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The low energy excitations of topological Weyl semimetals are comprised of linearly dispersing
Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore,
on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points.
We propose a novel pathway for entropy transport involving Fermi arcs on one surface connecting to
Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature
and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel.
The circulating currents result in a net entropy transport without any net charge transport. We
provide results for the Fermi arc-mediated magnetothermal conductivity in the low-field semiclassical
limit as well as in the high-field ultra-quantum limit, where only chiral Landau levels are involved.
Our work provides the first proposed signature of Fermi arc-mediated magnetothermal transport
and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

INTRODUCTION

It is now well understood that topological insulators
are protected by a gap in the bulk and necessarily have
topological surface states arising from the bulk-boundary
correspondence [1, 2]. The recent theoretical predic-
tion [3–6] and subsequent experimental discovery [7–9] of
Dirac and Weyl semimetals (WSMs) have expanded this
list of topological quantum materials to include semimet-
als with no bulk band gap. WSMs possess nodal fermions
comprised of non-degenerate linear band crossings. In
order to satisfy the condition of non-degeneracy, WSMs
must break either inversion-symmetry or time-reversal
symmetry. The Weyl nodes come in pairs of opposite chi-
rality [10], and, unlike Dirac fermions in graphene [11],
they are robust against the formation of a gap due to
their three-dimensional nature.

The low energy linear dispersing modes of a WSM
carry monopole charges of Berry curvature concentrated
at the Weyl nodes leading to predictions of novel elec-
tronic transport [12–20]. The observation of a negative
longitudinal magnetoresistance [21–23] in the presence
of parallel electric and magnetic fields, has been under-
stood to arise from the chiral anomaly due to the local
non-conservation of charge in the Brillouin zone.

In addition to the plethora of novel transport phenom-
ena exhibited by WSMs, these monopole charges of Berry
curvature are responsible for topological Fermi arcs in
WSMs, perhaps their most fascinating feature. Fermi
arcs form open contours of surface states that terminate
on the projections of Weyl nodes, or in the case of doped
WSMs, terminate on the projections of Fermi pockets
enclosing Weyl nodes. The dispersion around the bulk
nodes is linear in three dimensions. The Fermi arc states

on the surface have a linear dispersion in the two dimen-
sional surface Brillouin zone and are chiral, so that the
velocity of electrons on one of the surfaces is unidirec-
tional and is opposite on the other surface. These gap-
less surface modes provide the key signature for WSMs
in spectroscopy experiments [7–9].

Fermi arcs in WSMs are known to lead to exotic quan-
tum oscillations involving mixed real and momentum
space orbits [24–27] as well as resonant transparency [28].
However, the effect of Fermi arcs on thermal transport so
far remains an unexplored frontier. Preliminary studies
of thermal transport in WSMs have so far only consid-
ered contributions from the bulk Weyl fermions [29–33].
One of the major challenges we address in this paper is:
Can we find signatures of Fermi arcs in thermal trans-
port? How can we design an experiment that isolates
the effect of the arcs from all of the other contributions,
such as the bulk monopoles, ambipolar transport from
electron and holes around the Weyl points, and all of the
other trivial pockets?

We predict that Fermi arc-mediated entropy transport
and consequently the anisotropic magnetothermal con-
ductivity discussed in this paper provides a unique signa-
ture of the topological Fermi arcs in WSMs. Specifically
we obtain the following results:
(i) Even when transport in a magnetic field is incoherent
i.e. ωcτ � 1 where ωc is the cyclotron frequency and
τ is the elastic intra-valley scattering time, it is possible
to get coherent entropy transport in an applied thermal
gradient without any charge transport. The charge circu-
lates like a fluid in a “conveyor belt” from the Fermi arc
on the top surface, into the bulk via the Weyl node, down
to the arc on the other surface and back up to the top
surface via the second Weyl node. We emphasize that
the “conveyor belt” transport occurs as a consequence
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FIG. 1. (a) Mixed real-space and momentum-space depiction of a Weyl semimetal in a slab geometry with thickness L in the
z-direction. Bulk Weyl nodes are labeled with their chirality χ = ± and separated in the kx-direction. The projections of the
Weyl nodes on the surface Brillouin zone define the end points of the Fermi arcs on the top and bottom surfaces. (b) Schematic
of the “conveyor belt” motion of charge leading to a net heat flux. When B is aligned in the z-direction in (a), charge current
density circulates Je in the clockwise direction shown in a mixed real and momentum space orbit. When ∇T is also aligned in
the z-direction, this circulation of charge leads to a net flow of heat current density JQ in the direction shown. Unit tangent
vectors et are shown for the arcs.

of the continuity equation, so long as inter-nodal scatter-
ing is suppressed, and does not require quantized Landau
orbits. The precise geometry is described below.

(ii) Although the “conveyor belt” allows for heat trans-
port in the absence of charge transport, we show that
Wiedemann-Franz law is obeyed in both semi-classical
and ultra-quantum regimes, albeit with different Lorenz
numbers, because of the different density of states.

(iii) In the low-field regime, the arc-mediated thermal
conductivity κzzz ∝ T 3BL [see Eqn. (4) for the exact
expression]. Note, the three directions in the tensor κ
pertain to the thermal gradient, the heat current and the
magnetic field, all taken to be along z and perpendicular
to the separation between Weyl points along x. In the
ultra-quantum limit, κzzz ∝ GQthB

2L [see Eqn. (11) for

full expression], where GQth is the quantum of thermal
conductance[34, 35]. The arc-mediated contribution to κ
can be separated from the bulk contribution by switching
the magnetic field to an orthogonal direction from the
thermal gradient.

To put our results in perspective, all semimetals have
ambipolar (i.e. electron and hole) contributions to ther-
mal conductivity[36]. As an example, in bismuth am-
bipolar conduction contributes 40% of the total thermal
conductivity at T = 200K[37]. The conveyor belt motion
of entropy that we propose is distinct from ambipolar
transport. It is a topological property of the Fermi arcs
of Weyl and Dirac semimetals whose driving mechanism
is a combination of the Lorentz force from the magnetic
field on the Fermi arcs and the conservation of charge

that necessitates motion through the bulk.
We conclude by comparing the arc-mediated contribu-

tion to the thermal conductivity with the bulk contribu-
tion and show that the former dominates. We discuss the
role of intra and inter-nodal elastic scattering, inelastic
scattering and phonon drag, and argue that because of
the limited phase space, the “conveyor belt” mechanism
for entropy transport is robust. Our results have broad
experimental implications for both type I and type II
WSMs as well as Dirac semimetals. Our predictions pro-
vide a quintessential signature of Fermi arcs in topologi-
cal semimetals. This work also sets the stage for utilizing
and manipulating topological Fermi arcs in experimental
magnetothermal applications and in novel tools for ther-
mal energy conversion technology, such as magnetically
driven heat switches.

FERMI ARC-MEDIATED MAGNETOTHERMAL
TRANSPORT

Model

We consider a linearized model of Weyl fermions in
the continuum limit. For a given Weyl node of chirality
χ = ±1, the Hamiltonian near the node is given by:

Ĥχ = χ~vF
(
kxσ̂x + kyσ̂y + kzσ̂z

)
, (1)

where vF is the Fermi velocity of the Weyl fermions and
the Pauli matrices σ̂j span either spin or orbital degree
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of freedom. These Weyl nodes come in pairs of opposite
chirality; we consider Np pairs of nodes. We assume that
the chemical potential lies at the Weyl nodes. In a real
material, this is not necessarily the case, in which case the
bulk Fermi surface becomes a pocket of radius kF = µ

~vF .
At finite temperatures, the Fermi surface broadens over
the energy scale kBT , creating a channel of width ∆k ∼
kBT
~vF . For simplicity, we will take all Weyl nodes to lie at
the same energy E = 0, but our calculations generalize
to cases where sets of Weyl nodes lie at different energies.

For certain parts of the analysis discussed below, it is
useful to consider the following lattice model[38, 39] for
a Weyl semimetal

HLatt (k) = −
(
m(2− cos(kya)− cos(kza))+

2tx(cos(kxa)− cos(k0a))
)
σ̂x

−2t sin(kya)σ̂y − 2t sin(kza)σ̂z,

(2)

where a is the lattice spacing, k0 sets the separation of
the Weyl nodes, and t, tz and m are parameters that
determine the dispersion. The lattice model in Eqn. (2)
reduces to the linearized model in Eqn. (1) for momenta
below a cutoff Λ. We consider a slab geometry by Fourier
transforming Eqn. (2) in the z-direction. This lattice
model proves to be useful in understanding heat flow in
the mixed real- and momentum-space description of the
WSM.

Semiclassical Regime

We are motivated by previous studies of quantum
oscillations involving mixed real and momentum space
orbits[24–27] in topological semimetals. These oscilla-
tions arise due to Onsager quantization from quantum
coherence of the electrons across the entire bulk-arc or-
bits [24]. Rather than oscillations of the density of states
from the Fermi arcs, we predict that the presence of
Fermi arcs will result in distinct channels of entropy
transport, even in the semiclassical regime.The driving
principle is the continuity equation.

In this section, we calculate the heat current flow in
response to a thermal gradient and an externally applied
magnetic field whose coefficient gives the magnetother-
mal conductivity JQµ = κµνγ∇νT and γ defines the di-
rection of the magnetic field. In particular, we focus on
the Fermi arc mediated entropy transport. We show that
this heat current depends on the particle flux from the
arcs through the bulk driven by a magnetic field and on
the heat capacity of the bulk states. The particle cur-
rent through the bulk is calculated from the continuity
of charge and the Lorentz force of an external magnetic
field on the arcs. We show that the particle flux results
in no net charge transport, but produces a heat current
in the presence of a thermal gradient. Our results for the
thermal and electronic conductances can be cast trans-

parently in the Landauer framework and show that the
Wiedemann-Franz law is obeyed.

Particle flow: In an external magnetic field, charge flow
is essentially governed by the Lorentz force and the conti-
nuity equation. The conservation of charge dictates that
through each bulk pocket surrounding a node with chi-
rality χ, we must have a real-space current density given

by Jez;χ = χ
e

A

dN

dt
where dN

dt is the flow rate to be dis-

cussed below. Fig. 1a shows a mixed real-space and
momentum-space diagram of a Weyl semimetal in a slab
geometry. The magnetic field induces a flow of electrons
along the arcs from left to right along the Fermi arc on
the top surface in Fig. 1b and similarly from right to
left along the Fermi arc on the bottom surface. The
only way the system can maintain a steady-state circula-
tion of electrons and obey the continuity equation is by
transporting electrons via the bulk Weyl nodes. These
circulating currents are the low-field analog of magneto-
oscillations explored by the authors of Ref.[24]. We pre-
dict magneto-resistance oscillations around the conveyor
belt in the low-field limit as well so long as inter-nodal
scattering is suppressed. Note, our argument does not re-
quire quantum coherence across the loop as the current
in the semiclassical regime is directed by the continuity
of charge. The total current is given by summing over
all pairs of nodes and chiralities and equals zero. Thus,
since Weyl nodes come in pairs of opposite chirality, the
circulating currents in the steady state do not cause any
net current flow along the z-direction in the absence of
external potentials.

Entropy Flow: The heat current density along z for Np
pairs of Weyl nodes is given by,

JQz = Np
1

A

dN

dt

[
E

(
T (z +

L

2
)

)
− E

(
T (z − L

2
)

)]
.

(3)
where E(T (z)) is the thermal energy per particle at layer
z of a slab of thickness L. In the presence of only a
thermal gradient, the electrons will move from the hot
surface through the bulk around one node to the cold
surface as described by the first term within the brackets
in Eqn. (3). An additional perpendicular magnetic field
B = Bez exerts a Lorentz force on electrons. As a result,
electrons that have reached the cold surface through one
of the nodes are driven along the arc to the other node
and back to the top surface, described by the second
term in Eqn. (3). This circulation of current occurs for
arbitrarily small magnetic fields. The total heat current
is then the sum of these two contributions. Note, in the
absence of a magnetic field, the arcs do not contribute
to the heat current in the z-direction since the Fermi
velocity of electrons residing in the arcs is normal to the
direction of the applied thermal gradient.

By expanding the thermal energies per particle

E(T (z ± L
2 )) we obtain JQz =

NpL

2A

dN

dt

dE

dT

dT

dz
. Each
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FIG. 2. (a) Thermal occupations for the minimal model in Eqn. (2) with m = 2t, tz = t, and kW a = π/2 for cuts along
ky at fixed kxa = 0.75π (top and bottom) and kxa = 0.5π (bulk). We show the occupations of the top two layers (top), the
bottom two layers (bottom) and the other layers (bulk), weighting each point’s color and thickness in the figure with the Fermi
function f0 at that layer for a temperature gradient of dT

dz
= 0.8t

kBa
at an average temperature of kBT = 0.6t. (b) Orbits for the

minimal model in Eqn. (2) with the same parameters as in (a) for cuts along kx at ky = 0. We again show the occupations of
the top two layers (top), the bottom two layers (bottom) and the other layers (bulk), weighting each point as in (a) with the
same temperature and temperature gradient. We show the mixed real- and momentum-space orbits and see that the the states
most occupied on the top and bottom are the arcs, while the bulk states merge into the arc and carry heat through the bulk.

of the variations can be estimated as follows: (a) The
change in the number N of electrons on a given surface

of area A with one Fermi arc
dN

dt
= A

dn

dE
dE
dk

dk

dt
where

the density of states of the Fermi arcs gA(E) ≡ dn
dE =

k0

~vF
and dE

dk = ~vF , determined by the magnitude of the Fermi
velocity vF and the length of the Fermi arc k0. The
Lorentz force on an electron wavepacket on a Fermi arc

is
dk

dt
=

e

~c
(vk ×B) =

e

~c
vFBet, where et is the unit

tangent vector to the Fermi arc, and we have assumed
for simplicity that the magnitude of the velocity vF of
the linearly dispersing Fermi arc states at different points
along the arc is the same. Thus the total rate of electrons

moving along each arc is given by
dN

dt
= A

e

~c
k0vFB. (b)

The electronic heat capacity of the bulk Weyl pockets

(see appendix A)
dE

dT
=

7π2

15

kBΛ3Θ3

nB
in terms of a di-

mensionless temperature Θ ≡ kBT
~vFΛ and density nB = N

V .

The contribution of the Fermi arcs to the thermal con-
ductivity is,

κSzzz =
14Np

15
(kBvF Λ2)Θ3

(
k0L

(lBΛ)2

)
, (4)

where the superscript S stands for “semiclassical” to dis-
tinguish it from “ultra-quantum” that we will consider
later. Since the momentum cutoff Λ provides the only
length scale in this continuum limit, the density scales as

nB ∼ Λ3 and lB =
√

~c
eB is the magnetic length. The T 3

dependence to the specific heat from Fermi arcs is anal-
ogous to that from phonons, however, the thermal con-
ductivity of phonons should be independent of magnetic
field, providing a route for separating phonon contribu-
tions from the electronic contribution of Weyl nodes.

The scale for κ in a bulk WSM is set by kBvF (2π/a)2 ≈
102 Wm−1K−1 where we have used vF ∼ 3 × 105 m

s ∼
c/103 and the lattice constant a ∼ 0.3nm. The additional
arc contribution is enhanced by the factor (L/lB) where
the magnetic length lB ≈ 25nm/

√
B(T )[Tesla]. For a

1 mm sample thickness in a 1 tesla magnetic field, the
enhancement factor L/lB ∼ 4 × 104 should render this
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effect experimentally measurable.

We have considered the arcs to lie in a plane perpen-
dicular to the direction of the applied magnetic field. In
an inversion-breaking Weyl semimetal with time-reversal
symmetry present, there is only one such plane. However,
in a time-reversal breaking Weyl semimetal, arcs may ex-
ist simultaneously perpendicular and co-planar with re-
spect to the applied magnetic field. In this case, the arcs
co-planar with the field will not experience a force in the
plane of the arcs. Hence, we expect that only the arcs
perpendicular to the field will result in a particle flux.

We also note that, in general, there are three contribu-
tions to the thermal conductivity in a Weyl semimetal:
(a) the contribution of only the bulk, (b) the contribu-
tion solely from the arcs and (c) the thermal conductivity
from the mixed bulk-arc conveyor belt discussed above.
The role of the bulk states has been discussed by previ-
ous work[29, 30], and we provide a detailed comparison
between the bulk and the arc-driven conveyor belt ther-
mal conductivity in a later section of this paper. The
arcs themselves are strictly two-dimensional and, hence,
the arcs which contribute to the thermal conductivity
of the conveyor belt states will not contribute directly
themselves to the thermal conductivity, since the Fermi
velocity on the arcs is perpendicular to the direction of
the thermal gradient and heat current. We emphasize
that the direction of the Fermi velocity on the arcs is di-
rectly responsible for the conveyor belt motion discussed
above.

Heat Map: In Fig. 2, we give a “heat map” for a fixed
temperature gradient applied across the top and bot-
tom surfaces around an average temperature. Such a
map highlights the states that are involved in momentum
space as heat flows from bottom to top in real space. In
Fig. 2a, we show three cuts along ky for the top and bot-
tom two layers (at fixed kya = 0.75π) and for the bulk
(at kya = 0.5π). We weight each point’s size and color
with the expectation value 〈z〉 multipled by the thermal

occupancy of that state f0(Ek) =

(
1 + e

Ek−µ
k
B
T

)−1

(we

have again taken µ = 0).

We see that on the “hot” end, states at higher energies
have a higher thermal occupation, while on the “cold”
end, states on the Fermi arcs have a lower thermal oc-
cupation. In Fig. 2b, we show three cuts along kx at
ky = 0 for the top two layers, the bottom two layers, and
all other layers with each point weighted as in Fig. 2a.
In Fig. 2b, we also trace out the orbits shown in Fig. 1,
this time overlaying them on the slab coordinates. We
see that the states most occupied on the top and bottom
are the arcs, while the bulk states merge into the arc and
carry heat through the bulk (see supplement).

Landauer conductances: We use the Landauer
formalism[41–44] to calculate the thermal K = A

Lκ

and electrical G = A
Lσ conductances[45] of the arc-

mediated channel and from their ratio show that the
Wiedemann-Franz law holds. The thermal conductance
is

K

T
= 2

k2
B

~

∫
dE
(
E − µ
kBT

)2(
−∂f0

∂E

)
M (E) T (E) , (5)

where T (E) is the transmission coefficient and M (E)
is the number of propagating modes. We expand
M (E) T (E) in a power series, and, by evaluating Eqn.
(5) and comparing it with Eqn. (4), we find that

M (E) T (E) = NP gB (E)
~
nB

dN

dt
, where NP and nB are

the number of pairs of Weyl nodes and the bulk den-
sity respectively, the bulk density of states is given by

g
B

(E) = 1
π2

E2

(~vF )3 and dN
dt is obtained previously.

The electrical conductance G = A
Lσ of the arc-

mediated channel can be similarly determined by calcu-
lating

G = 2
e2

~

∫
dE
(
−∂f0

∂E

)
M (E) T (E) . (6)

Using M (E) T (E) from the argument above,

GS =
Np
3

e2

~
g
B

(E)
~
n
B

dN

dt
. (7)

From Eqns. (4) and (7), we can find the Lorenz number

LS =
κSzzz
TσSzzz

=
7π2

5

(
kB
e

)2

(8)

for the arc-mediated channels. We note that the dimen-
sionless prefactor of the Lorenz number differs from its
usual value of π2/3 due to the massless Dirac nature of
the Weyl nodes. We note that although the Wiedemann-
Franz law holds, heat flows in the presence of a thermal
gradient without a net flow of charge due to the circulat-
ing currents.

We propose that optical injection of a heat current into
the conveyor belt should generate a temperature gradient
according to the thermal conductivity that we predict.
This thermal conductivity will be independent of scat-
tering between arcs and leads and therefore intrinsic to
the sample. The leads themselves will add a contact re-
sistance which will enhance thermalization on the surface
states.

Ultra-quantum Regime

For large magnetic fields along the z-direction, the
Weyl node energies split into discrete Landau levels
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shown in Fig. 3, given by

En(kz) = χ
~vF
lB

√
2|n|+ (kzlB)2. (9)

Due to the linear dispersion around the Weyl nodes, the
Landau levels are not evenly spaced. In the ultra quan-
tum limit, the chiral Landau level n = 0 in the bulk,
provides a single channel for entropy and charge trans-
port along the “conveyor belt”. The sign of the slope of
the n = 0 Landau level depends on the chirality of the

Weyl node. Here, lB =
√

~c
eB is the magnetic length, and

vF is the magnitude of the Fermi velocity.

We next investigate the heat current flow in response to
an applied temperature gradient in strong applied mag-
netic fields. We show that the arc-mediated magneto-
thermal conductivity in this regime allows for a direct
probe of the quantum of thermal conductance.

As an electron moves along the arc, it terminates on
the projection of a Weyl node, which, in the presence of
a large magnetic field, is described by Landau levels in
Eqn. (9). For kBT � ~vF

lB
, the only state available is

the zeroth Landau level. Because of the chiral nature
of these states, electrons from the arc traverse the bulk
without dissipation and emerge on the other surface. Af-
ter it reaches the other side, it moves along another Fermi
arc until it reaches the bulk Weyl node with the oppo-
site chirality. It then traverses the bulk in the opposite
direction and completes the loop.

Once again, we consider a thermal gradient in the same
direction as the magnetic field along z. The conveyor belt
motion of the electrons enhances the magnetothermal
conductivity. However, unlike the semiclassical regime,
now the n = 0 Landau levels provide a single quantum
channel for heat transport.

The specific heat of the zeroth Landau level (see Ap-

pendix B) in the low temperature limit Θ ≡ kBT

~vFΛ
� 1,

is
dE0

dT
≈ 2π

3

nBk
2
B

~vFΦ0
TB, where E0 is the energy per par-

ticle of the n = 0 Landau level and Φ0 = hc
e is the flux

quantum. The continuity of charge leads to a particle

current
dN

dt
= A

e

~c
k0vFB obtained through the bulk,

and by summing over the nodes, we obtain a nonzero net
heat current. The resulting thermal conductivity

κUQzzz =
π2

3
Np

kB
h

(kBT )
Lk0

l4BnB
. (10)

In units of the quantum of thermal conductance [34, 35]

GQth =
π2

3

kB (kBT )

h
we can rewrite Eqn. (11) to be

κUQzzz = GQthnmodes, (11)

where nmodes is given by

nmodes = Np
Lk0

l4BnB
(12)

can be interpreted as the number of modes per unit mag-
netic length. In the ultra-quantum limit, we see that the
chiral Landau levels provide individual channels of ther-
mal transport, allowing for a direct probe of the quantum
of thermal conductance.

Unlike the semiclassical case, we see that the thermal
conductivity in the ultra-quantum regime is quadratic in
field and has a linear temperature dependence so long
as kBT � ~vF

lB
. As the upper limit is approached,

higher Landau levels become thermally populated, al-
lowing them to also engage in Fermi arc-mediated mag-
netothermal transport. The motion of charge through
the bulk is dictated by the continuity of charge current
arising from motion on the arcs. Hence, any scattering
between the chiral and conventional Landau levels would
be intranodal in nature which should not affect motion
of charge through the bulk.

Landauer conductances in the ultra-quantum regime

As in the semiclassical regime above, we can use the
Landauer framework to find the electrical conductance in
the ultra-quantum limit. We find that

M (E) T (E) =
NP
π

1

n
B
vF l2B

dN

dt
. (13)

We use Eqn. (13) to also evaluate the electrical conduc-
tance given by Eqn. (6) to obtain

GUQ =
2NP
π

e2

~
1

n
B
vF l2B

dN

dt
. (14)

As in the semiclassical regime, we can again calculate the
Lorenz number in the ultra-quantum regime

LUQ =
κUQzzz

TσUQzzz
=
π2

3

(
kB
e

)2

. (15)

We see that in the ultra-quantum limit, the conventional

dimensionless prefactor of π2

3 is found in LUQ which re-
flects occupation of only the chiral n = 0 Landau level.

Intermediate regime

In order to investigate the crossover from the low-field
semiclassical limit to the ultra-quantum limit of only chi-
ral Landau levels, we include quantum effects of nonchiral
higher Landau levels. In this intermediate field regime,
the density of states for a pair of Weyl nodes in a mag-



7

T -dep B-dep L-dep

Arcs (S) κSzzz ∼ T 3 κSzzz ∼ B κSzzz ∼ L
Arcs (UQ) κUQzzz ∼ T κUQzzz ∼ B2 κUQzzz ∼ L

Bulk κbulk
zzz ∼ T 3 κbulk

zzz ∼ B2 κbulk
zzz ∼ L0

TABLE I. Summary of temperature, magnetic field, and
length dependence of arc-mediated κzzz in the semiclassical
and ultra-quantum limits as well as the bulk semiclassical
magnetothermal conductivity.

netic field,

gLL(E) =
B

Φ0

∫ Λ

−Λ

dkz
2π

(
δ(E − |E0|) + δ(E + |E0|)

+ 2
∑
n

(
δ(E − |En|) + δ(E + |En|)

))
, (16)

where En is given by Eqn. (9).

We numerically obtain the specific heat and magneto-
thermal conductivity (see Appendix C) shown in Fig. 3
with contributions from all Landau levels as a function
of field for several temperatures. At high temperature,
we see a crossover between linear field dependence to
quadratic field dependence of the specific heat as the field
is increased and only the lowest Landau level becomes
occupied. We summarize the field and temperature de-
pendence of the arc-mediated κzzz in Table I.

The magnetic length is given by lB = 25nm√
B[Tesla]

.

Hence, for a typical Weyl semimetal with Fermi veloc-
ity vF = 105 m

s , the ultraquantum limit is accessed at

temperatures kBT � ~vF
lB
∼ 10meV

√
B[Tesla].

We note that when the chemical potential does not lie
at the Weyl nodes, the specific heat will contain quan-
tum oscillations just as is experimentally observed in the
bulk κxxz response of NbP by Stockert et al.[46]. How-
ever, these quantum oscillations arise purely from the
bulk Weyl pockets and will also be present in the spe-
cific heat and thermal conductivity in other orientations
of applied magnetic field and temperature gradient. We
emphasize that it is the non-oscillatory component of
the magnetothermal conductivity that will contain signa-
tures of Fermi arc-mediated entropy transport. We point
out that in Eqns. (4) and (11), the thermal conductiv-
ity is proportional to L, meaning that the ratio κ/L, the
areal conductance, is really the intrinsic quantity that
does not depend on the sample’s dimension along the
z-axis.

COMPARISON WITH BULK THERMAL
CONDUCTIVITY OF WSM

The bulk thermal conductivity for a Weyl node of chi-
rality χ is given by [29]

κbulk
zzz =

∫
d3k

(2π)3
D (B,Ωχ

k) τ
v2
F

3

×
(
1 + l−2

B |Ω
χ
k|

2
) (E − µ)2

T

(
−∂f0

∂E

)
, (17)

where D (B,Ωχ
k) =

(
1 + 2π

B·Ωχ
k

Φ0

)−1

, τ is the scatter-

ing time, lB is the magnetic length, f0 is the equilib-
rium Fermi distribution, and Ωχ

k = χ
2

k
k3 is the chirality-

dependent Berry curvature of the bulk Weyl nodes. To
obtain the full magnetothermal conductivity of the bulk,
we sum over pairs of nodes of opposite chirality. At zero
field and for µ→ 0, we obtain the bulk thermal conduc-
tivity from Eqn. (17) to be

κbulk
zzz (B = 0) =

7π2

45
Np(kBvF Λ2)(v

F
τΛ)Θ3, (18)

as shown in table I. Here, instead of the cutoff Λ we
can equally well use the Brillouin zone size 2π/a, but we
prefer to leave it in terms of the cutoff to compare with
the arc contribution below.

For small values of field
~v
F

lBkBT
� 1, the bulk thermal

conductivity is

κbulk
zzz (B) =

Np
3π2

(kBvF Λ2)(v
F
τΛ)Θ3

(
7π4

15
+

(
~v

F

lBkBT

)4
)
.

(19)

The enhancement of κbulk
zzz in a magnetic field is related

to the chiral anomaly, and is a consequence of the nega-
tive magnetoresistance in Weyl semimetals. By combin-
ing the bulk and arc contributions, we obtain the total
thermal conductivity,

κ(B) = (kBvF Λ2)Θ3

(
(v
F
τΛ)

[
7π2

45
+

1

3π2

(
~v

F

lBkBT

)4
]

+

14π2

15

(
L

lB

)(
k0

lBΛ2

))
.

(20)

We recognize the third term to be from the arcs given by
Eqn. (4). The field independent term can be easily sep-
arated, and the term from the bulk proportional to B2

is suppressed by a factor of
(

~v
F

lBkBT

)4

. Therefore, we ex-

pect the arc-mediated term to be the dominant magnetic
field-dependent term.

It is useful to compare the thermal conductivity of the
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(a)

(c) (d)

(b)

FIG. 3. (a) Schematic of the Landau levels. Chiral n = 0 Landau levels (in red) with positive (negative) slope χ = 1 (χ = −1);
non-chiral Landau levels (n 6= 0) (in black). (b,c) Specific heat cv and magnetothermal conductivity κzzz for a single pair of
Weyl nodes in the intermediate quantum limit as a function magnetic field (Landau level cutoff Nmax = 50 and electron density

nB = 1). The temperature Θ ≡ kBT
~vFΛ

= 0.02 (blue), 0.04 (green), and 0.06 (red). At higher temperatures (red), we see a

crossover between the linear to quadratic low-field behavior when the ultra-quantum limit is reached. At lower temperatures
(green, blue) only the lowest Landau level is populated in the field range shown. (d) Fermi arc-mediated magnetothermal
conductivity for a single pair of Weyl nodes in the intermediate quantum limit as a function of magnetic field. Parameters are
the same as in (b,c).

WSM with that of free electrons at low temperatures
for which κfree ∼ cvvF ` ∼ k2

BTg(εF )vF `, where cv is
the free electron specific heat and ` is the temperature-
independent mean free path due to elastic scattering.
Substituting for the density of states g(εF ) we obtain,
κfree ∼ 102(Wm−1K−1)(kBT/εF ). The scale for κ in
a bulk WSM is set by kBvF (2π/a)2 ≈ 102 Wm−1K−1

where we have used vF ∼ 3 × 105 m
s ∼ c/103 and the

lattice constant a ∼ 0.3nm. Notice that this scale is
close to the prefactor of κfree. Now the other dimen-
sionless factors contributing to κbulk are vF τ(2π/a) ≈
200 and ~vF /lBkBT ≈ 10 meV

√
B(T )[Tesla]/kBT ,

where we have used the magnetic length estimate lB ≈
25nm/

√
B(T )[Tesla]. We therefore estimate the bulk

κbulkzzz ≈ 102(Wm−1K−1)10Np(kBT/4eV)3. Against this
bulk term, we compare the additional arc contribution
which is enhanced by the factor (L/lB) × (1/lBΛ) and
should be experimentally measurable. We also point out
that the bulk thermal conductivity in Eq. (19) is intrinsi-
cally volume-independent, whereas the arc conductivity
is a surface property: therefore, in Eq. (20), the depen-
dence of heat transport on the dimension of the samples
along the z-axis will differentiate the different contribu-
tions experimentally.

DISCUSSION AND SUMMARY

Arc-Mediated Entropy Transport in Dirac Semimetals:

In Dirac semimetals[47, 48], observed[49, 50] in Na3Bi
and Cd3As2, nodes of opposite chirality coexist at the
same momenta but are protected from annihilation with
each other by symmetry [51]. Because each Dirac node is
comprised of a pair of opposite chirality, each real space
surface of a Dirac semimetal has a pair of Fermi arcs
for each pair of Dirac nodes. It has been shown that
these double Fermi arcs are not topologically protected,
in general,[52], except on planes in the surface Brillouin
zone which preserve time-reversal invariance. We show
different cases for surface states of Dirac semimetals in
Fig. 4. Although Fermi arcs may terminate on projec-
tions of Dirac nodes (Fig. 4a), it is possible for pertur-
bations that break no symmetries of the Dirac semimetal
to deform the surface Fermi arcs into closed Fermi pock-
ets on the surface (Fig. 4b). Doping the system away
from the Dirac point may not change the nature of these
closed Fermi pockets (Fig. 4c) unless the doping is large
enough for the bulk Fermi pockets to grow and mix with
the surface states, restoring the arcs (Fig. 4d).

In cases (b) and (c) above, the topologically trivial
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a b

c d

FIG. 4. Schematic of the different cases for surface states in a
Dirac semimetal with a single pair of Dirac nodes[52]. Green
dots represent projections of the Dirac nodes on the surface
Brillouin zone. Red contours are surface states on a single
surface. Purple filled regions represent projections of bulk
Fermi pockets which enclose Dirac nodes. In (a-b), the Fermi
energy is at the Dirac nodes, while in (c-d) the Fermi energy
is doped away from the Dirac nodes. (a) A pair of surface
Fermi arcs terminates on the Dirac nodes on a single surface.
(b) A perturbation containing the full symmetry of the full
Dirac Hamiltonian which does not shift the bulk Dirac nodes
can deform the Fermi arcs into a closed Fermi pocket on the
surface, much like a topological insulator. (c) When the Fermi
energy is shifted away from the Dirac nodes, the surface states
may still form a closed Fermi pocket. (d) Sufficient doping
may cause the Fermi pockets to grow large enough for the
surface states to merge with the bulk pockets.

nature of the surface states negates the possibility of
Fermi arc-mediated entropy transport discussed in this
work. The cases (a) and (d) are more interesting. In
these cases, we have two copies of the conveyor belt or-
bits shown in Fig. 1. Hence, we obtain the same results
for the arc-mediated magnetothermal conductivity of a
Dirac semimetal as in Eqn. (4) and (11) by setting Np
to be twice the number of pairs of Dirac nodes. Case (d)
above may be the most physically relevant. In quantum
oscillation experiments on thin films of Cd3As2, there
is evidence that the observed Shubnikov-de Haas oscil-
lations arise from combinations of bulk Landau levels
and surface Fermi arcs [24, 26]. This opens the door
for studies of Fermi arc-mediated entropy transport in
Dirac semimetals.

Effect of disorder: We have tacitly assumed in the dis-
cussion above that we are justified in ignoring scattering

Material v
F

(
m
s

)
Np

TaAs[21] 3× 105 12

TaP[23, 53] 3× 105 12

NbAs[54, 55] 6× 105 12

NbP[56] 4.8× 105 12

Cd3As2[57, 58] 1.5× 106 2

Na3Bi[59] 7.5× 105 2

TABLE II. Several topological semimetal candidates for Fermi
arc-mediated entropy transport. Since Cd3As2 and Na3Bi are
Dirac semimetals, the number of Weyl nodes Np reported is
double the number of Dirac nodes.

effects given the topological nature of the Fermi arc me-
diated entropy flow. Here, we justify that assumption in
some detail. We must consider (i) scattering of electrons
on the Fermi arcs, (ii) scattering within a bulk Weyl node
(intra-nodal), and (iii) scattering between nodes (inter-
nodal) scattering.

(i) Scattering on the arcs is suppressed by the small
density of states of the linearly dispersing Fermi arcs.
As seen by a Golden rule argument, the scattering rate

1
τarc

(k) ∼
∑

k′ gA(Ek′)|〈k|V|k′〉|2, where V (r) is the im-
purity potential and the density of states on the arc is
given by gA(Ek) = k0

~vF . For multiple pairs of Weyl nodes,
with more than one Fermi arc on each surface, scattering
between arcs is possible, and, for materials with closely
spaced arcs in the surface Brillouin zone such scatter-
ing could suppress the arc-mediated thermal transport.
Thus, ideal materials are those with single pairs of Weyl
nodes, or those with well-isolated Fermi arcs in the sur-
face Brilllouin zone.

(ii) At finite temperatures, the width of the bulk chan-
nel is ∆k ∼ kBT

~vF . Even in the presence of any intra-nodal
scattering, charge and heat will continue to drift within
this channel dictated by the continuity equation.

(iii) At low temperatures, short-ranged impurities can
provide the large momentum transfers to scatter elec-
trons from one node to the other. Internode scattering
from slowly varying potentials or phonons is suppressed
at low temperatures kBT � ~ωD because only small mo-
menta phonons can be excited at these temperatures that
would typically contribute to inelastic scattering within
a given pocket. This phase space argument also rules out
phonon drag contributions, since for most known Weyl
semimetals, the Fermi energy is small compared to the
Debye energy EF � ~ωD, suppressing the number of
states available for phonon scattering and phonon drag
as pointed out by Stockert et al.[46].

Experimental implications:

We summarize the transport properties of some candi-
date materials for Fermi arc-mediated entropy transport
in Table II. Although weak spin-orbit coupling compared
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to the tantalum monopnictides causes the Weyl nodes to
be closer together in NbP and NbAs, they still appear to
be promising cadidates with high Fermi velocities. The
Dirac semimetal Cd3As2 has been shown to possess puta-
tive Shubnikov-de Haas oscillations that arise from com-
binations of bulk Landau levels and surface Fermi arcs
[24, 26]. We predict that Fermi arc-mediated entropy
transport would be an even stronger transport signature
of topological Fermi arcs in these materials.

We have considered orientations of magnetic fields per-
pendicular to the surface Brillouin zone in which Fermi
arcs reside. In systems which preserve time-reversal sym-
metry, there must be only a single pair of such surfaces
that have Fermi arcs. On all of the other surfaces, Weyl
nodes of opposite chirality will project on top of one an-
other and therefore not lead to Fermi arcs. When the
magnetic field is applied along such a direction, there will
be no contribution to the magnetothermal conductivity
from the Fermi arcs and no such conveyor-belt transport
of entropy. Although the bulk electronic pockets as well
as phonons may contribute to the thermal conductivity
in these other magnetic field configurations, we have ar-
gued above that the contribution of arc-mediated entropy
transport in the cofiguration shown in Fig. 1b will likely
be stronger than these other contributions. This will lead
to a clear anisotropy between directions with Fermi arcs
and without Fermi arcs.

CONCLUSION AND FURTHER DIRECTIONS

In conclusion, we have shown that in the presence of a
magnetic field and temperature gradient, each applied
perpendicular to the surface Brillouin zone of a Weyl
semimetal, the Lorentz force on the Fermi arcs leads
to a conveyor belt motion of charge and a net flow of
heat. This heat flow leads to a highly anisotropic mag-
netothermal conductivity that has distinct behaviors in
the semiclassical and quantum regimes, and can be sep-
arated from the bulk contribution.
Type II Weyl semimetals: In this paper, we have focused
on type I topological semimetals, but recently a second
class, known as type II Weyl and Dirac semimetals, have
been theoretically predicted [60–63] and observed in sev-
eral candidate materials[64–68]. Type II WSMs have
non-vanishing density of states at the Weyl points and
can be understood as the limiting case of an indirect gap
semiconductor where the gap closes at the Weyl nodes.
The tilted nodes in type II WSMs lead to several distinct
characteristics, perhaps most notably the lack of chiral
Landau levels when the magnetic field is applied outside
of the tilt cone[60, 69]. Due to the extended nature of
the Fermi pockets that meet at the Weyl nodes, lattice
models[39] are needed to accurately describe their prop-
erties rather than the continuum models used for most
of the analysis in this work. We leave an investigation

of Fermi arc mediated magnetothermal conductivity in
type II WSMs for future work.

Applications: We point out that conveyor-belt thermal
transport could potentially find applications in magneti-
cally actuated all-solid-state thermal switches. Presently,
most thermal switches are mechanical or involve ex-
change gases, because all-solid-state switches have either
low switching ratios or work over only a limited tem-
perature range. Here we suggest that the amplitude or
the direction of an external magnetic field can affect a
change in a Weyl semimetal from an “on” state where
arcs contribute to entropy transport to an “off” state
where they do not. Given the highly directional nature
of the entropy transport, we expect it to be relatively im-
mune from scattering. We further expect to achieve high
switching ratios and a large operating temperature range
by adjusting the sample length, as long as the phonon
contribution to the total conductivity is not too large.
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APPENDIX: HEAT CAPACITY OF WEYL
NODES

A: semiclassical regime

The energy density u = U/V of Weyl nodes is:

u =

∫ ~v
F

Λ

−~v
F

Λ

dE E g(E)

1 + eβ(E−µ(T ))

=
1

π2(~vF )3

∫ ~v
F

Λ

−~v
F

Λ

dE E3

1 + e
E−µ(T )
kBT

, (21)

where V is the volume and Λ is a momentum regulariza-
tion which is set by the separation of the Weyl nodes in
momentum-space. It is useful to define a dimensionless
temperature Θ = kBT

~vFΛ in units of the energy cut off. For
the case when µ(T )→ 0

u =
1

π2
(kBT )Θ3

∫ 1
Θ

− 1
Θ

dx
x3

1 + ex
. (22)
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This integral can be evaluated in terms of the polyloga-

rithm function of order s, Lis(z) =
∑∞
k=1

zk

ks
for complex

z such that |z| < 1. The heat capacity is given by:

du

dT
=

Λ3kB
π2

(
−Θ3

(
7

15
+ Li4

(
−e 1

Θ

))

+
2

Θ

1

1 + e
1
Θ

− 8ln
(

1 + e
1
Θ

)
− 24ΘLi2

(
−e 1

Θ

)
+ 48Θ2Li3

(
−e 1

Θ

))
. (23)

For temperatures such that Θ . 0.4, it can be shown
that

du

dT
≈ c0
π2

Λ3kBΘ3, (24)

where c0 = 7π4

15 is a purely numerical constant. We can

also rewrite it in terms of the energy per particle as: dE
dT

from Eqn. (24) to be

dE

dT
= c0

kBΘ3

π2nB
, (25)

where nB = N
V is the density.

B: ultra-quantum regime

In the ultraquantum regime, only the n = 0 Landau
level participates in entropy transport. In Eq.21 the in-
ternal energy is given in terms of g0, the density of states
of the zero energy Landau levels

g0(E) =
B

Φ0

∫ Λ

−Λ

dkz
2π

(
δ(E − |E0|) + δ(E + |E0|)

)
, (26)

where E0 is the energy of the chiral Landau level. Here
Φ0 = hc

e is the quantum of magnetic flux. The internal
energy density from both nodes is:

u0 =
B

Φ0
~vF

∫ Λ

−Λ

dkz
2π

(
kz

1 + eβ(~vF kz−µ)

− kz
1 + eβ(−~vF kz−µ)

)
, (27)

which can be evaluated to obtain

du0

dT
=
kBΛB

πΦ0

(
4

Θ

1

1 + e−
1
Θ

− 8kBΛln
(

1 + e
1
Θ

)
+ 2Θ

(
π2

3
+ 4Li2

(
− e 1

Θ

)))
, (28)

where Lis(z) is the polylogarithm function of order s.

In the low temperature limit Θ � 1, we find that the
specific heat is

du0

dT
≈ 2π

3

ΛkB
Φ0

ΘB · (29)

C: crossover regime

From Eqn. (16), the additional internal energy can be
calculated by

ũ = 2
B

Φ0

~vF
lB

∑
n

∫ Λ

−Λ

dkz
2π

h(kz, n)(
1

1 + e(β~vF /lB)(h−µ)
− 1

1 + e−(β~vF /lB)(h−µ)

)
, (30)

where h(kz, n) =
√
|n|+ k2

z l
2
B . The total energy density

is now given by the sum of Eqns. (27) and (30) to obtain
utot = u0 + ũ. Unlike Eqn. (27), the expression above for
ũ cannot be evaluated analytically. Instead, we evaluate
Eqn. (30) numerically by introducing a regularization
Nmax which cuts off the sum over Landau levels. We
take the system to be at charge neutrality where µ = 0.
We can then calculate the specific heat by numerically
evaluating derivatives with respect to temperature.
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