at the outside plaquette.

Therefore the basis for excitations is

{|{Jpqp}1≤p≤P , {Ke}1≤e≤P−3〉 |

δJ1J2K∗1 δKP−3JP−1JP

P−4∏
e

δKeJe+2K∗e+1
= 1}.

(54)

In the models arising from modular tensor categories,
each quantum double label is a pair ij. See Sec. IX C.
The basis is simplified as

{
∣∣{ipj, qp}1≤p≤P , {kele}1≤e≤P−3〉 |

(
∏
p

δipjpq∗p )δi1i2k∗1 δkP−3iP−1iP

P−4∏
e

δkeie+2k∗e+1
= 1}

(55)

VII. EMERGENT BRAIDING STATISTICS

The basis (54) allows us to calculate the fractional ex-
change statistics of dyons. The transformation of de-
generate N -dyon states under the exchange of any two
dyons can be computed using the hopping operators we
have developed in Sec. V E. They form a representation
of the Braid group BN , because of the path independence
of the hopping operators.

Consider N -dyon excitation states, with N dyons la-
beled by {Jpqp}1≤p≤N at N fixed unit cells (plaquette
together with a tail). The braiding matrix is computed
in the N -dyon excitations have basis

{|{Ke}1≤e≤N−3〉

|δJ1J2K∗1 δKN−3JN−1JN

N−4∏
e

δKeJe+2K∗e+1
= 1}

(56)

Although they dyons may be different of different species,
the braiding matrices form a presentation of the braid
group BN . The braiding matrices are independent of
charges qp.

In models arising from modular tensor category, any
three dyon states has the basis

∣∣i1j1, q1; i2j2, q2; i3j3, q3
〉
. (57)

The braiding matrices σ1 and σ2 are diagonal matrices

given by diagonal of R
i∗3
i1i2

/R
j∗3
j1j2

and R
i∗1
i3i2

/R
j∗1
j3j2

.

Consider the doubled Fibonacci model for example.
Consider the four-fluxon states on a sphere. Each fluxon
is either a pure fluxon labeled by (J = ττ , q = 0), or
carrying a charge τ , labeled by (ττ). The four-fluxon
states have a basis

• • • •

◦ ◦

K

ττ ττ ττ ττ

, (58)

where K = 1, τ, τ , ττ . The four dots at the top label four
fluxons, which may or may not carry a charge τ . These
charges do not affect the braiding matrices, and are thus
not presented in the basis. For simplicity, we choose all
four fluxons to be (J = ττ , q = 0), and the computation
is within the usual Levin-Wen Hilbert space.

If we exchange two fluxons in the counterclockwise di-
rection by the hopping operators, we obtain the braiding
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matrices in the above basis

σ1 = σ3 =


1 0 0 0

0 e
3iπ
5 0 0

0 0 e−
3iπ
5 0

0 0 0 1

 ,

σ2 =


φ2 e−

3iπ
5 φ3/2 e

3iπ
5 φ3/2 φ

e−
3iπ
5 φ3/2 e−

iπ
5 φ2 φ e

2iπ
5 φ3/2

e
3iπ
5 φ3/2 φ e

iπ
5 φ2 e−

2iπ
5 φ3/2

φ e
2iπ
5 φ3/2 e−

2iπ
5 φ3/2 φ2

 ,

(59)

where φ =
√
5−1
2 . σ1 exchanges the fluxon 1 and 2, σ2

exchanges 2 and 3, and σ3 exchanges 3 and 4. They
generate the representation of the braid group B4.

The four eigenvalues of σ1 and σ3 are verified to be
RKττ,ττ . σ2 can be obtained by a basis transformation in
terms of 6j symbols.

VIII. BRAIDED MODELS

Many example models are equipped with R matrix,
include the models arising from representations of finite
groups and quantum groups. The presence of an R-
matrix simplifies the disruption of the operators in the
model. In this section we analyze in detail how to charac-
terize the dyons by three good quantum numbers: charge,
fluxon, and twist. We study in more detail the creation,
annihilation, and string operators in this situation.

Let {d, δ, G} be the data discussed in Sec. II. The
R matrix is a map R : L3 → C that satisfies hexagon
equations:∑

g

dgG
cad∗
be∗gR

e
gcG

abg∗

ce∗f = RdacG
acd∗
be∗fR

f
bc. (60)

∑
g

dgG
e∗bd
cag R

e
adG

e∗ag
bcf = RdacG

e∗bd
acf R

f
ab. (61)

The data {d, δ, G,R} is a tensor description of a uni-
tary braided category. Examples include the models aris-
ing from representations of finite groups and quantum
groups.

A. Good quantum numbers of dyons

1. Charge

Recall the definition of a charge: an excited state |ψ〉
has a charge at vertex v, if Qv |ψ〉 = 0, namely, if the
tail label qv associated to the vertex v is not the trivial
0. We say |ψ〉 carries a charge qv. More precisely, define

Qqv

∣∣∣∣∣ q1

q2

##
i
{{

j

OO

OO

OO

k2

l

k1 //

//

〉
= δq1,q

∣∣∣∣∣ q1

q2

##
i
{{

j

OO

OO

OO

k2

l

k1 //

//

〉
. (62)

It commutes with the Hamiltonian (24), and thus q is
good quantum number of |ψ〉. In particular, Qq=0

v = Qv
projects onto trivial charge.

Another good quantum number in the charge excita-
tions is related to the topological spin of the charge. To
construct it, we examine how a tail charge is associated
to a vertex. There are different choices to associate a tail
to vertex to specify the Hilbert space. In this section,
there is no canonical choice better than the others. For
example, if the three edges incoming into one vertex are
labeled by i, j, and l, there six possible ways to associate
a tail labeled by q:

q

&&
i
xx
j

OO

OO

l

u
//

q

&&

i

OOl

xx
xx

j

v

��

q

&&

i

OOl

xx
xx j

v′

XX

q

OO l

xx

j

&&
&&i

w

FF

q
OO l

xx

j

&&
&&

i
w′
��

q

&&
i
xx
j

OO

OO

l

u′
oo

.

(63)

All of six choices are equivalently good. These six ways
specify a basis of six different Hilbert spaces. Define the
basis transformations among them:

µ :

∣∣∣∣∣ q

&&
i
xx
j

OO

OO

l

u
//

〉
7→
∑
v

vuvvG
jiu
lq∗v∗

∣∣∣∣∣ q

&&

i

OOl

xx
xx

j

v

��

〉
,

(64)

ν :

∣∣∣∣∣ q

&&
i
xx
j

OO

OO

l

u′
oo

〉
7→ Ru

′
q∗l

∣∣∣∣∣ q

&&
i
xx
j

OO

OO

l

u
//

〉
. (65)

The transformation ν moves the tail between the left
side and the right side on the same edge, while µ moves
a tail to another edge. Both moves are in the clockwise
direction.

In the absence of fluxon at plaquette, the twist defined
in Eq. (44) can be reinterpreted as

Θv = νµνµνµ, (66)

which take a tail in the counterclockwise direction around
the vertex and finally back to the same position. This
process realizes “self-rotation” of the charge.

The eigenvalue for charge q is

θq = Rl
∗
u∗q∗R

u
lq∗ , (67)

which is a U(1) number that depends only on q.

2. Fluxon

Suppose there is a nontrivial charge at plaqueete p.
An excited state |ψ〉 has a pure fluxon at plaquette p,
if Bp |ψ〉 = 0. To identify fluxons in the presence of
nontrivial charges on the tail inside p, we extend Bsp by
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B̃sp
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::

j′4
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��

��

��
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k′1

q2//

q1//
〉
.

(68)

The operator B̃sp is a straightforward extension of the
Levin-Wen operator Bsp in Eq. (12). It can be obtained as
follows. We first apply the basis transformations ν on all
tails that point into the plaquette p, i.e., the tails labeled
by q1 and q2 in the above example. The resulting graph
contains the plaquette with four tails pointing outwards:
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��l6
��k6
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zz

l5

dd

l4

OOl3

OOk3
q3//

::

l2

zz
j1

dd
j6

OO
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OO

k5

j5

k4

q5//

q4//

::

j4
$$

j3

��

��

��

k2

j2

k1

q2 oo

q1 oo

. (69)

Now the Levin-Wen operator Bsp is well-defined on this
new plaquette, which is treated as having 10 vertices on
the boundary with 10 external lines labeled by l1, l2,
. . . , l6, as well as q1, q2, q4, and q5. After applying
Bsp, we move back the two tails q1 and q2 towards right

by the inverse transformations ν−1. Loosely speaking,
B̃sp = ν−11 ν−12 Bspν1ν2, where ν1,2 is the half twist on the
tail q1,2. This results in Eq. (68).

The formula in Eq. (68) can be read as follows. The
effective plaquette in (69) is treated as having 10 bound-
ary vertices. According to the definition of Bsp in Eq.
(12), we arrive at 20 of v’s and 10 of 6j-symbols in the
Eq. (27). The four copies of the half twist ν gives rise to
four of R tensors (or their complex conjugates R), in the
two brackets, for two tails q1 and q2 respectively.

All local operators B̃sp and Qqv are mutually commut-
ing with any other. According to the interpretation in
Eq. (69), this is a direct consequence of the property

that Qv and Bp are mutually commuting projection op-

erators. The operator Bsp can be recovered from B̃sp by

Bsp = B̃sp
(∏

v around pQv
)

.

In the following we use B̃sp to identify fluxons at p. The

ocal operators B̃sp forms the fusion algebra

B̃rpB̃sp =
∑
t

δrst∗ B̃tp. (70)

with multiplication obeying the fusion rule.
In the following we derive a set of orthonormal pro-

jection operators in the fusion algebra to identify parti-
cle species of the fluxons. The braided model equipped
with R matrix has δijk = δjik. The algebra (70) is now
abelian, and it is uniquely determines a N×N matrix
XA
j , called the fusion characters, satisfying

XA
j∗ = XA

j (71)

XA
i X

A
j =

∑
k

δijk∗X
A
k X

A
0 (72)∑

j

XA
j X

B
j = δA,B ,

∑
A

XA
i X

A
j = δi,j . (73)

The matrix XA
j is unique up to the relabeling of A =

0, 1, . . . , N − 1. XA
j can be viewed as normalized one-

dimensional irreducible representations of the fusion al-
gebra, as observed in Eq (72). The factor XA

0 on the
RHS of Eq (72) normalizes XA

j to satisfy Eq. (73).

The matrix XA
j determines a set of orthonormal pro-

jections operators nAp at p:

nAp :=
∑
s

XA
s X

A
0 B̃sp, (74)
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satisfying

nAp n
B
p = δA,Bn

A
p ,

∑
A

nA = 1. (75)

These projection operators identify the particle species
A of the fluxons at p. Each nA projects onto the states
with A-type fluxon at p. There is a special fluxon type,
denoted by A = 0, corresponding to quantum dimensions
by X0

j = dj/
√
D. For A = 0, n0p = B̃p projects onto

states without any nontirvial fluxon at p, and thus we
say A = 0 is the trivial type. Each A comes with a

conjugate A∗ such that XA∗
j = XA

j , and we say A∗-type
fluxon is the antiparticle of A-type fluxon.

3. Twist

In additional to the charge q and the fluxon A, there
is another good quantum number, the twist, which arises
from exchange between q and A. For example, in the
Z2 gauge theory (toric code model), there are four types
of elementary quasiparticles: the trivial one 1, the Z2

charge e, the Z2 flux m, and the charge-flux composite
em. The twist of em is −1 because the wave function
acquires the Arharonov-Bohm phase −1 by exchanging
e and m twice(or equivalently, by winding e around m
once), which renders em the fermionic statistics.
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k1

q2//
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FIG. 12: (a) B̃sp creates a Wilson loop labeled by s; (b) the
twist Θvp of the charge q1 moves q1 around the plaquette.

We define twist as follows. Take the unit cell of a vertex
v and the plaquette p, and consider a dyon that carries
charge q and fluxon A. The idea of the twist is to wind
the charge q around the fluxon A at plaquette.

Start with the plaquette as in Fig.4(b), and consider
the dyon living at the unit cell of the vertex of q1 and
the plaquette. Suppose it carries the charge q1 and the
fluxon A. We shall construct the twist operator to move
the charge q1 around the plaquette. This operation is
similar to B̃sp which creates a Wilson loop labeled by s,
see Fig.12(a). However, the twist differ by moving q1
along an open path labeled by q1, with the open end
treated as the new tail, see Fig.12(b).

Define the twist by
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Θvp
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When the fluxon is trivial at plaquette p, Θvp becomes
the special twist Θv of the pure charge at v in Eq. (66).
Therefore Θvp takes the dyon around the entire unit cell
vp.

It turns out that twist Θvp is commutes with both Qqv
and Bsp and yields a good quantum number. A dyon
in an excitation |ψJ〉 is characterized by the three good
quantum numbers, the charge q, the fluxon A, and the
twist θJ , if

Qqv |ψJ〉 = |ψJ〉 ,
nAp |ψJ〉 = |ψJ〉 ,
Θvp |ψJ〉 = θJ |ψJ〉 .

(77)

Two dyons that carry the same charge q and the same
fluxon A may have different twists, because the twist
measures more information than the Wilson loop, see
Fig.12(a) and Fig.12(b). The Wilson loop Bsp acting of
the dyons is completely determined by the test charge s
and the fluxon A of the dyon. It creates a pair of charge s
and s∗, winds s around the fluxon A and then annihilate
s and s∗. The entire process gives rise to the Arhoranov-
Bohm phase XA

s /X
A
0 according to Eq. (74). The twist,

on the other hand, exchanges the charge q and the fluxon
A twice, and measures more information about the states
that is characterized by the twist θJ .

Although our discussion is restricted at a particular
plaquette in Fig.4(b), the definition of the twist Θvp is
valid on any unit cell of a vertex v and a plaquette p
(with v on the boundary of p).

B. Dyon-pair state

In this subsection, we study the lowest excitation on
sphere, the dyon-pair states. We shall study the three

•• v1v2
p1p2

(a)

oo
x

//
y

q
oo

p∗
oo

(b)

FIG. 13: (a) A circle with two two-valent vertices on the
sphere, with two vertices v1, v2 and two plaquettes p1, p2. (b)
Circle with two tails.

good quantum numbers qualitatively as well as quanti-
tatively.

Start with a circle on sphere with two two-valent ver-
tices, see Fig.13(a). The Hilbert space is spanned by the
for degrees of freedom on the circle with two tails, de-
noted by p∗, q, x, and y, see Fig.13(b). We use p∗ for the
future convenience.

We divide the space into two unit cells v1p1 and v2p2.
The excitations are classified by the two dyons living at
these two unit cells. The two dyons are always paired.

We shall explore the following properties of these dyon-
pair states in the section:

1. No single (nontrivial) dyon exists on a sphere.

2. If there is no (nontrivial) fluxon, the charges at v1
and v2 are opposite to each other.

3. Two fluxons at p1 and p2 are opposite to each other.

4. Two dyons have the same twist.

The charge projections at the two vertices v1, v2 are

Qq1v1 = δp∗,q1 , Qq2v2 = δq,q2 . (78)
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The fluxon projections at two plaquettes p1, p2 are

nAp1,2 =
∑
s

XA
s X

A
0 B̃sp1,2 , (79)

with B̃sp1,2 being

B̃sp1

∣∣∣∣∣
oo
x

//
y

q
oo p∗ oo

〉
=
∑
x′y′

vxvyvx′vy′G
q∗y∗x
s∗x′y′∗×

(
Rx
′
py′G

px∗y
s∗y′x′∗R

x
py

) ∣∣∣∣∣
oo

x′

//
y′

q
oo p∗ oo

〉
,

(80)

and

B̃sp2

∣∣∣∣∣
oo
x

//
y

q
oo p∗ oo

〉
=
∑
x′y′

vxvyvx′vy′G
pyx∗

s∗x′∗y′×

(
Rx
′∗
q∗y′∗G

q∗xy∗

s∗y′∗x′R
x∗
q∗y∗

) ∣∣∣∣∣
oo

x′

//
y′

q
oo p∗ oo

〉
.

(81)

Let us fix the fluxon A at p1, and consider the dyon-
pair states with charges p∗ at v1 and q at v2 fixed. Such
dyon-pair states are nAp1Qp

∗
v1Qqv2 = 1 eigenstates. The

total number of distinguished dyon pair states is then

NA
p,q =tr(nAp1Qpv1Qqv2)

=
∑
xys

dxdyXA
s X

A
0 G

q∗y∗x
s∗xy∗G

px∗y
s∗yx∗ ,

(82)

where in the second equality we used property that
RxpyR

x
py = δp∗xy∗ .

In non-abelian models, i.e., with |dj | > 1 for some
string type j, the charges p∗ and q may not match exactly
as p = q. However, there is some selection rule to pair p∗

and q, depending on the fluxon A.
We prove the properties as follows. When the fluxon

at p1 is trivial: A = 0, the dyon excitations are nA=0
p1 = 1

eigenstates. If we fix the charge p at v1 and q at v2, from
Eq. (82), the total number of possible states is

tr(nA=0
p1 Qpv1Qqv2) =

1

D

∑
xys

dxdydsG
q∗y∗x
s∗xy∗G

px∗y
s∗yx∗

=δp,q,

(83)

where in the second equality we used Eqs. (6) and (4).
If the charge p∗ at v1 is fixed, there exists one (and only
one) dyon excitations with charge charge at v2 being p.
This proves the property 2. In the particular case when
p = 0, then the only allowed state is the ground state,
and hence property 1 is proved.

Next we prove property 3. By definition of R matrix,
the expression in the bracket in Eq. (80) can be expressed
as (

Rx
′
py′G

px∗y
s∗y′x′∗R

x
py

)
= Gpyx

∗

sx′∗y′R
y′∗
y∗s∗R

x′
xs. (84)

We also rewrite the expression in the bracket in Eq. (81)

similarly, followed by the substitution Rx
′∗
x∗s = Rx

′
xs∗ and

Ry
′

ys∗ = Ry
′∗

y∗s. After substituting the formula in the
brackets, we find

B̃sp1 = B̃s∗p2 , (85)

which implies

nAp1 = nA
∗

p2 . (86)

If the dyon at v1p1 has fluxon A, then the fluxon of the
dyon at v2p2 must be the its anti-fluxon A∗.

It can be also proved that

Θv1p1 = Θv2p2 . (87)

with

Θv1,2p1,2

∣∣∣∣∣
oo
x

//
y

q
oo p∗ oo

〉

=
∑
y′

vxvy′G
q∗y∗x
pyy′∗

∣∣∣∣∣
oo
y

//
y′

q
oo p∗ oo

〉
.

(88)

The two dyons carry the same twists.
Elementary excitations are dyon-pair states. In each

pair the two dyons have the same twists, opposite fluxons.
The charges of two dyons may not match exactly, but
satisfy some constraint that depends on the fluxon.

An elementary excitation is given by an simultaneous

eigenvector ψ of Qp
∗

1 , Qq2, nA1,2 and Θ1,2 with eigenvalues
being the quantum numbers p∗, q, A, θ. They are given
by the half-braiding tensors

ψ

( oo
x

//
y

q′
oo p′∗ oo

)
= vxvyzJp∗xq∗yδpp′δqq′ , (89)

for some quantum double label J , where p∗ and q are
fixed charges that two dyons carry.

Each quantum double label J is parameterized by
fluxon type A and the twist θ.

In a special case, the ground state is

|Φ〉 =
∑
x

dx√
D

∣∣∣∣∣
oo
x

//
x

0
oo 0 oo

〉
. (90)

C. Creation, annihilation, and string operators

The properties of dyon-pair states analyzed in the pre-
vious subsection hold on a generic graph. To see this,
here we shall consider the creation and annihilation op-
erators of dyons and string operators, in the setting of an
R-matrix. This will enable us to generate all elementary
excitations from a ground state.
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1. Charge string operators

We first study the pure charge case. Recall the ground
states are the simultaneous Qv = 1 and Bp = 1 eigen-
states. In the Q = 1 subspace, all tails are labeled by
the trivial string type q = 0. As above, we draw the

dotted line to present the trivial label 0 for convenience.
In the following we give an explicit formula for creation
operator that in terms of the R matrix.

In the Q = 1 subspace the creation operator that cre-
ates a pair of charges at the two ending vertices of an
edge e by

W q
e

∣∣∣∣∣
$$

l1

��l6
��l6

0//

zz

l5

dd

l4

OOl3

OOl3
0//

::
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zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

��

��

��

j2

j2

j2

0//

0//
〉

=
∑
j′2

vj′2
vj2

∣∣∣∣∣
$$

l1

��l6
��l6

0//

zz

l5

dd

l4

OOl3

OOl3
0//

::

l2

zz
j1

dd
j6

OO

OO

OO

j5

j5

j5

0//

0//

::

j4
$$

j3

��

��

��

j2

j′2

j2

q∗//

q//
〉
. (91)

Here e denote the left boundary edge of the plaquette.
The resulting state is an pair of charges, q at the top
vertex, and q∗ at the bottom vertex.

The operator W q
e is normalized as follows:

〈ψ|W q
e
†W q

e |ψ〉 = dq 〈ψ|ψ〉 . (92)

If the two tails on the edge e are not on the same side,
W q
e is defined up to a basis transformation µ or ν acting

on Eq. (91). For example,

W q
e

∣∣∣∣∣
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0 oo
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〉
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Rj2q∗j′∗2
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q∗ oo

q//
〉
. (93)

In cases where R-matrix exists, each charge q0 itself
forms a dyon species with trivial fluxon type. The corre-
sponding half braiding tensor is

zJ=q0pkqt = δp,q0δq,q0R
t
q0k. (94)

Eq. (93) is a special case of Eq. (38). In general, without
a R matrix, a charge does not form a dyon species.

If there are nontrivial charge already present inside the
plaquette, W q

e is defined by

W q
e
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(95)
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which creates two charges: q at the upper left vertex and
q∗ at the lower left vertex. The operator W q

e in Eq. (95)
is unitary. One sees that when q1 = 0 and q2 = 0, Eq.
(91) is recovered.

The operator W q
e can be used to recover some of the

previously defined operators. In particular, the charge fu-
sion operator define in Eq. (50) is equal to Q2

∑
q dqW

q
e .

Also, the special case when q1 = q∗2 = q in Eq. (95) then

Q1Q2

∑
q′ dq′W

q′
e is equal to charge annihilation opera-

tor define in Eq. (41).
The above shows that the hopping operator defined in

Sec. V E can be express in terms of the R matrix. Also,
the operators in this subsection allow us to define the
string operators completely in terms of R matrix.

2. Fluxon string operator

In this subsection, we study the string operators for
pure fluxons that carry no charge. We restrict to the
Q = 1 subspace.

We define the creation operator WA
e on an edge e by

WA
e

∣∣∣∣∣ OOje //
//

cc;;

OO
//

//

cc ;; cc ;;

OO
//

//

cc;; 〉
:=

XA
0 X

A
je

X0
0X

0
je

∣∣∣∣∣ OOje //
//

cc;;

OO
//

//

cc ;; cc ;;

OO
//

//

cc;; 〉
. (96)

It is diagonal in the matrix form. Only two plaquettes
are shown, assuming the rest of the graph is unaffected.
The definition holds for arbitrary shaped plaquettes.

The operator WA
e generate a fluxon-pair state from

any ground state |Φ〉, with fluxon A∗ on p1 and A on p2,
where p1 is plaquette left to the edge e and p2 right to e:

nBp1W
A
e |Φ〉 = δA∗,BW

A
e |Φ〉

nBp2W
A
e |Φ〉 = δA,BW

A
e |Φ〉

nBp′W
A
e |Φ〉 = δB,0W

A
e |Φ〉 . (97)

These properties can be proved using the conditions (6)
on 6j-symbols.

The definition of WA
e does not depend on the direction

of the edge e. In fact, if we reverse the direction of e,
je in Eq. (96) is replaced by j∗e . XA

j∗e
= XA∗

je
implies

WA
e = WA∗

e−1 , where e and e−1 are the same edge with

opposite direction. Both WA
e and WA∗

e−1 create the same
fluxon pairs across the edge, see Fig.14.

From Eq. (96), W 0
e is the identity operator when

A = 0, as creating a trivial fluxon pair does nothing.
The hermitian of WA

e creates a conjugate pair of fluxons

because XA∗
j = XA

j :

WA∗
e = WA

e

†
. (98)

In general (non-abelian case, i.e., with |dj | > 1 for
some j in the input data), even a pure fluxon carries
charges. The operator WA

e is a special case of a generic
fluxon creation operator W J=A;00

e with quantum double
label J = A and with trivial charges at both ends.

• •
00 OO
22 22

A

(a)WA
e |Φ〉

• •
00 ��
22 22

A

(b)WA∗
e−1

FIG. 14: Fluxon-pair state WA
e |Φ〉 generated from a ground

state |Φ〉. The creation operator does not depend on the edge
direction. The fluxon-pair state WA

e |Φ〉 in (a) is the same as

WA∗
e−1 |Φ〉 in (b).
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FIG. 15: (a) Three neighboring plaquettes around a trivalent
vertex. (b) Create two fluxon pairs across the edge e2 and
e3. (c) Annihilate fluxons at p1 by n0

p1 . (d) The final fluxon-
pair state in (c) is equal to that obtained by directly creating
a fluxon pair across edge e1. This implies n0

p1W
A
e2 is path

independent, and thus is a hopping operator of fluxon A at
p1.

In the following we show how to annihilate and hop
fluxons in the absence of charge at the plaquette.

Let us start with a ground state |Φ〉, and consider a
trivalent vertex and its three neighboring plaquettes p0,
p1 and p2, see Fig.15(a). In the following, we suppress
WA
ei by WA

i for i = 1, 2, 3.

In Fig.15(b), WA
2 creates a A∗–A fluxon pair at p0 and

p1, while WA
3 creates a A∗–A fluxon pair at p1 and p2.

Now p1 is occupied by two fluxons, A from WA
2 , and

A∗ from WA
3 . The resulting state may no longer be an

eigenstate of certain nBp1 , because A and A∗ may couple to

more than one types of fluxons. The operatorWA
3 W

A
2 |Φ〉

can be decomposed by the orthonormal projections nBp1 .

The operator nBp1 projects onto the state nBp1W
A
3 W

A
2 |Φ〉

with only B-fluxon at p1.
Particularly, n0p1 kills any nontrivial fluxon at p1. In

the above example, n0p1 projects onto a fluxon-pair state,

with A∗ at p0 and A at p2. In this killing process, n0p1
plays the role of annihilation operator. The annihilation
can occur only if the two fluxons at p1 are antiparticles
of each other.

The above process is also a hopping process, in which
the hopping operator n0p1W

A
3 moves the fluxon A from p1
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to p2. In this process, a A-fluxon is created at p2 while
a A-fluxon is annihilated at p1.

The hopping operator must satisfy some topological
property: hopping along two homotopic paths (without
any nontrivial quasiparticle enclosed by the two paths)
leads to the same final state. Consider again the above
example. We apply the hopping operator n0p1W

A
3 to the

fluxon pair state WA
2 |Φ〉, and obtain a fluxon pair state.

The path independence requires

n0p1W
A
3 W

A
2 |Φ〉 = WA

1 |Φ〉 , (99)

around any trivalent vertex. This property can be veri-
fied by using the conditions (6) on 6j-symbols.

The hopping operators induce a string operator that
creates a pair of fluxons far apart. We choose a path
along plaquettes p1, p2, . . . , and pn+1, going across edges
e1, e2, ..., and en, as illustrated below:

p1
OO

e1

p2
OO

e2

. . .
OO

en

pn+1. (100)

This is a string consisting of plaquettes. First we create a
fluxon pair on the neighboring plaquettes across e1, with
A∗-fluxon at p1 and A-fluxon at p2. Then we move the
A-fluxon to pn by a sequence of hopping operators, and
the final state is

n0pnW
A
en . . . n

0
p2W

A
e2W

A
e1 |Φ〉 . (101)

The two fluxons are at the starting plaquette p1 and the
ending plaquette pn+1 of the string. The string oper-
ator in Eq. (101) only depends on the two ends of the
string because of the path independence of the hopping
operator.

IX. EXAMPLES

There are many examples of input data for the models
considered in this paper. Including examples related to
the representations of finite groups, the group algebra of
finite groups, and the representations of q-deformed uni-
versal enveloping algebra of Lie algebras. In this section,
we discuss some typical examples of these three classes.

A. From finite group representations

Given a finite group H, Levin-Wen models admit two
different types of input data: from representations of H,
with labels identified as irreducible representations; and
from the group itself, with labels identified as group ele-
ments. We call the former the RepH model and the latter
the V ecH model.

In this subsection we consider several examples of mod-
els arising from representations of a finite group H. To
this end we now discuss a few general features in this
context.

The models are based on a tensor description of the
representation category RepH of H. String types j are
(representatives of) irreducible representations (ρj , Vj).
Quantum dimensions dj = αjdim(Vj) are equal to the
dimension of the representation space, multiplied by the
Frobenius-Schur indicator αj , which is 1 if the represen-
tation j is real or complex, and −1 if pseudo-real.

The fluxons are classified by the conjugacy classes.
Since the number of conjugacy classes is equal to the
number of irreducible representations, the number of
fluxons is equal to the number of charges, as expected
from the analysis in previous section.

Let {CA}A be the set of conjugacy classes of H indexed
by labels A. The fusion characters XA

j are just the usual
characters χj(A) for H (up to normalization factors):

XA
j =

√
|CA|
|H| χj(A)αj , (102)

where |H| is the order of H, and |CA| is the cardinality
of CA. Note that X0

0X
0
j = αjdim(Vj) = dj . The or-

thogonality relations (73) for XA
j result from those for

character functions.
The quantum double labels are classified by pairs

(A,µ), where A labels a conjugacy class of H, and µ is an
irreducible representation of the centralizer ZA = {g ∈
H|ghA = hAg}. Here hA is a arbitrary representative
element in CA but fixed once and for all.

1. Abelian group

Consider an abelian group H. All irreducible repre-
sentations are 1-dimensional, and hence dj = 1. The
6j-symbol is given by

Gijmkln = δijmδklm∗δjkn∗δinl. (103)

Each group element is itself a conjugacy class, so the
quantum double labels are pairs (g, µ) of group elements
and irreducible representations of H. Each dyon is a
charge-fluxon composite.

For example, let H = ZN , the quantum double charges
are (g, µ) for g, µ = 0, 1, . . . , N − 1 and the z tensors are

z
(g,µ)
pjqt = δp,µδq,µ exp(2πig/N)δpjt∗δjqt∗ , (104)

where δpjt∗ = 1 if p+ j − t = 0 mod N and 0 otherwise.

2. RepS3 model.

Consider the model arising from representations of S3.
The string types are the three irreducible representations
of the symmetry group S3, denoted by L = {0, 1, 2}. All
labels are self-dual, i.e., j∗ = j. The fusion rules are
given by δ000 = δ011 = δ022 = δ122 = δ222 = 1.
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The quantum dimension dj is the dimension of the
representation space Vj : d0 = d1 = 1 and d2 = 2. The
independent nonzero symmetrized 6j-symbols are

G000
000 = 1, G000

111 = 1, G000
222 =

1√
2
, G011

011 = 1, G011
222 =

1√
2
,

G022
022 =

1

2
, G022

122 =
1

2
, G022

222 =
1

2
, G122

122 =
1

2
, G122

222 = −1

2
.

(105)

All other nonzero 6j-symbols are obtained through the
tetrahedral symmetry in Eq. (6).

The nontrivial R matrix is R1
22 = −1.

There are three conjugacy classes, labeled by A =
0, 1, 2, with |CA| = 1, 2, 3 respectively. The fluxons are
classified by the three conjugacy classes, with the char-
acter table presented in Table I.

TABLE I: Character table of H = S3.

χj(A) CA=0 CA=1 CA=2

χj=0 1 1 1

χj=1 1 1 −1

χj=2 2 −1 0

There are 8 quantum double labels. Indeed, the cen-
tralizers for the three conjugacy classes are ZA=0 = S3,
ZA=1

∼= Z3, and ZA=2
∼= Z2. In total there are 8 ir-

reducible representations of ZA. We denote 8 quantum
double labels by J = 1, 2, . . . , 8.

We present dyon-pairs graphically by a string

• •p q
A , with fluxon A. All distinguished dyon-pair

states and the corresponding twists are enumerated in
Table II.

The properties developed in previous section can be
verified, e.g., the total number of dyon-pair states for
fixed A, p, q obey the counting formula in Eq. (82).

A = 0 • •0 0
A=0 θ1 = 1 • •1 1

A=0 θ2 = 1 • •2 2
A=0 θ3 = 1

A = 1 • •0 0
A=1

• •0 1
A=1

• •1 0
A=1

• •1 1
A=1

θ4 = 1 • •2 2
A=1 θ5 = exp( 2πi

3
) • •2 2

A=1 θ6 = exp(− 2πi
3

)

A = 2 • •0 0
A=2

• •0 2
A=2

• •2 0
A=2

• •2 2
A=2

θ7 = 1 • •1 1
A=2

• •1 2
A=2

• •2 1
A=2

• •2 2
A=2

θ8 = −1

TABLE II: 17 dyon-pair states in RepS3 model.

The explicit wavefunction for each dyon-pair is specified by the half-braiding tensors z:

z1pjqt = δp,0δq,0δj,t,

z2pjqt = δp,1δq,1

 0 1 0

1 0 0

0 0 −1


jt

,

z3pjqt = δp,2δq,2

 0 0 1

0 0 −1

1 −1 1


jt

,

z4pjqt = δp,0δq,0

 1 0 0

0 1 0

0 0 − 1
2


jt

+ δp,1δq,1

 0 1 0

1 0 0

0 0 1
2


jt

−
√
3
2 iδp,0δq,1δj,3δt,3 +

√
3
2 iδp,1δq,0δj,3δt,3,
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z5pjqt = δp,2δq,2

 0 0 1

0 0 −1

e−
2iπ
3 e

iπ
3 e

2iπ
3


jt

,

z6pjqt = δp,2δq,2

 0 0 1

0 0 −1

e
2iπ
3 e−

iπ
3 e−

2iπ
3


jt

,

z7pjqt = δp,0δq,0

 1 0 0

0 −1 0

0 0 0


jt

+ δp,2δq,2

 0 0 1

0 0 1

1 1 0


jt

+ δp,0δq,2δj,3δt,3 + δp,2δq,0δj,3δt,3,

z8pjqt = δp,1δq,1

 0 1 0

−1 0 0

0 0 0


jt

+ δp,2δq,2

 0 0 1

0 0 1

−1 −1 0


jt

+ iδp,1δq,2δj,3δt,3 + iδp,2δq,1δj,3δt,3.

B. Kitaev’s quantum double model

Here we consider the Levin-Wen model arising from a
finite group H itself. Set the string types to be group
elements: I = {h}h∈H , with h∗ = h−1. Set dh = 1, for
all h ∈ H and δghk = 1 if ghk = 1 and 0 otherwise. Set

Gijmkln = δijmδklm∗δjkn∗δinl. (106)

Hence vh = 1.
The model is identified with Kitaev’s quantum double

model on the dual triangulation graph. The local opera-
tors form a quantum double algebra D(H) of H.

Let bqk = Bk−1qk,k−1,k−1q for q, k ∈ H. The tube alge-
bra has the multiplication rule:

bprb
q
s =

1√
D
δp,rbr−1bprs, (107)

which recovers D(H).
The dyons in elementary excitations are determined

by solutions of Eq. (34). Fix q at the tail, set πqk =
Πq,k−1,k−1q for k ∈ Zq = {t ∈ H|tq = qt}. The
equation πqk =

∑
m∈Zq π

q
mπ

q
m−1k has the solution πqk =

dim(α)
|H| χ

q
α(k) given by the character of all irreducible rep-

resentations α of Zq.
The dyon species are identified by a pair (A,α) where

A is a label of a conjugacy class CA of H and α ∈
Irrep(Zq) for a representative element q in CA. The mod-
ular matrices are

S(A,α),(B,β) =
1

|H|
∑

g∈A,h∈B
gh=hg

χgα(h)χhβ(g), (108)

T(A,α),(B,β) = δABδαβ
χgα(g)

dimα
, for any g ∈ A. (109)

The above procedure also applies to the twisted quan-
tum double case. For finite group H and a 3-cocycle ω in

H3(H,U(1)), setting the 6j-symbol to be ω identifies the
corresponding LW model with the twisted quantum dou-
ble model27. (The tetrahedral symmetry of 6j-symbol
may be violated, which could be fixed by introducing
an ordering of triangulation.) The tube algebra becomes
the twisted quantum double algebra Dω(H). We will not
discuss the details in this paper.

Both RepH model and the quantum double model have
excitations classified by the same quantum double labels
(A,α). This reveals an electric-magnetic (EM) duality:
the former support quasiparticles of charges at vertices
and fluxons at plaquettes while the latter support charges
at plaquettes and fluxons at vertices. We will discuss EM
duality in section X in more detail.

C. From modular category

For a braided model with input data {d, δ, G,R}, as in
Sec. VIII, defines the S matrix

Sab =
∑
c

dcR
c
abR

c
ba. (110)

If S matrix is invertible, the input data is a tensor de-
scription of a unitary modular category. The quantum
double classification is quite simple in this case.

The quantum double labels are pairs denoted by ij,
with quantum dimension

dij = didj . (111)

The fluxon type of ij is j. In particular, pure fluxons are
jj.

The half-braiding tensors are

zijpjqt =
∑
ab

dadbR
a
ikR

b
jkG

a∗ik
bj∗tG

ijq∗

t∗ka∗G
ibt∗
k∗p∗j∗ . (112)
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The S matrix for the quantum double labels are

Sij,kl = SikSjl, (113)

and the twist is

θij = R0
jj∗/R

0
ii∗ . (114)

Modular categories can be derived from representa-
tions of the quantum group Uq (su(2)) (called the quan-
tum universal enveloping algebra of su(2)). When q
is taken to be a primitive root of unity, Uq(su(2)) has
finitely many irreducible representations with nonzero
quantum dimensions, which lead to symmetric 6j-
symbols. An efficient way to construct this data is
through the Jone-Wentzl projectors in Temperley-Lieb
algebra (see ref7 for example). Examples include semion,
Fibonacci, and Ising data, which we discuss now.

1. Doubled semion model

Semion data can be obtained at the q-deformation pa-
rameter q = exp(πi/3). String types are L = {0, 1}
(sometimes denoted by {1, s}), with quantum dimensions
d0 = 1 and d1 = −1. It has the same fusion rule δ110 = 1
as that of the group Z2 representation theory.

The nonzero symmetric 6j-symbols are

G000
000 = 1, G000

111 = i, G011
011 = −1. (115)

The other nonzero 6j-symbols are obtained through the
tetrahedral symmetry.

The nontrivial R matrix is R0
11 = i.

There are four quantum double labels: 00, 01, 10, 11,
called boson, semion, anti-semion, and doubled semion.
The S matrix is

S =


1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1 1 1 1

 . (116)

The twists are 1, i,−i, 1.

2. Double Fibonacci model

Fibonacci data can be obtained at the q-deformation
parameter q = − exp(πi/5).

The string types are L = {0, 2}, sometimes denoted by

{1, τ}. Let φ = 1+
√
5

2 be the golden ratio. The quantum
dimensions of 0, 2 are d0 = 1 and d2 = φ.

The fusion rules are

δ000 = δ022 = δ222 = 1, δ002 = 0 (117)

and the nonzero 6j-symbols G are given by

G000
000 = 1, G022

022 = G022
222 = 1/φ,

G000
222 = 1/

√
φ,G222

222 = −1/φ2. (118)

The other nonzero symmetrized 6j-symbols are ob-
tained through the tetrahedral symmetry. The non-
trivial R matrices are R0

22 = exp(−4πi/5) and R2
22 =

exp(3πi/5).

The four quantum double labels are 00, 02, 20, 22. The
S matrix is

S =


1 φ φ φ2

φ −1 φ2 −φ
φ φ2 −1 −φ
φ2 −φ −φ 1

 . (119)

The twists for the labels 00, 02, 20 and 22 are
1, exp(4πi/5), exp(−4πi/5) and 1, respectively.

3. Doubled Ising model

Ising data can be obtained at the q-deformation pa-
rameter q = exp(3πi/4).

The string types are L = {0, 1, 2}, sometimes denoted
by {1, σ, ψ}. The quantum dimensions are d0 = 1,d1 =√

2 and d2 = 1.

The fusion rules are

δ000 = 1, δ011 = 1, δ022 = 1, δ112 = 1, (120)

and the nonzero 6j-symbols G are given by

G000
000 = 1, G000

111 =
1
4
√

2
, G000

222 = 1, G011
011 =

1√
2
,

G011
122 =

1
4
√

2
, G011

211 =
1√
2
, G022

022 = 1, G112
112 = − 1√

2
.

(121)

The other nonzero symmetrized 6j-symbols are ob-
tained through the tetrahedral symmetry. The nontrivial
R matrices are

R0
22 = −1, R1

21 = −i, R0
11 = exp(−πi/8), R2

11 = exp(3πi/8).
(122)

There are nine quantum double labels: 00, 01, 02, 10,
11, 12, 20, 21, and 22. The S matrix is

1
√

2 1
√

2 2
√

2 1
√

2 1√
2 0 −

√
2 2 0 −2

√
2 0 −

√
2

1 −
√

2 1
√

2 −2
√

2 1 −
√

2 1√
2 2

√
2 0 0 0 −

√
2 −2 −

√
2

2 0 −2 0 0 0 −2 0 2√
2 −2

√
2 0 0 0 −

√
2 2 −

√
2

1
√

2 1 −
√

2 −2 −
√

2 1
√

2 1√
2 0 −

√
2 −2 0 2

√
2 0 −

√
2

1 −
√

2 1 −
√

2 2 −
√

2 1 −
√

2 1


.

(123)
The twist is determined by R matrix.
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X. ELECTRIC-MAGNETIC DUALITY IN
TOPOLOGICAL THEORY WITH FINITE

GAUGE GROUPS

Here we give a consequence of our results in the context
of electric-magnetic duality in topological gauge theory
with a finite (gauge) group H, which has been proposed
and studied in30,31.

For an arbitrary finite group H, there is a procedure29

to derive its unitary symmetric 6j-symbols equipped with
an R matrix, which can be used as the LW input data to
construct the RepH model, see Sec. IX A. On the other
hand, we can define a V ecH model on the same trivalent
graph, denoted by Γ. This V ecH can be identified with
Kitaev’s quantum double model with H defined on a tri-
angulation – the dual graph of Γ. As discussed in the
previous section, in the RepH model, fluxons at plaque-
ttes of Γ are labeled by conjugacy classes A of H, and
charges at vertices (of Γ) by irreducible representations
of H. In the V ecH model, charges at triangular plaque-
ttes of the triangulation are labeled by conjugacy classes
A, while fluxons at vertices (of the triangulation) by irre-
ducible representations of H. In terms of local operators,
B̃p (and Qv) in the RepH model can be identified with
Qv (and Bp, rep.) in the V ecH model.

This gives rise to an electric-magnetic transforma-
tion (EMT) between these two models30. The electric-
magnetic duality asserts that the two models connected
by the EMT are actually equivalent to each other31.

Since the existence of a transformation in general does
not imply the existence of a corresponding symmetry or
invariance, the validity of EMD is much stronger than
the existence of EMT. Well-known examples in quan-
tum field theory include spontaneous symmetry break-
ing and non-abelian gauge anomaly in quantized chiral
gauge theory32. Namely, one needs to check that the
EMD in topological gauge theory is not violated by sym-
metry breaking or global excitations. Even if sometimes
the arguments for the EMD is intuitively simple, the con-
crete checks for exact duality may be highly nontrivial.
Here we provide two concrete checks for the EMD be-
tween the RepH model and the V ecH model.

Our first check is to verify that the Hilbert space of the
two models connected by the EMT has the same dimen-
sion. Certainly this is a necessary condition for the two
models to be equivalent to each other. We slightly extend
the RepH model by enriching its Hilbert space again at
each tail. To each vertex v we associate a tail labeled
by qv and a matrix index mv of representation qv, which
take values 1, 2, . . . ,dimqv . (Recall dim(qv) = αqvdqv .)
Define the Hamiltonian by

H = −
∑
v

Qv −
∑
p

B̃p, (124)

where B̃p is defined in Eq. (68). The operators Qv and

B̃ will not affect mv. We still call this slightly extended
model a RepH model. The Hilbert space is illustrated in
Fig.16(a).

q10m10

q11m11

q12m12

q1m1

q2m2

q3m3

q4m4

q5m5

q6m6

q7m7

q8m8

q9m9

(a)

(b)

FIG. 16: (a). The Hilbert space for RepH model on trivalent
graph Γ, with each tail labeled by qv,mv. (b) The Hilbert
space for V ecH model on the triangulation (solid line) dual
to Γ, with local Hilbert space C[H] on each edge.

The V ecH model is identified with Kitaev’s quantum
double model with H. The Hilbert space is spanned by
group elements in H at all edges in the triangulation. See
Fig.16(b).

The Hilbert space of two models has the same dimen-
sion. To see this, we look at local Hilbert space Hv at
each vertex. It has basis {|i, j, k, l, q,m〉}, labeling the
following diagram

i

j k

l qm
//

<<

��

��

bb

,

where i, j, k are labels on three incoming edges, and
l, q,m the enriched charge degrees of freedom. Note that
there is exactly one tail to each vertex. The dimension
of Hv is

dim(Hv) =
∑
l,q∈L

δjklδil∗q∗dq = didjdk. (125)

Therefore, effectively the local Hilbert space at each edge
e labeled by je has dimension d2

je
. By a theorem for the

order (number of elements, or dimension of the group
algebra) of a finite group, the local Hilbert space at each
edge has dimension

∑
j d2

j = |H|. This gives the same
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dimension of the Hilbert space of the V ecH model on the
triangulation. In fact, there is a duality transformation
between the two models

HRepH

=
⊕
{j}

⊗
v

Hv

=
⊕
{j}

⊗
v

Hom
 ⊗

e:into v
e′:out of v

Vje ⊗ Vje′ , Vqv

⊗ Vqv


→
⊕
{j}

⊗
v

 ⊗
e:into v
e′:out of v

Vje ⊗ Vje′


=
⊕
{j}

⊗
e

(
Vje ⊗ V ∗je

)
=
⊗
e

⊕
je

(
Vje ⊗ V ∗je

)
→
⊗
e

C[H] = HV ecH .

(126)
with the summation {j} over labels on all edges on
graph Γ (or on the triangulation), and Vj for represen-
tation space of j. The map on the 4th line is an iso-
morphism composing two Wigner’s 3j-symbols or the
Clebsch-Gordan coefficients that decomposes the tensor
product of two representations. The map on the last
line is a generalized Fourier transformation (i.e. the
Peter-Weyl theorem) between two bases of C[H], from∣∣∣ρjαβ〉

αβ=1,...,dj
to |h〉h∈H .

Our second check is about the spectrum of the models.
The equality of the ground state degeneracy in the RepH
and V ecH models has been verified in, e.g.,15. With our
quantum double classification of quasiparticle excitations
in the RepH model, we are able to check the equivalence
of the two models at the level of quasiparticle excita-
tion species. Previously it is known that in the V ecH
model (Kitaev’s quantum double model) it is the quan-
tum double of the finite group H that classifies the ele-
mentary excitations4. In this paper we have shown that
the RepH model (or the LW model with input data from
finite group H) accommodates dyon excitations classified
by the quantum double of H. So the two models have
the same excitation spectrum in their quantum numbers
and energy levels. This is certainly a highly nontrivial
check for the electric-magnetic duality between the two
models.

XI. RELATION TO TOPOLOGICAL QUANTUM
FIELD THEORY

Levin-Wen model is viewed as a Hamiltonian ap-
proach to Turaev-Viro topological quantum field theory

(TQFT). The topological observables in the former are
related to topological invariant of 3-manifolds.

A. GSD and Turaev-Viro TQFT

We first consider zero temperature case. We denote the
input data {d, δ, G} by a unitary fusion category C that
derives them. The zero temperature partition function of
Levin-Wen models on surface Σ equals the ground state
degeneracy (GSD). The GSD is is related to Turaev-Viro
invariant – a topological invariant for 3-manifold defined
below – by

GSDC(Σ) = τTV
C (Σ× S1). (127)

We first define τTV
C and then sketch the proof.

Given C and a compact oriented 3-manifold M , we con-
struct the number τTV

C (M) as follows. Any 3-manifold M
has a triangulation, i.e., can be discretized into tetrahe-
dral. We choose an arbitrary one, and the desired number
will be triangulation independent.

1. Assign labels to all edges.

2. Assign 6j-symbols to all tetrahedral as follows.
Due to tetrahedral symmetry in Eq. (6), such 6j-
symbols do not change under rotation of tetrahe-
dral.

  

i
66

j

oo
m

YY k��l

LL n ⇒ Gijmkln . (128)

3. Assign quantum dimensions dj to all edges labeled
by j.

4. Assign 1/D to each vertex (in the triangulation).

5. Multiply all the quantities in step 2 - 4, and take
the product over tetrahedral, edges, and vertices of
these numbers.

6. Sum over all labels.

We get

τTV
C (M) =

∑
labels

∏
vertices

1

D

∏
edges

d
∏

tetrehedra

(6j-symbols).

(129)
This number does not depend on choices of triangula-

tion.
Now we sketch the proof in Eq. (127). The ground

states are
∏
pBp = 1 eigenvectors. Hence GSD =

tr(
∏
pBp). To relate the trace to τTV

C , we first write
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down the dual triangulation of the trivalent graph as fol-
lows.

""j5
|| j6

OOj4

oo
j3
GG j2��j1 ⇒

��j5 [[ j6

//

j4

OO j3

))
j2

uu
j1 (130)

Eq. (12) becomes〈
��j5 [[ j6

//

j4

OOj′3
))
j′2uu

j′1

∣∣∣∣∣Bsp
∣∣∣∣∣ ��j5 [[ j6

//

j4

OOj3

))
j2uu

j1

〉
=vj1vj2vj3vj′1vj′2vj′3G

j5j
∗
1 j3

sj′3j
′∗
1
G
j4j
∗
2 j1

sj′1j
′∗
2
G
j6j
∗
3 j2

sj′2j
′∗
3
. (131)

It can presented by three tetrahedral as follows. The top
three triangles are those in the bra of above equation and
the three bottom ones are in the ket.

��j5 ^^
j6

//
j4

SS j3

))

j2
uu
j1

qq
j′3

��
j′2��

j′1
II s

This identification with Bsp leads to tr(
∏
pB

s
p) =

τTV
C (Σ× S1).

B. Excitations and the extended Turaev-Viro
invariant

In this subsection we will explain how the excitation
in the above model are related to an extension of the
Turaev-Viro invariant to manifolds containing links de-
fined by Turaev and Virelizier33.

Here we continue using the conventions of the last sub-
section. Let Z(C) be the quantum double category asso-
ciated to C. As mentioned above a minimal solution to
Equation (35) is identified with a quantum double ele-
ment J . Let L be a link in Σ×S1 whose components are
labeled with such quantum double elements.

In33, the Turaev-Viro invariant is extended to Z(C)-
colored links and in particular, defines an invariant of
the pair (Σ×S1, L). In this work the invariant is defined
using skeleton which are 2-polyhedron with certain prop-
erties. Taking the dual of a triangulation gives a skeleton.
A link in a skeleton is a collection of loops immersed in
the 2-dimensional simplices of the skeleton with certain
transversality conditions. A quantum double label J and
its associated half braiding zJ can be used to define a new
symbol similar to a 6j-symbol, see33. The extended T-V
invariant is defined in a similar way to the T-V invariant
outlined above: First, a skeleton of (Σ × S1, L) can be
decomposed into building blocks (which are analogous to
tetrahedron). Each face is assigned a label (here the a
face of the skeleton is dual to an edge in the triangu-
lation). Each building block correspond to a 6j-symbol

or a new symbol coming from the quantum double la-
bels of the link. As in Eq. (129), the extended invariant
is obtained by taking a weighted sum over all possible
labelings of the product of these symbols.

The model given in this paper is a Hamiltonian realiza-
tion of the extended T-V invariant. As outlined below,
the link L in Σ× S1 can be associated with an operator
fL which is a composition of certain operators given in
Section V. (Note fL is not unique.)

For simplicity, let us first describe the situation when
Σ = S2. In Fig.17(a), the bottom plate presents an ini-
tial state with two dots presenting dyons. The top plate
presents a final state. The operator fL is defined by com-
posing certain creation and annihilation operators and
charge contractions, with the composition order coincid-
ing with the time direction in the figure and determined
by the topology of L. Since the string operator is path
independent, fL only depends on the topology of the tan-
gle, i.e. the portion of the link between the two plates.
The operator fL is parameterized by charges at the ends
of strings on top and bottom plates.

We require that the closer along S1 of the tangle un-
derlying fL is the link L, see Fig.17(c). When the link is
contained in a 3-ball the closer is trivial and the tangle
can be chosen to be the link. For example, when L is the
Hopf link HJ,K in a 3-ball in Σ× S1 whose components
are labeled with J and K then fL is the composition of
the operators described in Figure 8.

In general, Σ 6= S2 and L may not be in a 3-ball.
The description of fL in such a situation involves the
topology of Σ and/or a nontrivial closer of the tangle
along S1. However, since the operators are all local, fL
can be described by a similar process as above.

The extended Turaev-Viro invariant τTV
C associated to

C is equal to the Reshitkhin-Turaev invariant τRTZ(C)(Σ ×
S1, L) associated to the quantum double category Z(C),
see33. The R-T invariant is defined by representing the
3-manifold by surgery on some framed link K in S3 then
applying certain quantum invariants coming from Z(C)
to the link K ∪ L. Thus in the definition of the R-T
invariant one does not have to work with trivalent graphs
but the evaluation of certain link invariants.

An argument similar to the one in the last section
shows that

tr(fL) = τTV
C (Σ× S1, L) = τRTZ(C)(Σ× S1, L). (132)

The above trace is taken in the Hilbert space and is the
sum over all charges on the open strings. This trace can
be viewed as a charge contraction in the time direction,
and connects all open strings in Fig.17(a) to a closed link
in Fig.17(c). In the case of ground states i.e. when L is
trivial Eq. (132) is just Eq. (127).

In particular, when the link L is trivial, fL =
∏
p Bp

is the ground state projection operator, and Eq. (132)
recovers Eq. (127) as a special example.
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FIG. 17: (a) A tangle representing fL, which is the creation
of a dyon-pair from a ground state. (b) Illustration of gluing
dots along S1. (c) Closure of underlying topological object is
L.

XII. CONCLUSIONS AND DISCUSSIONS

In this paper we have studied how to describe the full
spectrum of dyon excitations in the extended Levin-Wen
models. Previously it was known that in the LW mod-
els, fusion of two pure fluxons generally may lead to the
appearance of charge d.o.f. To incorporate the latter ex-
plicitly, we enlarge the Hilbert space by introducing a
tail (labeled by a string type) at one of the edges of each
vertex, and modified the LW Hamiltonian accordingly.
Though we have to deal with new configurations with an
extra tail at each vertex, in this approach we have been
able to achieve the following:

(1) In our extended Hilbert space with enriched d.o.f.
for charge at vertices, we are able to study the proper-
ties of charge and fluxon-type of dyon excitations, and
in particular their interplay through the twist operation.
We have shown that one needs three quantum numbers
– charge, fluxon-type and twist – to describe the dyon
species for elementary excitations, or the total dyonic
quantum numbers of excitations localized in a region
“surrounded by vacuum”. We emphasize the necessity
of introducing the twist, as the third quantum number
beyond the charge and fluxon-type, for a complete de-
scription of a dyon species.

(2) The above conclusions are obtained by studying
the operator algebra formed by local operators and its

irreducible representations (simple modules). We have
shown that all local plaquette operators preserving topo-
logical symmetry, i.e. invariant under Pachner moves
form the so-called Tube algebra. The latter is a general-
ization of usual Bsp operators in the LW models; in fact,
the operators Bsp form a subalgebra of the Tube algebra.

(3) String operators can be realized as linear maps on
the extended Hilbert space. Irreducible representations
(simple modules) of the Tube algebra are shown to be
in one-to-one correspondence with the half-braiding ten-
sors that are used to define string operators19,25. In this
way, we establish that the Tube algebra and string op-
erators are dual to each other by a (generalized) Fourier
transformation. On the other hand, half-braiding tensors
are ingredients to define the quantum double (the center)
category of the input unitary fusion category. So we con-
clude that the quantum numbers of dyon excitations are
organized by irreducible representations of the Tube al-
gebra, or equivalently by the quantum double category,
as the center of the input unitary fusion category of the
LW model. Twist is a property necessarily associated
with the quantum double category.

(4) Realizing string operators, as linear maps over the
extended Hilbert space enables us to obtain not only the
S, T matrices, but also the braid group representations
for dyons. This knowledge is important for describing
emergent braid statistics of dyon excitations28 and, there-
fore, will play a crucial role in designing quantum com-
putation codes that exploit manipulation of excitations
in the topological phases.

(5) We can systematically construct explicit
states/wavefunctions with given quantum numbers.
This enables one to study more physically interesting
quantities, such as entropy, entanglement entropy etc,
and to design quantum computation algorithm based on
manipulation of the non-abelian anyonic quasiparticles.

(6) A consequence of our results is that the Kitaev
quantum double model (the Toric Code model) associ-
ated with a finite group on a triangulation and the (ex-
tended) LW model with input data from the same fi-
nite group has the exactly same dyon excitation spec-
trum, characterized by the same quantum double cat-
egory. This provides a strong check/test/eveidence for
the electric-magnetic duality between the two models,
not only for ground states but also at the level of the full
excitation spectrum.

As for the physical consequences, one may naturally
ask whether our extended string-net models, with the
enlarged Hilbert space and modified Hamiltonian, could
give rise to new topological phases? To answer this ques-
tion we note that when all the tails (labeled by a string
type), that we have added at one of the edges of each
vertex, are labeled by the trivial type 0, the states in our
extended Hilbert space are restricted to the un-enlarged
Levin-Wen Hilbert space, and our modified Hamiltonian
reduces to the LW Hamiltonian as well. So the subspace
of degenerate ground states in our extended string-net
model are the same as that in the LW model. There-
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fore we assert that at zero temperature, our extended
string-net model does not give rise to new classes of topo-
logical phases beyond the quantum double model or the
LW string-net model. On the other hand, with our ex-
tension of the string-net models we have been able to
achieve a proper and complete treatment of the excited
states, resulting in a better understanding of the excita-
tion spectrum, especially of the charged or dyonic excita-
tions, above the string-net ground states. Such a treat-
ment is lack and improbable in the original LW model,
because it lacks the labels for charged degrees of freedom
at the vertices. Hence our extension could give a differ-
ent perspective, from the original LW model, about the
properties, phases and, possibly, phase transitions of the
system at finite temperatures involving charged or dyonic
excitations. We would like to come back to address these
issues in the future.

There are some future directions. One is how
to develop similar approach to solve discrete 3+1D
models36–38 for topological phases. The observable al-
gebra (of local operators that commute with the Hamil-
tonian, which is the Tube algebra in 2+1D case) will be
expanded due to the extra dimension. Another direc-
tion is experimental design of quantum simulations34,35

of string-net excitations using the anyon manipulation
operators proposed in this paper.

Finally we want to emphasize the following point. One
may add more terms into the LW Hamiltonian, which
may not commute with the existing two terms. When
the coupling strengths of these additional terms are suf-
ficiently small, we expect that the model remains in
the same topological phase, with the energy levels of
the many-body states getting shifted, provided there is
no level crossing between the ground states and excited
states. With such more general Hamiltonians, we be-
lieve that the quantum double category or the pertinent
Tube algebra of local operators we have obtained for the
LW model still provides a “complete basis” for many-
body excitation states in the enlarged Hilbert space and,

therefore, could still be useful. For example, we may use
this “basis” to formulate/compute perturbation theory
corrections for elementary excitations.
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Appendix A: Some properties of quantum double

The quantum double category is characterized by the
half-braiding tensors z. We list some properties and sym-
metry conditions on z.

Orthonormal relation:∑
l

zJljqt z
J
ljpt = δpqδjpt∗ ,∑

l

zJqjlt z
J
pjlt = δpqδpjt∗ , (A1)

zJpjqt satisfies the symmetry conditions

zJpjqt =
∑
r

drG
j∗pr∗

jq∗t zJqj∗pr (A2)

zJqj∗pr =
∑
t

dtG
jrp∗

jt∗q z
J
pjqt, (A3)

where the second condition is a consequence of the first
one together wit the orthogonality relation (6).
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