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Understanding the pseudogap phase in hole-doped high temperature cuprate superconductors
remains a central challenge in condensed matter physics. From a host of recent experiments there
is now compelling evidence of translational symmetry breaking charge density wave (CDW) order
in a wide range of doping inside this phase. Two distinct types of incommensurate charge order –
bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the
upper critical field Hc2 – have been reported so far in approximately the same doping range between
p ' 0.08 and p ' 0.16. In concurrent developments, recent high field Hall experiments have also
revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase,
namely, a sign change of the Hall coefficient to negative values at low temperatures at intermediate
range of hole doping and a rapid suppression of the positive Hall number without change in sign
near optimal doping p ∼ 0.19. We show that the assumption of a unidirectional incommensurate
CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal
doping and a coexistence of both types of orders of approximately equal magnitude at high magnetic
fields at intermediate range of doping may help explain the striking behavior of low temperature
Hall effect in the entire pseudogap phase.

I. INTRODUCTION

The parent compounds of high-Tc copper oxide super-
conductors at half-filling (hole doping p ' 0) are antifer-
romagnetic Mott insulators. At high hole doping p & 0.2
the electrons form a fairly conventional metallic state
with the Fermi surface given by a large hole-like cylinder
with a carrier density nc ' 1 + p. The pseudogap phase
in the intermediate range of hole doping which connects
the antiferromagnetic Mott insulator at low p with the
metallic state at large p remains a central puzzle in the
physics of hole-doped cuprate superconductors1,2. In at-
tempts to demystify the physics in the pseudogap regime,
recent measurements of high field (∼ Hc2) and low tem-
perature Hall number in YBCO and other cuprate su-
perconductors as a function of hole doping have revealed
signatures of a Fermi surface reconstruction near opti-
mal doping ∼ p∗ ∼ 0.193–8. Badoux et al.6 has recently
reported a rapid drop of high field and low temperature
positive Hall number with decreasing doping via a quan-
tum phase transition (QPT) or a sharp crossover near op-
timal doping p = p∗ ∼ 0.19. Since the zero-temperature
Hall number nH = 1/RH = σxxσyy/σxy = nce/B where
RH is the Hall constant and the last equality is for con-
ventional Drude theory with nc the carrier density and B
the applied magnetic field, it provides information about
the volume enclosed by the Fermi surface - i.e. is equiv-
alent to the electronic density per unit cell of the crys-
tal. Therefore, a drastic drop in nH below optimal dop-
ing possibly indicates a drastic reconstruction of a large
Fermi surface enclosing a volume corresponding to a den-
sity nc ' 1 + p of holes at large doping, to small pockets
with a volume corresponding to a hole-density p in the
underdoped regime. Remarkably, at lower doping val-
ues for moderately underdoped cuprates, the high-field,

low-temperature, Hall and Seebeck coefficients turn neg-
ative, indicating a second reconstruction of the Fermi
surface from hole to electron pockets9–11, also consistent
with quantum oscillation experiments12. The story of
the Fermi surface in pseudogap phase of the cuprates is
thus complex, possibly marked by two successive recon-
structions, one from a large hole-like surface to small hole
pockets near optimal doping and a second one from hole-
to electron-like pockets at intermediate doping. The pri-
mary focus of this paper is the rapid suppression (while
staying positive) of the high-field low-temperature Hall
number near optimal doping, possibly indicating a Fermi
surface reconstruction from large hole-like Fermi surface
to small hole pockets below optimal doping, in terms of
an incommensurate uni-directional charge density wave
state which has been revealed in recent high-field X-ray
and NMR experiments. We also briefly include a discus-
sion of the behavior of the Hall coefficient in the mod-
erately underdoped regime13, where the Hall coefficient
has been observed to change sign at low temperature, for
the sake of completeness.

The presence of charge density wave (CDW) correla-
tions in the pseudogap phase of copper oxide supercon-
ductors is now well established14–29. In zero or low mag-
netic fields the CDW order has been observed in mul-
tiple x-ray scattering experiments14,18–23 as well as nu-
clear magnetic resonance (NMR)15, and is static, short
range correlated, and bidirectional (i.e., charge density
is modulated in both Cu-O bond directions in the CuO2

planes). In YBa2Cu3Ox (YBCO) a second charge den-
sity wave order has also been found in high magnetic
fields and lower temperatures15–17,24–26,29 and is long
range ordered, but essentially unidirectional. So far,
this high field CDW has been observed in NMR15–17,
and more recently, x-ray scattering experiments in high
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magnetic fields24–26. In contrast to the low-field bidirec-
tional short-range-correlated CDW with an onset tem-
perature close to 150K, the high-field unidirectional long-
range-correlated CDW onsets above a critical magnetic
field proportional to the resistive upper critical field Hc2

with heavily suppressed superconductivity and at a tem-
perature close to the superconducting transition tem-
perature Tc at zero magnetic field. Since the observa-
tion of the unidirectional CDW requires x-ray scatter-
ing at high magnetic fields, which is challenging because
the scattering signals are weak, to date the direct ex-
perimental observation of this high-field phase has re-
mained limited, only around the moderate doping levels
p ∼ 0.12. In more recent high magnetic field sound ve-
locity measurements29 it has been found that the high
field unidirectional charge order exists in more or less
the same doping range 0.08 . p . 0.16 as its low-field
bidirectional counterpart, although the intrinsic connec-
tion between the two distinct charge orders, if any, is still
unclear. Nonetheless, because of its large correlation vol-
ume and sharp onset in magnetic field and temperature,
both in contrast to the low-field short-range-correlated
CDW at higher temperatures, it has been argued that the
ground state competing order in clean superconducting
YBCO is a long-range-ordered, incommensurate, CDW
in which charge modulation is unidirectional26. The pri-
mary focus of our current work is an explanation of the
rapid suppression of the Hall number near optimal dop-
ing (while staying positive) indicating a Fermi surface re-
construction in terms of uni-directional CDW which has
been observed in multiple CDW experiments. We also
add a discussion of underdoped in terms of bi-directional
CDW13 for the sake of completeness.

On the theoretical side, the Fermi surface reconstruc-
tion near optimal doping from large hole-like Fermi sur-
face at higher doping to small hole pockets at lower
doping has been attributed to a quantum phase transi-
tion to an assumed long range ordered d-density wave30

or antiferromagnetic31 phase or an assumed nematic
transition32 near optimal doping. However, experimen-
tal evidence for translational symmetry breaking bond
currents or long ranged antiferromagnetic order has so
far not been found in the relevant range of doping and
magnetic fields.

In this work, we assume that the Fermi surface recon-
struction at high magnetic fields (H & Hc2) near optimal
doping is caused by a high-field long-range-ordered state,
namely, incommensurate unidirectional CDW, that has
been observed unambiguously in the pseudogap phase of
the cuprates, although not near optimal doping. A simi-
lar long range ordered unidirectional CDW with C4 sym-
metry breaking was considered earlier to explain the high
field quantum oscillation experiments in the pseudogap
phase33. We find that the reconstructed Fermi surface
in this state consists of hole pockets, in contrast to the
Fermi surface of the low-field bidirectional CDW which
is dominated by electron pockets. This is consistent with
earlier calculations on bidirectional CDW which first pro-

posed the existence of electron pocket34 in this state and
also on unidirectional CDW35 which showed the existence
of hole pockets. Starting from the Kubo formula which
reduces to the semi-classical Boltzmann equations in ap-
propriate limits, we calculate the Hall number in the uni-
directional CDW state as a function of hole doping below
optimal doping. We find that the assumed onset of this
CDW (with or without a weak bidirectional component)
explains the rapid drop in Hall number near optimal dop-
ing as observed in recent experiments6–8. Adding a bidi-
rectional component of equal magnitude to the unidirec-
tional order parameter at intermediate range of hole dop-
ing, which is now supported by experiments14–29, has the
effect of including an electron pocket in the Fermi surface.
The corresponding Hamiltonian reduces the zero temper-
ature Hall number to negative values. Note that, recent
high field x-ray scattering24–26 and sound velocity29 mea-
surements point to the co-existence of unidirectional and
bidirectional CDW in the moderate range of hole doping,
but not close to optimal doping. Our calculations explain
the salient features of the high-field Hall effect experi-
ments in the pseudogap phase, namely, sharp drop below
optimal doping and negative values at moderate under-
doping, entirely in terms of coexisting unidirectional and
bidirectional charge orders (with weak bidirectional com-
ponent near optimal doping), both of which have been
unambiguously observed in the pseudogap phase of the
cuprates at relevant scales of magnetic field and temper-
ature.

The rapid suppression of the positive Hall number
without a change in sign near optimal doping p ∼ 0.19
due to Fermi surface reconstruction remains a pressing
unresolved issue in cuprates. In the light of recent ex-
periments3–8, our results are important as the assump-
tion of a uni-directional CDW can very well explain the
salient experimental features near optimal doping. A se-
ries of recent papers attempt to explain the Fermi surface
reconstruction and the drop in the Hall number using
other ordered states30–32, none of which have been con-
firmed experimentally. This makes our proposal highly
relevant due to ample evidence of the CDW phase in
cuprates14–29.

This paper is organized as follows: In Section II we
introduce the mean field Hamiltonian for unidirectional
CDW state and calculate its quasiparticle Fermi surface.
In Section III we calculate the Hall number from the
unidirectional CDW state which exhibits a drastic drop
below the hole doping p∗. In Section IV we calculate the
quasiparticle spectrum, Fermi surface, and the Hall re-
sistance from coexisting unidirectional and bidirectional
CDW order parameters. We discuss our results in Sec-
tion V and conclude in Section VI.
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FIG. 1. Top panel: (color online) Quasiparticle Fermi sur-
face (left) plotted over the unfolded Brillouin zone, and the
energy dispersion (right) for the uni-directional CDW state
with scattering vector Q = (q = q0 + δ, 0)r.l.u (with a slight
incommensuration of δ = 0.03 from q0 = 1/3) for doping
p = 0.16, and W0 = 0.2t1. The hole pockets centered at
(±qπ,±π) are displayed in blue. The RBZ is enclosed within
the two dashed lines on the left plot. The dashed line on
the right plot indicates the chemical potential. Bottom panel:
Reconstructed Fermi surface (left) and the energy dispersion
(right) for a unidirectional CDW order parameter, assuming
a four-component reconstruction of the Brillouin zone with
the scattering vector Q = (q, 0)r.l.u where q = 0.25. The
hole-pockets are displayed in blue.

II. HAMILTONIAN AND THE FERMI
SURFACE

We begin by writing down the real space mean-field
Hamiltonian for the unidirectional CDW state on a two-
dimensional square lattice given by,

Huni
CDW =

∑
r,a,σ

[Wae
iQ·(r+a/2)c†r+a,σcr,σ + h.c],

(1)

where in the sum r denotes the lattice sites, and the vec-
tor a represents all the nearest neighbors vectors. The
operator cr,σ annihilates an electron of spin σ at site
r. We assume the order parameter Wa with a d-wave-
like form factor W±x̂ = −W±ŷ = W0/2, where W0 is
the bare magnitude of the order parameter36. When
Q = (1/N, 0)r.l.u, the above equation represents a com-
mensurate CDW with a periodicity of N lattice vectors.
Experimental evidence suggests a slight incommensura-
tion in the scattering vector Q. For our calculations
we assume a scattering vector Q = (q0 + δ, 0), where
q0 = 1/3, and δ is the small incommensuration with re-
spect to the underlying lattice. The mean-field CDW
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FIG. 2. (color online) Hall number nH (normalized w.r.t the
Hall number at p∗ = 0.20) from the unidirectional CDW state
plotted between hole-doping values p = 0.16 and p = 0.2.
Above p = p∗ = 0.20, the CDW order parameter is zero. The
parameter w1 is chosen such that the bare CDW order pa-
rameter W at p = 0.16 is W = 0.34t1. Results with different
phenomenological dependence of the CDW order parameter
W on hole-doping p (linear and square-root) are shown. We
note the rapid drop in the Hall number below p∗ to about
25% at p = 0.16. The parameters chosen were t1 = 0.3eV
and t2 = 0.21t1.

Hamiltonian in momentum space is given by,

Huni
CDW = W0

∑
k,σ

[(cos kx − cos ky) c†k+Q/2,σck−Q/2,σ]

+ h.c, (2)

where ck,σ is the Fourier transform of cr,σ. Combined
with the 2D quasiparticle dispersion, the total Hamilto-
nian HMF for the system can be written as,

HMF =
∑
k,σ

εkc
†
k,σck,σ +Huni

CDW , (3)

where εk = −2t1(cos kxa+cos kya)+4t2 cos kxa cos kya−
2t3(cos 2kxa + cos 2kya) and t1, t2 and t3 are the
nearest-neighbor, next-nearest-neighbor, and next-to-
next-neighbor hopping parameters, and a is the lattice
constant. Unless otherwise specified, for our calculations
we choose the parameters t1 = 0.3 eV , t2 = 0.3t1 and
t3 = 0.1t2, consistent with earlier work on these sys-
tems37. We assume that the interactions primarily give
rise to a nonzero order parameter W0 and thus ignore the
residual interactions between the quasiparticles.

The Hamiltonian in Eq. 3 can most easily be written by
coupling wave vector k, confined to a properly defined re-
duced Brillouin zone (RBZ), with wave vectors translated
by the CDW wave vector Q, i.e., k→ k+nxQxx̂+nyQy ŷ
where nx, ny are integers denoting translations in the
two-dimensional reciprocal space. Strictly speaking, for
incommensurate systems this procedure results in an infi-
nite dimensional Hamiltonian matrix and infinite number
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FIG. 3. (color online) Hall resistance (RH), longitudinal re-
sistivity (ρxx), and Hall conductivity (σxy) as a function of
temperature for various doping values in the actual experi-
mental units, as predicted by a uni-directional CDW order.
Here we use a standard mean field dependence of the CDW
order parameter (W ∼

√
1− T/TCDW ). The order of magni-

tude of the above quantities, and the behavior w.r.t. tempera-
ture and doping match with the corresponding experimentally
observed quantities in Ref 6.

of bands. However, for the incommensuration δ � Q, we
can approximate the relevant energy eigenvalues by par-
titioning the unfolded BZ and defining energy bands over
each BZ sector. Using this approach, we write the Hamil-
tonian in terms of a three component operator Ψk,σ as

HMF =
∑

k∈RBZ,σ

Ψ†k,σH(k)Ψk,σ (4)

FIG. 4. (color online) Energy spectrum (top) near the
Fermi energy and the corresponding ARPES spectral func-
tion A(ω = 0,k) (bottom) from coexisting unidirectional and
bidirectional CDW orders. The existence of electron pocket
centered at k = (π/3, π/3) is specifically highlighted by a red
rhombus in the plot for ARPES spectral function. The hole
pocket at k = (π/3, 2π/3) is also highlighted by a blue oval.
The ratio between unidirectional and bidirectional CDW or-
ders was taken to be 2:3, with a bare magnitude W ∼ 0.22t1.

where the sum is over the reduced Brillouin zone (RBZ)

defined by (0 < |kx| < π/3, 0 < |ky| < π), Ψ†k =

(c†k,σ, c
†
k+Q,σ, c

†
k−Q,σ) and H(k) is

H(k) =

 εk w12 w13

w21 εk+Q1 w23

w31 w32 εk−Q1

 , (5)

where the off-diagonal entries of the Hamiltonian are

w12 = w∗21 = W0 (cos (kx +Q/2)− cos ky) , (6)

w13 = w∗31 = W0 (cos (kx −Q/2)− cos ky) , (7)

w23 = w∗32 = W0 (cos (kx + 3Q/2)− cos ky) (8)

The above Hamiltonian can be diagonalized: H(k) =∑
n
Ek,na

†
k,nak,n, where ak,n are the quasiparticle opera-

tors, which can be represented in terms of the fermion
operator as ck,σ =

∑
n
Uk,1,nak,n, ck+Q,σ =

∑
n
Uk,2,nak,n,
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ck−Q,σ =
∑
n
Uk,3,nak,n, where Uk,i,j are elements of

the unitary transformation Uk which diagonalizes H(k).
As shown below, the factors Uki,j are important for
the evaluation of the single-particle spectral function,
which is measurable in angle resolved photoemission
experiments37.

In cuprates, the hole doping is conventionally counted
from half-filling, i.e., one electron per Cu atom. If g de-
notes the fraction of an occupied number of states in the
Brillouin zone, then the doping is p = 1 − 2g. The frac-
tion g is calculated as g = 1/S

∑
n,k∈RBZ

f(Ek,n), where

f(En(k)) is the Fermi distribution function and En(k)
is the quasiparticle energy dispersion for the nth energy
band, measured with respect to the chemical potential
(the chemical potential is evaluated for each doping value
using the equation for g), and S is the area of the system.

The quasiparticle Fermi surface for the unidirectional
CDW state given by

∑
n
δ(ω−Ek,n) is shown in Fig. 1, top

panel, at ω = 0 for a typical hole doping p ∼ 0.16 close to
optimal doping. With a finite CDW order parameter, the
Fermi surface reconstructs from a large hole-like surface
in the overdoped regime (p > p∗) to isolated hole pock-
ets centered around (π/3, π) in the underdoped regime
(p < p∗). To show that the emergence of the hole pockets
is a robust consequence of unidirectional CDW, in Fig. 1
bottom panel we plot the Fermi surface for a 4×4 recon-
struction of the Brillouin zone, with a CDW order param-
eter Q = (0.25, 0)r.l.u. In both cases Q = (π/3, 0)r.l.u
and (0.25, 0)r.l.u the unidirectional CDW reconstructs
the Fermi surface into hole pockets, (in contrast, the bidi-
rectional CDW has electron pockets, see Fig. 4).

III. HALL NUMBER IN UNIDIRECTIONAL
CDW

As noted in the introduction, the zero-temperature
Hall number provides information about the volume en-
closed by the Fermi surface. Further, the sign of the Hall
number reveals the nature of dominant carriers (electrons
or holes). A drastic drop in nH below optimal doping in-
dicates a drastic reconstruction of a large Fermi surface
enclosing a volume corresponding to a density nc ' 1+p
of holes at large doping, to small pockets with a vol-
ume corresponding to hole-density p in the underdoped
regime.

In linear response theory the conductivities σxx, σxy
are computed using the Kubo formulae, which in the limit
of long scattering time τ , and for q → 0, ω → 0, reduce
to the following Boltzmann formulae (see Appendix)

σxx = e2
∑
n

∫
τk(vxn)2

(
−∂f [En(k)]

∂En(k)

)
d2k (9)

σxy =
e3

~
∑
n

∫
τ2k

(
−∂f [En(k)]

∂En(k)

)
vxn (vynv

xy
n − vxnvyyn ) d2k

(10)

where n is the band index, vxn is the semi-classical quasi-

particle velocity vxn = 1
~
∂En(k)
∂kx

and vxyn =
∂vyn
∂ky

. The

factor τk is the phenomenological scattering time. Since
in our calculations the energy dispersion Ekn depends on
the value of the CDW order parameter, which in turn is a
function of hole doping, it follows that the change in the
effective mass (hidden in the definitions of the derivatives
of En(k)) with hole doping is accounted for in our formal-
ism. The Hall coefficient is given by RH = σxy/σxxσyy.
We compute the Hall number in the relaxation time ap-
proximation, ignoring intra-band scattering effects. We
also assume that the CDW quasiparticles have a constant
scattering time. Strictly speaking, the scattering time
may vary along the Fermi surface, but this additional
complication does not qualitatively alter our results in
the unidirectional state.

In Fig. 2 we plot the Hall number (nH = R−1H ) ob-
tained from our calculations for the doping range 0.16 <
p < 0.20. Below p∗ ∼ 0.19, the Fermi surface topology is
that of a unidirectional CDW state, namely, hole pockets.
For doping dependence of the CDW strength (W (p)), we
examine two different phenomenological functional forms
(W ∼ W0(p∗ − p)) and W (p) ∼ W0(p∗ − p)1/2 for illus-
trative purposes30, making a simple assumption that W
is a smoothly varying function of the hole doping. We
observe a rapid drop in the Hall number below p∗. The
magnitude of the drop in nH below p∗ depends on the
choice of various parameters in particular on the value of
W0. For instance a larger value of W0 shrinks the size
of hole pockets and leads to larger suppression of nH at
p ∼ p∗. Above p∗, the Hall number crosses to nH ∼ 1+p
as expected from conventional Fermi liquid theory. In
the weak-field regime, the width of the Fermi surface re-
construction depends on the magnitude of the CDW gap.
In Fig. 5 inset we show that a weak bidirectional compo-
nent coexisting with dominant unidirectional order still
results in the suppression of Hall number without change
of sign near optimal doping.

In Fig. 3 we plot the Hall resistance (RH), longitudinal
resistivity (ρxx), and Hall conductivity (σxy) as a func-
tion of temperature for various doping values in the ac-
tual experimental units, as predicted by a uni-directional
CDW order. We use a standard mean field dependence
of the CDW order parameter (W ∼

√
1− T/TCDW )38.

The order of magnitude of the above quantities, and
the behavior w.r.t. temperature and doping match with
the corresponding experimentally observed quantities in
Ref 6.
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IV. COEXISTING UNIDIRECTIONAL AND
BIDIRECTIONAL ORDERS

Recent NMR15, high-field x-ray scattering24–26, and
sound velocity29 measurements at moderately under-
doped regime reveal the coexistence of a bidirectional
order parameter along with the unidirectional CDW at
high magnetic fields and low temperatures. In our calcu-
lations, for doping below p ∼ 0.16, we assume the pres-
ence of unidirectional and bidirectional CDWs of equal
magnitude, which essentially is a bidirectional CDW with
anisopropic strengths of the order parameter.

The bidirectional mean-field CDW state can be repre-
sented by the Hamiltonian,

Hbi
CDW =

∑
r,a,σ

[Va
(
eiQ1·(r+a/2) + eiQ2·(r+a/2)

)
c†r+a,σcr,σ

+ h.c], , (11)

where V±x̂ = −V±ŷ = V0/2, V0 is the bare magnitude
of the bidirectional order parameter, Q1 = (q, 0), and
Q2 = (0, q). Choosing q = (1/3)r.l.u now gives us a nine-
component reconstruction of the Brillouin zone. In the
coexistence phase, the total CDW Hamiltonian is given
by

HCDW = Huni
CDW +Hbi

CDW (12)

In the above equation, the unidirectional CDW Hamil-
tonian is now also represented by a nine-component re-
constructed BZ, however with a different bare-magnitude
(W0) and scattering vector present only in one direction.
Details of the Hamiltonian for this phase have been pro-
vided in the Appendix.

The addition of a bidirectional order parameter to the
unidirectional CDW changes the Fermi surface from iso-
lated hole pockets in the first Brillouin zone (unidirec-
tional CDW) to electron pockets centered at (π/3, π/3)
in the coexistence phase. The electron pockets in the co-
existing phase are visible in Fig. 4. In angle-resolved pho-
toemission (ARPES) experiments the quasiparticle spec-
tral function A(ω,k) is mapped on the Brillouin zone.
The spectral function is given by

A(ω,k) = − 1

π
Im Gret(ω,k), (13)

where Gret(ω,k) is the retarded Green’s function for the
Hamiltonian. In terms of the unitary transformation Uk

discussed previously, A(ω,k) becomes

A(ω,k) =
∑
n

U2
k,1,nδ(ω − Ek,n) (14)

where the band index n counts the total number of bands
in the reconstructed Hamlitonian, and Uk,1,n are the co-
herence factors given by entries of the transformation
Uk. Due to strong momentum dependence of the spectral
weights, the ARPES spectral function of the coexisting
phase consists of Fermi arcs. Fig. 4 shows the quasipar-
ticle energy and angle resolved photoemission spectrum

FIG. 5. (color online) Hall resistance RH (in arbitrary units)
from the coexisting unidirectional and bidirectional CDW
state plotted as a function of temperature for two differ-
ent doping values p = 0.11, p = 0.13. The change of sign
of RH from positive to negative values as the temperature
is lowered is due to the bidirectional order. The bidirec-
tional phenomenological mean field order parameter is taken
as V (p, T ) ∼ V (p)

√
1− T/TCDW (p), and V (p) ∼ V0

√
p− pc,

where the bare magnitude V0 was chosen to be 0.22t1, pc
was chosen to be pc = 0.085. The strengths of unidirectional
and bidirectional order were chosen to be equal. Inset: Hall
number nH (normalized w.r.t the Hall number at p = 0.19)
from the coexisting unidirectional and bidirectional CDW or-
der plotted as a function of hole doping. The ratio of bidi-
rectional (V ) and unidirectional order parameters (W ) was
taken to be 1 : 5 with a square root doping dependence be-
low p∗ = 0.19. The suppression of the Hall number below p∗

is still observed even after adding a small bidirectional order
parameter.

with electron pockets centered at (π/3, π/3) for CDW
state with coexisting unidirectional and bidirectional or-
der parameters. The curves in the upper plot of Fig. 4
represent the energy bands. The intersection of the bands
with chemical potential depicts the electron pocket.

For coexisting order parameters, since the bidirectional
CDW introduces an electron pocket to the Fermi surface,
for calculation of the Hall resistance we retain a small mo-
mentum dependence of the scattering time13 to enhance
the contribution from the electron pockets. We plot the
Hall resistance (RH = 1/nH) as a function of tempera-
ture in Fig. 5. Since a bidirectional CDW has an elec-
tron pocket, the zero temperature Hall coefficient reduces
to negative values, consistent with the experiments9–11.
In the inset of Fig. 5 we plot the Hall number below
p∗ = 0.19 adding a small bidirectional component to the
uniaxial order parameter near optimal doping. The sup-
pression of the Hall number below p∗ is still observed
even after adding a week bidirectional component.

Therefore, we have shown that the high field unidirec-
tional CDW order has hole pockets, in contrast to its bidi-
rectional counterpart which has both electron and hole
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pockets. The existence of the hole pockets leads to the
suppression of Hall number but no change of sign near op-
timal doping. The addition of a weak bidirectional com-
ponent to the order parameter, as in the inset of Fig. 5,
does not change the behavior of nH near optimal doping.
Only with a sufficiently strong bidirectional component
of the order parameter the Hall coefficient changes sign,
as in our intermediate doping range 0.16 > p > 0.08. Our
calculations therefore show that the complex evolution of
high field Hall number in the entire pseudogap phase can
be explained in terms of a coexistence of unidirectional
and bidirectional charge order, with weak bidirectional
component near optimal doping.

V. DISCUSSION

Several comments are in order: First, we have assumed
in this paper that the dominant instability at high mag-
netic fields (H ∼ Hc2) and low temperatures near op-
timal doping in hole-doped cuprate superconductors is
to a unidirectional CDW state while the amplitude of
a bidirectional CDW is small. In contrast to bidirec-
tional CDW, we have shown that the Fermi surface in the
unidirectional CDW displays hole pockets. The emer-
gence of the hole pockets, which is a result of the first
Fermi surface reconstruction with decreasing hole dop-
ing at the quantum critical point near optimal doping39,
does not change the sign of the Hall coefficient but re-
sults in a rapid suppression of carrier concentration and
zero temperature Hall number with decreasing doping
below p ∼ 0.19. Although this is consistent with exper-
iments on high field Hall effect near optimal doping3–8,
the identification of the quantum critical point near opti-
mal doping with unidirectional charge order is at present
not supported by experiments40. No such charge order
has so far been found near optimal doping, directly or
indirectly14–29. On the other hand, in contrast to other
scenarios attempting to explain the suppression of Hall
number near optimal doping30–32,41–46, both unidirec-
tional and bidirectional charge order have been found
in the nearby range of hole doping14,16–29 and a coex-
istence phase has been established for moderate doping
0.8 . p . 0.1624–26,29. We have used these latter ex-
periments to add a bidirectional component to the order
parameter for intermediate range of hole doping lead-
ing to a second reconstruction of the Fermi surface to
an electron pocket. The corresponding zero temperature
Hall number reduces to negative values in the coexisting
phase. The consistency of nH with CDW in the under-
doped regime, and the lack of experimental observation
of CDW up to p∗ at this time, may actually mean that
more experiments are needed at very high magnetic fields
(H ∼ Hc2 ) close to the pseudogap critical doping p∗.

Second, with respect to the high field Hall measure-
ments in the cuprates, the older experiments3–5 found a
sharp decrease of nH with decreasing hole doping below
optimal doping p∗ just as the more recent ones6–8. How-

ever, Hall number in the older experiments also dropped
for p > p∗, producing a peak like structure of nH ver-
sus p at optimal doping p∗. The more recent studies6–8,
performed at somewhat higher temperatures because of
higher values of the upper critical fields, on the other
hand, find that nH saturates with p for p > p∗. While it
has been argued8 that the presence of electron-like car-
riers co-existing with hole-like carriers in a narrow range
of doping close to optimal doping may be responsible for
non-universal behavior of nH at p = p∗, possibly even
resulting in a peak, we have not attempted to address
this issue here.

Third, our theoretical framework is that of effective
Hartree-Fock mean field Hamiltonians that capture the
broken symmetries associated with the charge orders.
By definition, therefore, we ignore the fluctuation effects
that must be present very close to the quantum critical
point at p = p∗ where the large hole-like Fermi surface at
p > p∗ with carrier concentration n ∼ 1+p is assumed to
reconstruct into small hole pockets with n ∼ p via a tran-
sition into a unidirectional CDW state, and also near the
Fermi surface reconstruction at a lower value of p where
the system enters the co-existence phase. Our choice of
the dependence of the order parameter amplitudes on
doping, W ∼ W0(p∗ − p)1/2 and W ∼ W0(p∗ − p), are
thus phenomenological and ad hoc, and cannot be valid
very close to the critical doping p∗. In particular, our
calculations cannot be valid within a narrow critical fluc-
tuation region δp ∼ (W0

εF
)2 where εF is the effective Fermi

energy of the holes around the critical doping p∗.

Finally, it is now well established that in the cuprates
the two kinds of charge order, although coexisting at high
fields and low temperatures in a wide range of hole dop-
ing, are somewhat different in nature even aside from the
difference in the symmetries dictated by their modula-
tion wave vectors. While the unidirectional order, which
emerges only above high magnetic fields (H ∼ Hc2) and
low temperatures T . Tc, is long range ordered and
three dimensional (3D), the bidirectional order exists
even for small or zero magnetic fields and at tempera-
tures T . 150K somewhere between superconducting Tc
and the pseudogap temperature scale T ∗. Further, the
bidirectional order is essentially two dimensional (2D)
and with significantly smaller in-plane correlation lengths
than the unidirectional order. Interestingly, however, the
magnitudes of their modulation wave vectors in the in-
plane directions are identical suggesting the same intrin-
sic correlations in the electronic wave functions respon-
sible for both types of order. Despite the similarities in
the in-plane wave vectors and a wide range of co-existence
in the pseudogap regime, at present the relationship be-
tween the two charge orders is unclear at best and we
have ignored any such issues in this paper.
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VI. CONCLUSION

To summarize, we have shown that the onset of a
low-temperature high-field unidirectional incommensu-
rate CDW with or without a weak bidirectional compo-
nent in copper oxide superconductors may help explain
the rapid drop in Hall number below optimal doping as
seen in recent experiments. The single-particle spectral
function in the high-field unidirectional CDW displays
hole pockets. The emergence of the hole pockets is a re-
sult of Fermi surface reconstruction at the quantum crit-
ical point, resulting in a a rapid suppression of the Hall
number with decreasing hole doping. Adding a bidirec-
tional component of approximately same magnitude to
the order parameter at lower doping introduces an elec-
tron pocket in the Fermi surface. The corresponding zero
temperature Hall number reduces to negative values in
the coexisting phase. Our calculations explain the salient
features of the recent high field Hall effect experiments
in the cuprate superconductors in terms of unidirectional
and bidirectional charge orders both of which have been
unambiguously observed in the pseudogap phase at the
relevant ranges of magnetic field and temperature.

The primary result of this work is the explanation of
the rapid suppression of the Hall number near optimal
doping (while staying positive at low temperatures),
indicating a possible Fermi surface reconstruction from
large hole-like Fermi surface to small hole pockets below
optimal doping, in terms of a uni-directional CDW state.
We have also included a discussion of the behavior of the
Hall coefficient in the moderately underdoped regime
(where it changes sign at low temperatures), which was
discussed before in Ref. 13, for the sake of completeness.
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Appendix A: Calculation of conductivities

In linear response theory the conductivities σxx, σxy
are computed using the following Kubo formulae

σxx =
1

π
ImΠ(iωn → ω + iδ, q = 0,T), (A1)

and

σxy = limq→0
B

ωq
ReΠ̃(iωn → ω + iδ, qŷ,T), (A2)

which are valid in the presence of weak electric and mag-
netic fields E = E0x̂ cos(ωt),B = qẑA0 sin(qy). Here,
the correlation functions are given by,

Π(iωn,q, T ) =

∫ β

0

dτeiωnτ 〈Tτ jx(q, τ)jx(q, τ)〉, (A3)

and

Π̃(iωn,q, T )

=

∫ β

0

dτdτ ′eiωnτ 〈Tτ jy(q, τ)jx(0, 0)jy(−q, τ ′)〉,(A4)

with jx, jy appropriately defined current operators in the
CDW state. In the limit of long scattering time, and for
q → 0, ω → 0, the linear response expressions for the
conductivities reduce to those in Boltzmann description
provided in the main text of the paper.

Appendix B: Hamiltonian for coexisting orders

Here we provide the Hamiltonian for the coexisting
unidirectional and bidirectional CDW phase. The Hamil-
tonian can most easily be written by coupling wave vec-
tor k, confined to a properly defined first Brillouin zone
(FBZ), with wave vectors translated by the CDW wave
vector Q, i.e., k → k + nxQxx̂ + nyQy ŷ where nx, ny
are integers denoting translations in the two-dimensional
reciprocal space. Strictly speaking, for incommensurate
systems this procedure results in an infinite dimensional
Hamiltonian matrix and infinite number of bands. How-
ever, for the incommensuration δ � Q, we can approxi-
mate the relevant energy eigenvalues by partitioning the
unfolded BZ and defining energy bands over each BZ sec-
tor. The mean-field Hamiltonian for the bidirectional
phase (with bare-magnitude V0) then becomes
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H(k)biCDW =



εk v12 v13 v14 0 0 v17 0 0
v21 εk+Q1 v23 0 v25 0 0 v28 0
v31 v32 εk−Q1 0 0 v36 0 0 v39
v41 0 0 εk+Q2 v45 v46 v47 0 0
0 v52 0 v54 εk+Q1+Q2 v56 0 v58 0
0 0 v63 v64 v65 εk−Q1+Q2 0 0 v69
v71 0 0 v74 0 0 εk−Q2 v78 v79
0 v82 0 0 v85 0 v87 εk+Q1−Q2 v89
0 0 v93 0 0 v96 v97 v98 εk−Q1−Q2


(B1)

The non zero elements of the above 9 component Hamil- tonian are specifically given by

v12 = V0 (cos (kx + π/3)− cos ky) , v13 = V0 (cos (kx − π/3)− cos ky) ,

v14 = V0 (cos kx − cos (ky + π/3)) , v17 = V0 (cos kx − cos (ky − π/3)) ,

v23 = V0 (cos (kx + π)− cos ky) , v25 = V0 (cos (kx + 2π/3)− cos (ky + π/3)) ,

v28 = V0 (cos (kx + 2π/3)− cos (ky − π/3)) , v36= V0 (cos (kx − 2π/3)− cos (ky + π/3)) ,

v39 = V0 (cos (kx − 2π/3)− cos (ky − π/3)) , v45= V0 (cos (kx + π/3)− cos (ky + 2π/3)) ,

v46 = V0 (cos (kx − π/3)− cos (ky + 2π/3)) , v47= V0 (cos kx − cos (ky + π)) ,

v56 = V0 (cos (kx + π)− cos (ky + 2π/3)) , v58 = V0 (cos (kx + 2π/3)− cos(ky + π)) ,

v69 = V0 (cos (kx − 2π/3)− cos(ky + π)) , v78 = V0 (cos (kx + π/3)− cos (ky − 2π/3)) ,

v79 = V0 (cos (kx − π/3)− cos (ky − 2π/3)) , v89= V0 (cos (kx + π)− cos (ky − 2π/3)) .

With the above BZ reconstruction, the Hamiltonian for the unidirectional CDW phase (with bare-magnitude
W0) is

H(k)uniCDW =



εk w12 w13 0 0 0 0 0 0
w21 εk+Q1

w23 0 0 0 0 0 0
w31 w32 εk−Q1

0 0 0 0 0 0
0 0 0 εk+Q2

w45 w46 0 0 0
0 0 0 w54 εk+Q1+Q2

w56 0 0 0
0 0 0 w64 w65 εk−Q1+Q2

0 0 0
0 0 0 0 0 0 εk−Q2

w78 w79

0 0 0 0 0 0 w87 εk+Q1−Q2
w89

0 0 0 0 0 0 w97 w98 εk−Q1−Q2


(B2)

where the elements can be calculated similar to the bidi-
rectional case, albeit with a different magnitude of or-
der parameter (W0). In the coexistence phase, the total

CDW Hamiltonian is given by

HCDW = Huni
CDW +Hbi

CDW (B3)

as given in Eq. 16 of the main text.
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