
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Loop models, modular invariance, and three-dimensional
bosonization

Hart Goldman and Eduardo Fradkin
Phys. Rev. B 97, 195112 — Published  8 May 2018

DOI: 10.1103/PhysRevB.97.195112

http://dx.doi.org/10.1103/PhysRevB.97.195112


Loop Models, Modular Invariance, and Three Dimensional Bosonization

Hart Goldman and Eduardo Fradkin
Department of Physics and Institute for Condensed Matter Theory,

University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA

We consider a family of quantum loop models in 2+1 spacetime dimensions with marginally long-
ranged and statistical interactions mediated by a U(1) gauge field, both purely in 2+1 dimensions
and on a surface in a 3+1 dimensional bulk system. In the absence of fractional spin, these theories
have been shown to be self-dual under particle-vortex duality and shifts of the statistical angle of
the loops by 2π, which form a subgroup of the modular group, PSL(2,Z). We show that careful
consideration of fractional spin in these theories completely breaks their statistical periodicity and
describe how this occurs, resolving a disagreement with the conformal field theories they appear
to approach at criticality. We show explicitly that incorporation of fractional spin leads to loop
model dualities which parallel the recent web of 2+1 dimensional field theory dualities, providing a
nontrivial check on its validity.

I. INTRODUCTION

In theories of non-relativistic particles in 2+1 dimen-
sional flat spacetime, it is an established fact that at-
tachment of even numbers of flux quanta to each particle
does not change their statistics, provided the world lines
of the particles do not intersect1. This mapping from
the original system of interacting particles to an equiv-
alent system of (also interacting) “composite particles”
(fermions or bosons) coupled to a dynamical Abelian
Chern-Simons gauge field is an identity at the level of
their partition functions (see Ref.2 for a review). These
mappings have played a key role in the theory of the frac-
tional quantum Hall fluids3–6, in particular in elucidat-
ing their topological nature7–10, and showing that they
are described by a Chern-Simons gauge theory at low
energies11. With subtle but important differences, anal-
ogous mappings for relativistic quantum field theories in
2+1 dimensions between massive scalar fields and Dirac
fermions were argued by Polyakov12. Because this du-
ality involves transmutation of both statistics and spin,
it does not accommodate the exact invariance under flux
attachment seen in its non-relativistic counterpart.

Recently, a similar duality to Polyakov’s was conjec-
tured to hold, relating a Wilson-Fisher boson coupled to
a Chern-Simons gauge field to one of a free Dirac fermion.
From this “3D bosonization” duality, it was shown that
one can derive a web of new dualities? between relativis-
tic quantum field theories in 2+1 dimensions16,17. These
conjectures were motivated, in part, by the remark-
able duality found between non-Abelian Chern-Simons
gauge theories coupled to matter in the ’t Hooft large-
N limit18–20 and by Son’s proposal to map the problem
of the half-filled Landau level6 to a theory of massless
Dirac fermions in 2+1 dimensions21, as well as the work
connecting this problem to the theory of topological insu-
lators in 3+1 dimensions22,23. The evidence for these du-
alities has been steadily mounting, with derivations from
Euclidean lattice models24, wire constructions25,26, and
deformations of supersymmetric dualities27–29. However,
it has remained an open problem to construct derivations

of these dualities in which relativistic flux attachment is
implemented in a simple and transparent way explicitly
using the Chern-Simons term.
In this article, we show that such derivations can be

constructed using relativistic models of current loops in
2+1 dimensions coupled to Chern-Simons gauge fields? .
Such models can capture the physics of the theories of
interest near criticality. They are analogues of models
originally studied by Kivelson and one of us33, which
take the schematic form

1

2

[

g2Jµ
1√
∂2
Jµ + 2iθǫµνρJµ

∂ν
∂2
Jρ

]

, (1.1)

where Jµ is a configuration of closed bosonic world lines
satisfying ∂µJ

µ = 0. Here the first term is a long-ranged
interaction of strength g2, and the second term is a link-
ing number which endows the matter with statistical an-
gle θ. The model of Ref.33 displays self-duality under the
modular group? PSL(2,Z) generated by particle-vortex
duality, which maps a theory of matter to one of vortices
interacting with an emergent gauge field34,35, and flux
attachment, which shifts θ by π. Similar PSL(2,Z) struc-
tures arise in the study of the phase diagram of the quan-
tum Hall effect36–40 as well as in lattice models exhibiting
oblique confinement41–46. Another appears as electric-
magnetic duality and Θ-angle periodicity in 3+1 dimen-
sions, which can be extended to correlation functions
in 2+1 dimensional conformal field theories (CFTs)47,48.
More recently, this modular group has appeared as a way
of organizing the above mentioned web of 2+1 dimen-
sional field theory dualities16. It is important to note,
however, that the PSL(2,Z) of the duality web is not
a group of dualities. Rather, it generates new dualities
from known ones. On the other hand, the PSL(2,Z) of
the loop models we discuss here is to be taken as a group
of dualities.
The invariance under flux attachment appearing in

Ref.33 is surprising given the apparent absence of such a
symmetry in relativistic theories mentioned above. How-
ever, we will see that this is a consequence of a choice of
regularization which is impossible to apply to continuum
Chern-Simons gauge theories coupled to matter. This



choice of regularization dispenses with the “fractional
spin” which massive particles are endowed with due to
their interaction with the Chern-Simons gauge field. This
fractional spin was at the center of Polyakov’s original
argument for boson-fermion duality, and it is responsi-
ble for the complete breaking of statistical periodicity? .
Therefore, the inclusion of fractional spin allows contact
with the Chern-Simons-matter theories comprising the
web of dualities, enabling us to show that theories re-
lated by boson-fermion duality correspond to the same
loop model. We are thus able to derive a duality web of
loop models which parallels that of Refs.16,17.

We proceed as follows. In Section II, we review the
model of Ref.33, discuss the inconsistency of statisti-
cal periodicity with the web of field theory dualities of
Refs.16,17, and review the appearance of PSL(2,Z) in
both contexts. We then introduce the notion of fractional
spin in Section III, and we describe how it breaks statis-
tical periodicity and is generic if our goal is to realize
theories of relativistic matter coupled to Chern-Simons
gauge fields at criticality. In Section IV, we show that
the inclusion of fractional spin leads to consistency with
the duality web and derive a parallel duality web of loop
models. We conclude in Section V.

II. FLUX ATTACHMENT IN A SELF-DUAL

LOOP MODEL

A. Model

Motivated by the fact that all quantum Hall plateau
transitions appear to have essentially the same critical
exponents36,49,50, a phenomenon referred to as superuni-
versality, Kivelson and one of us wrote down a model of
current loops with long-ranged (1/r2, where r is the dis-
tance in 2+1 dimensional Euclidean spacetime) and sta-
tistical (linking number) interactions on a 3D Euclidean
lattice displaying invariance under flux attachment (T )
and self-duality under particle-vortex duality (S)33. This
model therefore describes superuniversal families of fixed
points related by elements of the modular group gener-
ated by S and T , PSL(2,Z). These fixed points have
the surprising property that they not only share critical
exponents, but also conductivities and other transport
properties.
The loop model of Ref.33 consists of integer-valued

current loop variables Jµ representing the world lines
of bosons on a 2+1 dimensional Euclidean cubic lattice,
with marginally long-ranged and statistical interactions.
The partition function is

Z =
∑

{Jµ}
δ(∆µJ

µ)e−S , (2.1)

where the delta function enforces the condition that the
currents Jµ are conserved, or that the world lines form
closed loops. We require that the world lines are non in-

tersecting, meaning that the bosons have a strong short-
ranged repulsive interaction (“hard-core”). The action S
is defined to be

S =
1

2

∑

r,r′

Jµ(r)Gµν (r − r′)Jν(r′) +
i

2

∑

r,R

Jµ(r)Kµν (r, R)J
ν(R)

+ i
∑

r,r′

e(r − r′)Jµ(r)Aµ(r′) +
∑

R,R′

h(R−R′)ǫµνρJµ(R)∆νAρ(R
′) (2.2)

+
1

2

∑

r,r′

Aµ(r)Π
µν (r, r′)Aν(r

′) ,

where r, r′ are sites on the direct lattice, R are sites on the
dual lattice, ∆µ is a right lattice derivative, and Aµ is a
background probe electromagnetic field. Importantly, in
this model we regard the loops as matter and flux world
lines which follow each other, being separated by a rigid
translation, so R = r + (1/2, 1/2, 1/2).

The symmetric tensor Gµν and the antisymmetric ten-
sor Kµν are assumed to behave at long distances such

that in momentum space they take the form

Gµν(p) =
g2

|p|
(

δµν − pµpν/p2
)

, (2.3)

Kµν(p) = 2iθ ǫµνρ
pρ

p2
. (2.4)

Here Gµν represents long-ranged interactions (i.e. a 1/r2

interaction, where r is the Euclidean distance in 2+1
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spacetime dimensions), and Kµν represents the statisti-
cal interaction between matter fields (direct lattice) and
flux (dual lattice) currents. In Eq. (2.3), the parameter g
is the coupling constant. The parameter θ of Eq. (2.4) is
the statistical angle of the world lines, and so θ/π is the
number of flux quanta attached to each matter particle.
Because we have defined matter and flux world lines

to follow one another, conventional self-linking processes
are absent. As a result, the action for the statistical
interaction of a given closed loop configuration Jµ is

θ × Φ[J ], where Φ[J ] ∈ 2Z , (2.5)

where Φ[J ] is twice the linking number of the loop con-
figuration. In the continuum limit, Φ[J ] is given by

Φ[J ] =
1

2θ

∫

d3p

(2π)3
Jµ(−p) Kµν(p) Jν(p) (2.6)

=
1

4π

∫

d3x

∫

d3y ǫµνρ Jµ(x)
(xν − yν)
|x− y|3 Jρ(y)

and is an even integer, so long as Jµ does not include any
self-linking processes. This is twice the linking number
since it counts each link twice (or each particle exchange
once). The phase θΦ[J ] should be regarded as the Berry
phase of a configuration of closed loops labeled by the
currents Jµ.
In terms of Φ, the partition function for long, closed

loops can be written as

Z =
∑

{Jµ}
δ(∆µJ

µ) eiθΦ[J] e−
1
2

∑
r,r′ J

µ(r)Gµν(r−r′)Jν(r′) .

(2.7)
where we have suppressed source terms. Because Φ[J ] is
an even integer, the partition function is invariant under

T : θ 7→ θ + π . (2.8)

In other words, this theory is invariant under attachment
of any number of flux quanta. Physically, this is due to
our neglect of self-linking, which would correspond to
single exchange processes, and so the exchange processes
allowed in the theory come in pairs.? Allowed exchange
processes involving fermions therefore have the same am-
plitudes as their bosonic counterparts.
The reader may worry about the fact that we seem

to allow θ to take fractional values. If we were to think
of the statistical interaction as being obtained by inte-
grating out a Chern-Simons gauge field, this would be
inconsistent with gauge invariance in a purely 2+1 di-
mensional theory. Additionally, because θ ∼ 1/k, where
k is the Chern-Simons level, T transformations do not
map integer levels to integer levels. This can be resolved
by the introduction of auxiliary gauge fields so that no
gauge field in the theory has a fractional level, as has
been done in the study of the fractional quantum Hall
effect (see e.g. Refs.2,51). We will nevertheless proceed
with fractional values of θ and k for now since they should
not affect local properties of the theory, and they do not

run afoul of gauge invariance if the theory is defined on
the boundary of a 3+1 dimensional system.
In addition to invariance under shifts of the statistical

angle of Eq. (2.8), it can easily be seen that the model in
Eq. (2.2) is also self-dual (in the absence of background
fields, which break self-duality explicitly) under bosonic
particle-vortex duality34,35. This duality is a consequence
of the fact that in 2+1 dimensions, a conserved current
Jµ can be related to the field strength of an emergent
gauge field aµ

Jµ =
1

2π
ǫµνλ∆

νaλ . (2.9)

In the case of the 3D XY model, this allows one to rewrite
the partition function as one of bosonic vortex variables
strongly interacting via a logarithmic potential mediated
by aµ. This dual theory is known as the Abelian Higgs
model. In general, bosonic particle-vortex duality relates
the symmetric, or insulating, phase of the matter vari-
ables to the broken symmetry, or superfluid, phase of the
vortex variables: matter loops are scarce when vortex
loops condense and vice versa. For the models described
by Eq. (2.2), particle-vortex duality is the map (see Ap-
pendix A),

S : τ 7→ − 1

τ
, (2.10)

where we have defined the modular parameter

τ =
θ

π
+ i

g2

2π
. (2.11)

Together, S and T generate the modular group
PSL(2,Z), which is the group of transformations

τ 7→ aτ + b

cτ + d
, (2.12)

where a, b, c, d ∈ Z and ad− bc = 1.
Invariance of the partition function under PSL(2,Z)

enabled the authors of Ref.33 to make predictions for the
DC conductivities of this theory at the so-called modular
fixed point values of τ . These are the points which are
invariant under a particular modular transformation. We
briefly review these results in the following subsection.
In particular, since at the fixed points of PSL(2,Z) the
longitudinal conductivity σxx is finite, the theory at such
fixed points must also be at a fixed point in the sense
of the renormalization group. One of the goals of the
present work is to understand the nature of the conformal
field theories describing these fixed points.

B. Modular Fixed Points and Superuniversal

Transport

If we consider the partition function to be invariant
under modular transformations in PSL(2,Z), then we can
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fully constrain transport properties at the modular fixed
points. Each fixed point can be related to one of τ = i

(invariant under S), τ = 1
2 + i

√
3
2 (invariant under T S),

τ = i∞, or τ =∞.
Under a modular transformation which leaves a fixed

point invariant, we expect invariance of the loop-loop cor-
relation function

Dµν(p; τ) = 〈Jµ(p)Jν(p)〉 = Deven(p; τ)(δµν − pµpν/p2) +Dodd(p; τ)ǫµνλ
pλ

|p| . (2.13)

Calculating Dµν then amounts to writing down how
it transforms under the modular transformation which
leaves the fixed point invariant, equating that result to
Dµν , and then solving. It is convenient to define

D(τ) =
2π

|p| (Dodd(τ) − iDeven(τ)) . (2.14)

One can derive the transformation law for D(τ) under S
by exploiting the invariance of the current-current corre-
lation function

Kµν = − δ

δAµ

δ

δAν
logZ[A]

∣

∣

A=0
, (2.15)

which is invariant under any duality transformation and
tracks how the source terms transform. It is not the same
as the loop-loop correlation function, although they are
related. Some algebra33 shows that the invariance of Kµν
implies

D

(

− 1

τ

)

= τ2D(τ) + τ . (2.16)

This equation implies that D(τ) is not invariant under S,
instead transforming almost as a rank 2 modular form33.
We say almost because of the the last term in Eq. (2.16),
which is known as the modular anomaly.
The conductivity,? in units of e2/~, is defined in terms

of the loop-loop correlation function as

σxx(τ) =
1

2π
Im[D(τ)] , σxy(τ) =

1

2π
Re[D(τ)] .

(2.17)
This result enables us to immediately calculate the

conductivity at the fixed point τ = i, which is invari-
ant under S transformations

D(i) = −D(i) + i⇒ D(i) =
i

2
, (2.18)

so the conductivity at τ = i is

σxx(i) =
1

2π
Im[D(i)] =

1

4π
, σxy(i) = 0 . (2.19)

This gives a consistent result with continuum particle-
vortex duality because it only requires self-duality under
S. The transport properties of this fixed point with Dirac
fermion matter have been explored in detail in Ref.53.

Before moving on to the other fixed points, a general
result valid for all fixed points can be derived if we con-
sider D(τ) to be invariant under T transformations

D(τ + 1) = D(τ) . (2.20)

This can be thought of as a statement of superuniver-
sality, as it equates conductivities at different values of
θ = πRe[τ ]. It implies that the general transformation
law for D(τ) is

D

(

aτ + b

cτ + d

)

= (cτ + d)2D(τ) + c(cτ + d) , (2.21)

This enables us to solve for D(τ) at an arbitrary fixed
point. In particular, it enables us to uniquely determine
D(τ) at the fixed points

D(τ) =
i

2 Im[τ ]
. (2.22)

Notice that this implies that the Hall conductivity is fixed
at zero. The only ingredient required to obtain this result
is modular invariance, manifested in duality, Eq. (2.16),
and periodicity, Eq. (2.20). In Ref.33, this result was
interpreted as implying that when the loop model is at
a modular fixed point where σxx is finite (e.g. τ = i),
it is at a critical point, where the loops become arbi-
trarily large and proliferate. In other words, at these
modular fixed points the loop model must at a renormal-
ization group fixed point represented by a scale-invariant
(and, presumably, conformally invariant) quantum field
theory.?

We can use Eq. (2.22) to derive conductivities for the

other fixed points. The point at τ = 1
2 + i

√
3
2 , referred

to as the self-dual fermion point in Ref.33 despite having

θ = π/2, has conductivity σxx(1/2 + i
√
3/2) = 1

2π

√
3
3 .

Additionally, in Ref.33, it was noted that there are mod-
ular fixed points on the real axis, which formally have
σxx(∞) → ∞. However, in this limit, where the parity-
even long-ranged interactions vanish, the short-ranged
interactions can no longer be neglected and, in a sense,
become dominant. In the next subsection, we will see
that these “pathological” fixed points of the modular
symmetry are in conflict with results derived from the
duality web. We will later see in Section III that the
correct definition of the loop models at short distances
necessarily implies fractional spin, which spoils the peri-
odicity symmetry (and hence modular invariance).
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C. Modular Invariance and the Web of Dualities

1. An Attempt at a Field Theory Description

It is natural to ask whether at criticality the loop mod-
els in Eq. (2.2) approach relativistically invariant CFTs
which inherit modular invariance and what the interpre-
tation of this might be in the context of the duality web
of Refs.16,17 and its own PSL(2,Z) structure. These the-
ories would display superuniversality in both critical ex-
ponents and transport. The only obvious local candidates
for such theories would consist of matter fields on a 2+1
dimensional surface in a bulk 3+1 dimensional spacetime
interacting via an emergent, dynamical gauge field that
propagates in the bulk with Maxwell and Θ terms. Such
theories are analogous to models of fractional topologi-
cal insulators54–62, which in the bulk have fractional Θ-
angles and support gapless matter on their boundaries.
The connection to the loop model Eq. (2.2) is immediate:
the Maxwell term would then integrate to the surface as
long-ranged 1/r2 interactions between the matter par-
ticles, and the Θ term would become a Chern-Simons
term of level k = Θ/2π which endows the matter with
fractional statistics. One may also consider the surface
theory on its own without a bulk, but this theory would
be non-local. Without referencing a bulk, the Lagrangian
for these theories takes the form

LCFT = Lmatter[a]−
1

4e2
fµν

i√
∂2
fµν +

k

4π
ada , (2.23)

where aµ is a dynamical gauge field, fµν = ∂µaν − ∂νaµ,
we use the notation AdB = ǫµνρAµ∂νBρ, and we have
again suppressed background terms. Lmatter[a] can be
taken to be the Lagrangian either for a single species of
Dirac fermion or Wilson-Fisher boson coupled to aµ. In
the case of bosonic matter, a natural modular parame-

ter for this theory is k + i 2πe2 = Θ
2π + i 2πe2 , which would

correspond to − 1
τ in the loop model language.

Models of the form Eq. (2.23) are self-dual under S,
which can be taken to be (fermionic or bosonic) particle-
vortex duality22,23,34,35. Recently, inspired by the web
of field theory dualities, this self-duality has been ex-
plored anew26,53, building on the earlier analytic work
on bosonic loop models in Ref.33 and on numerical work
at θ = 063. However, invariance under T is far from
manifest in these theories. It is a deformation of the
Chern-Simons level, which does not preserve the phase
diagram of the theory, affecting both local (e.g. Hall
conductivities) and global (e.g. ground state degeneracy
on a torus) properties of the gapped phases. Moreover,
invariance of transport properties under T leads to pre-
dictions which are inconsistent with those of the duality
web, which does not accommodate sharing of transport
properties amongst theories with general values of k, as
we will see below in the next subsection. Theories of the
form of Eq. (2.23) related by T therefore cannot be dual.
In Section III, we will see that this apparent tension is
resolved upon the introduction of fractional spin, which
breaks periodicity in the loop models completely.

2. Inconsistency of Modular Invariance with the Duality

Web

We can check for consistency of the transport predic-
tions one obtains from modular invariance with those
from the duality web of Refs.16,17. While the predic-
tions for the modular fixed point at τ = i are consistent
whether the matter content is fermionic or bosonic53,63,
this is not the case for the fixed points on the real τ line.
We can see this by studying the (conjectured) duality be-
tween a free Dirac fermion? and a gauged Wilson-Fisher
fixed point

iψ̄ /DAψ −
1

8π
AdA←→ |Daφ|2 − |φ|4 +

1

4π
ada+

1

2π
adA←→ |Db−Aφ̃|2 − |φ̃|4 −

1

4π
bdb , (2.24)

where A is a background gauge field, Dµ
α = ∂µ − iαµ,

and we use the notation /α = αµγµ, where the γµ’s are
the Dirac gamma matrices. Throughout this work, we
will use←→ to indicate duality. The duality between the
bosonic theories is a particle-vortex duality. We expect
the bosonic theories to correspond to the loop model fixed
points at τ = ∓1, k = ±1 (invariant under T 2S), where
k is the level of the Chern-Simons gauge field.

Because the Dirac fermion on the left hand side of Eq.
(2.24) is free, we can use this duality to calculate the op-
tical conductivities of the strongly coupled bosonic the-
ories. As with the loop models, duality implies that the

correlation function,

Kµν = − δ

δAµ

δ

δAν
logZ[A]

∣

∣

A=0
, (2.25)

should be the same for each of these theories. From the
free fermion theory, it is easy to calculate the conductiv-
ity (again in units of e2/~)

1

iω
Kxx =

1

16
,
1

iω
Kxy = − 1

4π
. (2.26)

From the particle-vortex duality in Eq. (2.24), we see
that the current-current correlation functions for the φ
and φ̃ gauge currents, Jµ and J̃µ respectively, differ only

5



in the Hall conductivity

1

iω
Kij(ω) =

1

iω
〈J̃i(−ω)J̃j(ω)〉

=
1

iω
〈Ji(−ω)Jj(ω)〉 −

1

2π
ǫij . (2.27)

Notice that this matches Eq. (2.16) for the case τ = −1.
Upon denoting?

σφij =
1

iω
〈Ji(−ω)Jj(ω)〉 , (2.28)

σφ̃ij =
1

iω
〈J̃i(−ω)J̃j(ω)〉 , (2.29)

we obtain

σφxx = σφ̃xx =
1

16
, σφxy = −σφ̃xy =

1

4π
. (2.30)

This result disagrees with the prediction of Eq. (2.22)
of modular invariance! Not only is the Hall conductivity
nonvanishing, but the transverse conductivity is finite.
Hence, if the bosonization duality is to be trusted, peri-
odicity cannot extend to transport in theories of gapless
matter coupled to a Chern-Simons gauge field, i.e. a
version of Eq. (2.20) cannot hold. The conclusion one is
driven toward is that any loop model description of these
theories cannot be periodic either.

3. A Multitude of Modular Groups

Before concluding this section, we note the appearance
of PSL(2,Z) in the context of the duality web of Ref.16

in order to distinguish it from the modular group we are
primarily concerned with. In that work, new dualities
are obtained from old ones by the application of modular
transformations to the conformal field theories on either
side of a duality. If Φ denotes a set of dynamical fields
and A is a background gauge field, these transformations
act on a Lagrangian L[Φ, A] as47

S̃ : L[Φ, A] 7→ L[Φ, a] + 1

2π
Ada , (2.31)

T̃ : L[Φ, A] 7→ L[Φ, A] + 1

4π
AdA , (2.32)

where a is a dynamical gauge field. Here S̃ involves gaug-
ing A → a and adding a BF term coupling a to a new
background gauge field (also denoted A), and T̃ is simply
the addition of a background Chern-Simons term. If A is
allowed to exist in a bulk 3+1 dimensional spacetime for
which L[Φ, A] is the boundary Lagrangian, S̃ and T̃ cor-
respond respectively to electromagnetic duality and Θ-
angle periodicity of the bulk theory. The modular group
generated by S̃ and T̃ also organizes the global phase di-
agram of the fractional quantum Hall effect, where it has
a natural action on the conductivities of the incompress-
ible phases36–39. It has also provided insight into the

problem of superuniversality, relating theories which ap-
pear to share correlation length exponents despite having
distinct transport properties40.
In general, the modular transformations S̃ and T̃ are

not duality transformations themselves: they do not al-
ways leave the partition function of a particular theory
invariant. This is obvious for T̃ , which shifts the Hall
conductivity? . S̃, on the other hand, is only occasion-
ally a duality transformation, e.g. in the case of the du-
ality between the Abelian Higgs model and a boson at its
Wilson-Fisher fixed point. In contrast, the PSL(2,Z) as-
sociated with the self-dual loop model of Ref.33 is a group
of dualities: there S is identified with particle-vortex du-
ality, and T is periodicity. S can also be related to bulk
electromagnetic duality in the case where A is a dynam-
ical field, albeit in a way slightly different from S̃53.

III. FRACTIONAL SPIN AND THE FATE OF

PERIODICITY

A. Fractional Spin and the Framing Anomaly

The full PSL(2,Z) invariance of the loop model of
Ref.33 above relies on the absence of self-linking and
thus of fractional spin. This corresponds to a convenient
choice of regularization, but we will find that such reg-
ularization is not available for CFTs of the form of Eq.
(2.23). To see this, we must carefully include self-linking
in the loop models reviewed above, as such processes
generically appear in continuum field theories. More-
over, whenever one considers self-linking processes in a
Chern-Simons theory, they are confronted with the fram-
ing anomaly, with which fractional spin is associated. We
will find that (1) the inclusion of self-linking processes
while neglecting fractional spin breaks the T -invariance
of the loop model not only down to invariance under T 2

(the usual statistical periodicity θ ∼ θ + 2π), and that
(2) fractional spin breaks T -invariance entirely.
Consider the loop model of Eq. (2.2) with the inclu-

sion of self-linking processes. For convenience, now and
in the remainder of this article we will use a continuum
description, replacing lattice sums with integrals. The
reader may be concerned that this passage to the contin-
uum is too cavalier. However, starting from a continuum,
gapped field theory, we can always rewrite the partition
function as a world line path integral without referencing
a lattice. See, for example, Refs.2,67–70.
The linking number term in the action is

θΦ[J ] = θ

∫

d3xJd−1J (3.1)

=
θ

4π

∫

d3x

∫

d3y ǫµνρJµ(x)
(xν − yν)
|x− y|3 Jρ(y) .

Note that to properly define this term, we must assume
that the configuration J does not involve any loops which
cross. This constraint can be implemented through ad-
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ditional short-ranged interactions like those which char-
acterize the Wilson-Fisher fixed point. Now consider a
configuration of two loops, J(x) = ℓ(1)(x)+ℓ(2)(x), where
each ℓ(i) represents a single closed loop with unit charge.
The action of this configuration is

θΦ[J ] = θ
(

2ϕ[ℓ(1), ℓ(2)] + ϕ[ℓ(1), ℓ(1)] + ϕ[ℓ(2), ℓ(2)]
)

,

(3.2)
where

ϕ[ℓ(i), ℓ(j)] =
1

4π

∫

d3xd3y ǫµνρℓ(i)µ (x)
(xν − yν)
|x− y|3 ℓ(j)ρ (y) .

(3.3)
The first term in Eq. (3.2) is twice the linking number of
the two loops and is an integer-valued topological invari-
ant: it simply counts the number of times the two loops
link. This is the only term which appears in the model
discussed in Section II. The last two terms are referred to
as the writhes of ℓ(1) and ℓ(2) respectively, denoted below
as W [ℓ(i)] = ϕ[ℓ(i), ℓ(i)].
The writhe contains a “fractional spin” term, which

Polyakov showed can transmute massive scalar bosons to
massive Dirac fermions in 2+1-dimensions12. Unlike the
linking number, the writhe is not a topological invari-
ant: it depends on the metric. It also generically breaks
invariance under orientation-reversal of the loops, which
can be thought of as particle-hole (or charge conjuga-
tion) symmetry (PH), in addition to time-reversal (T)
and parity? (P). This metric dependence can in princi-
ple be eliminated by calculating self-linking numbers us-
ing a point-splitting regularization following Witten11, in
which the loops are broadened into ribbons with a fram-
ing vector af n̂, the edges of which having a well defined
linking number SL,

SL[ℓ] = lim
af→0

1

4π

∮

ℓ

dxµ
∮

ℓ

dyνǫµνρ
(xρ − yρ + af n̂

ρ)

|x− y + af n̂|3
,

(3.4)

However, this is at the cost of introducing a framing am-
biguity in the calculation of this linking number: there
is in general no canonical way to convert a loop into a
ribbon. On the other hand, we can break the topologi-
cal character of the theory along with PH, T, and P by
including the fractional spin, eliminating the framing am-
biguity. This choice is the manifestation of the framing
anomaly11,71 in the language of loop models.

1. Self-Linking Without Fractional Spin: Point Splitting

Let us consider what happens if we choose Witten’s
point-splitting procedure, which looks appealing because
we may replace the writhe with a topological invariant.
If we replace the writhe with the self-linking number and
plug this into the action for the linking of two loops in
Eq. (3.2), we obtain the action,

S = θ(SL[ℓ(1)] + SL[ℓ(2)]) + 2θϕ[ℓ(1), ℓ(2)] . (3.5)

The self-linking number SL can take any integral value,
so here S is only invariant mod 2π under

T 2 : θ 7→ θ + 2π . (3.6)

Here eiθ is the phase the wave function picks up upon a
single exchange process of two particles, as discussed in
the previous section. It is worth noting that exchange
processes which form closed loops are only possible in
relativistic theories, where we have particles and antipar-
ticles available for braiding. In non-relativistic systems,
to obtain this type of process, one must compactify time
and wrap the particle world lines around the time direc-
tion.
We have now found that the T invariance of a model

without self-linking is broken down to the usual periodic-
ity of the statistical angle when self-linking, but not frac-
tional spin, is included. This means that the PSL(2,Z)
modular invariance of the model of Ref.33 is broken down
to a subgroup generated by particle-vortex duality (S)
and T 2. We may therefore be inclined to accept the
framing ambiguity and proceed by calculating the parti-
tion function with a point-splitting regularization of the
linking integral. However, we will soon see that not even
this symmetry can be accommodated by the continuum
CFTs we might hope to describe.

2. Introducing Fractional Spin

Now consider the regularization in which the full
writhe remains in the action without adopting a point-
splitting regularization, following Polyakov. In this case,
the action is frame independent, but this comes at the
cost of reintroducing the metric. There is a general rela-
tion in knot theory relating W [ℓ] and SL[ℓ]72,

W [ℓ] = SL[ℓ]− T [ℓ] , (3.7)

where T [ℓ] is referred to as the twist of the world line
ℓ. It is Polyakov’s fractional spin term, and it can be
written as12

T [ℓ] =
1

2π

∮

ℓ

ω′ =
1

2π

∮

ℓ

ds ê · (n̂× ∂sn̂) , (3.8)

where ℓ is parameterized by the variable s ∈ [0, L], ê is
the unit tangent vector to ℓ, and n̂ is again a chosen frame
vector normal to ℓ. This integral clearly depends on the
metric, and it measures the angular rotation of n̂ about
ê. ω′ is the angular velocity of n̂. It can be thought of as
a spin connection restricted to ℓ. However, this integral
need not vanish on a flat manifold, and it can take non-
integer values because it depends on the embedding of ℓ
in spacetime.?

Up to addition by an integer, the integral of Eq. (3.8)
can be written as a Berry phase by extending ê to a
disk: ê(s) → ê(s, u), where u ∈ [0, 1] and ê(s, u = 1) =
ê(s), ê(s, u = 0) = ê0 ≡ constant,

T [ℓ] =
1

2π

∫ L

0

ds

∫ 1

0

du ê · (∂sê× ∂uê) +n, n ∈ Z . (3.9)
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This Berry phase form is what earns this term the name
of fractional spin.
For θ = ±π, Polyakov argued that the loop model par-

tition function for particles with this Berry phase (mas-
sive charged scalar bosons coupled to a Chern-Simons
gauge field) is that of a single massive Dirac fermion of
mass M ,?

Zfermion = det[i/∂ −M ] (3.10)

=

∫

DJ δ(∂µJµ) e−|m|L[J]−i sgn(M)πΦ[J] .

This relation? requires some unpacking, especially since
we will encounter several more like it in Section IV. Here
we have fully passed to a continuum picture where Jµ is
a current density and so is not restricted to be an integer
(although

∫

S
dΣµJ

µ ∈ Z for any closed surface S), thus

the use of
∫

DJ rather than
∑

{J}. L[J ] is the sum of

the lengths of the loops in the configuration J , and the
term −|m|L[J ] represents tuning away from criticality
into a phase of small loops so that the partition function
converges. It is generic in loop models, despite the fact
that we have suppressed it thus far. Φ[J ] is the linking
number (3.1) of J (without appeal to point splitting),
which contains the full writhes and, therefore, the frac-
tional spin factor of each loop. The sign of the linking
number term matches the sign of the fermion mass M ,
which is proportional to m. Note that J is not coupled
to a gauge field here: this leads to the appearance of
the parity anomaly, which breaks P,T, and PH even in
the approach to criticality m → 0. We will discuss how
to couple J to a gauge field in detail in Section IV. For
a review of Polyakov’s original argument, see Appendix
B. See also later work fleshing out some of the details,
Refs.69,70,74–76.
For general statistical angle θ, we have the loop model

partition function

Z =

∫

DJ δ(∂µJµ) e−|m|L[J]+iθΦ[J] . (3.11)

Unless θ = 0,±π, T, P, and PH are broken explicitly
even in the m→ 0 limit. Since the value of the twist T [ℓ]
is not restricted to the integers, Φ[J ] is not restricted
to the integers either. This means that fractional spin
eliminates even the T 2 symmetry we found via point-
splitting. This has consequences for universal physics:
for example, in the case θ = π, the theory of a free Dirac
fermion one obtains with fractional spin has a different
correlation length exponent from the theory of spinless
fermions one would have obtained neglecting fractional
spin.
If periodicity is broken in the presence of fractional

spin, how should one interpret shifts of the statistical
angle? Say that we start with θ = π, or the free Dirac
fermion. When θ is shifted, the fractional spin is in turn
shifted, and we can no longer make the mapping to a
free Dirac fermion. It cannot be a theory of a higher spin
particle either, since there are no non-trivial higher spin

particles in 2+1-dimensions.? However, in Section IV,
we will argue that the theory which can reproduce the
same spin factor is a theory of Dirac fermions strongly
coupled to Chern-Simons gauge fields.

B. Fractional Spin is Generic

Having established that the introduction of fractional
spin breaks periodicity of the statistical phase completely,
we now describe how fractional spin is a generic feature
of loop models of the form of Eq. (2.2). It is known
that, in the presence of ultraviolet (UV) scales, Witten’s
point-splitting regularization described above does not
generally eliminate fractional spin. If we decouple the J
variables by introducing an emergent gauge field a, this
can be seen if we turn on arbitrarily weak short-ranged
interactions in the form of a Maxwell term?

LMaxwell = −
1

4g2M
f2 . (3.12)

Due to the existence of this term point-splitting no longer
has the desired effect: one continues to obtain the metric-
dependent W [ℓ] rather than the topological invariant
SL[ℓ]77. This is because the Maxwell term introduces a
short-distance cutoff aM = 2π(g2Mk)

−1, where k is again
the level of the Chern-Simons term, and the different re-
sult obtained by point-splitting is a consequence of the
short-distance singularity of the Chern-Simons propaga-
tor in the absence of a natural cutoff. More physically,
with the Maxwell term, flux is no longer localized on
the matter world lines, but is smeared around the world
line out to lengths of order aM. When this singular-
ity is smoothed out, the self-linking number becomes
metric-dependent but frame independent, leading to the
full writhe. The existence of a Maxwell term therefore
removes the UV ambiguities that exist in pure Chern-
Simons theory and renders fractional spin unavoidable:
the Maxwell term is dangerously irrelevant.
The above argument assumes a particular order of lim-

its. When we consider Witten’s point-splitting regular-
ization, there is also the length scale af associated with
the point-splitting, as in Eq. (3.4). If this scale is kept
longer than aM as we take the infrared (IR) limit aM → 0,
then we would obtain SL[ℓ] rather than W [ℓ]. In other
words, in this order of limits, it is as if the Maxwell term
was never introduced. In the presence of long-ranged
interactions, we might think that such an order of lim-
its would be allowed since the Maxwell term is not re-
quired to suppress fluctuations of the emergent gauge
field (without long-ranged interactions, the Maxwell term
must be included for this purpose). However, to obtain
correctly propagating matter at criticality, the particle-
vortex duals of these theories must have nonvanishing
Maxwell terms64. To see this, notice that the core en-
ergy term,

Lcore =
εc
2
J2
µ(r) , (3.13)
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is a Maxwell term for the emergent gauge field b in the
dual theory since particle-vortex duality relates Jµ =
ǫµνρ∆νbρ/2π. Core energy terms can be rewritten as
the kinetic terms for the phase fluctuations of the mat-
ter fields, and so are crucial for giving rise to the right
kinetic terms for the matter fields as we approach critical-
ity. Thus, it is not possible to simultaneously eliminate
the Maxwell term in both a theory and its particle-vortex
dual, and so it is inconsistent to take aM → 0 before
af → 0.

C. Fractional Spin and Conformal Field Theories

The arguments we have presented in this section are
well defined in the UV with a specific regulator assumed.
Such an analysis amounts to defining a continuum field
theory for the loop model. From the discussion above, it
is clear that this limit must be subtle given that Witten’s
and Polyakov’s regularizations are not equivalent. Fur-
thermore, as the non-trivial fixed point is approached, the
relevant loop configurations become large and fractal-like
(reflecting the anomalous dimensions at the fixed point),
hence reaching all the way from the UV to the IR. An un-
derstanding of these limits is essentially what is needed
for a “derivation” of the conjectured web of field theory
dualities of Refs.16,17.
The arguments of the previous subsection immediately

imply that Polyakov’s regularization, in which fractional
spin appears, is significantly more natural than Witten’s
point splitting procedure. We therefore conclude that
any loop model description of CFTs of the general form,

LCFT = Lmatter[a]−
1

4e2
fµν

i√
∂2
fµν +

k

4π
ada , (3.14)

should include fractional spin. This is because we can
always build a loop model by deforming these theories
into a phase, and this loop model will generically include
fractional spin. Unlike the loop model of Ref.33, loop
models with fractional spin do not display invariance un-
der periodicity T , so we no longer encounter the issue
that periodicity relates theories with different phase dia-
grams, which should not display duality. Moreover, loop
models with fractional spin should yield transport predic-
tions consistent with those of the duality web in Section
II C 2. This is because Polyakov’s duality, Eq. (3.10),
uses fractional spin to relate a free massive Dirac fermion
to a massive boson with strong short-ranged interactions
coupled to a Chern-Simons gauge field at level ±1. Ex-
trapolated to criticality, this duality would simply be the
one featured in Eq. (2.24), so the transport predictions of
this duality would match those of Section II C2 (we will
explain how to couple Polyakov’s duality to background
fields in Section IVA).
A more subtle question is whether periodicity somehow

survives in any of the correlation functions or critical ex-
ponents of the theories of Eq. (3.14), even though it
does not appear in general. This is one way of phrasing

the problem of superuniversality of quantum Hall plateau
transitions. On general grounds, because we lack a dual-
ity relation between theories related by periodicity, there
is no reason to expect the theories of Eq. (3.14) to have
observables which are invariant under periodicity. For
example, by the arguments of Section II C2, we do not
expect that DC transport in these theories has a simple
transformation law under periodicity. However, there is
some reason to be optimistic about critical exponents:
recently it has been argued using non-Abelian bosoniza-
tion dualities that certain theories related by periodicity
share correlation length exponents40.
We now return to the question of whether there is any

CFT for which the model of Ref.33, with full or partial
modular invariance, is a good lattice regularization. The
answer seems to be negative. As argued above, fractional
spin is quite generic, and it prevents us from using generic
theories of Chern-Simons gauge fields coupled to gapless
matter. However, perhaps there exists an exotic CFT
(either local or nonlocal) which can realize periodicity
as a symmetry of the partition function along with self-
duality. This is an open question.

IV. FRACTIONAL SPIN AND A DUALITY

WEB OF LOOP MODELS

Having argued that any loop model with hope of de-
scribing Chern-Simons theories coupled to matter should
include fractional spin, we can ask whether such loop
models satisfy the dualities of Refs.16 and17. Our strat-
egy will be to use Polyakov’s duality, Eq. (3.10), which
expresses the partition function of a massive fermion
as a bosonic loop model with fractional spin, to derive
new dualities. This parallels the philosophy of Refs.16

and17, which derives the duality web of field theories
starting from the assumption of the duality between a
gauged Wilson-Fisher boson and a free Dirac fermion.
An advantage of working with bosonic loop models is
that we never have to work with fermionic matter ex-
plicitly. Instead, we derive dualities of the correspond-
ing bosonic loop models. As a result, it is inconvenient
to derive boson-boson dualities starting from the seed
bosonization duality of Eq. (4.18). Such dualities are
better thought of as following from the Peskin-Halperin-
Dasgupta procuedure34,35 for deriving the particle-vortex
duality of lattice loop models. This duality is exact in
these models assuming that the statistical interactions
between the loops (including fractional spin) can be suit-
ably defined on a lattice33.

A. Coupling Polyakov’s Duality to Gauge Fields

In order to obtain new loop model dualities from
Polyakov’s duality, Eq. (3.10), we must couple the loop
variables to a gauge field A, which here we will take to
be a background field satisfying the Dirac quantization
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condition,

∫

S2

dA

2π
∈ Z , (4.1)

for any S2 submanifold of the spacetime. In theories of
a single Dirac fermion, coupling to gauge fields leads to
the parity anomaly, so we should expect the loop model
partition function Eq. (3.10) to also exhibit the parity
anomaly. To see how this works, we start with a theory of
massive scalar bosons coupled to a Chern-Simons gauge
field at level +1,?

|Daφ|2 −m2
0|φ|2 − |φ|4 +

1

4π
ada . (4.2)

This is the bosonic theory in Polyakov’s duality, and its
partition function can be rewritten as the loop model on
the right hand side of Eq. (3.10). m0 is related to the
mass m in that equation, but it is not exactly equal to
it70. Notice that we work in the symmetric (insulating)
phase of the theory where the global U(1) symmetry is
unbroken, so that a is not Higgsed. We couple this theory
to A as follows,

|Daφ|2 −m2
0|φ|2 − |φ|4 +

1

4π
ada+

1

2π
adA . (4.3)

Coupling this theory to a gauge field should be the same
as coupling the Dirac fermion to a gauge field. The theory
in Eq. (4.3) can be rewritten in a more useful form by
shifting a→ a+A,

|Da−Aφ|2 −m2
0|φ|2 − |φ|4 +

1

4π
ada− 1

4π
AdA . (4.4)

This theory is anomaly free and gauge invariant by con-
struction, so the Dirac fermion it describes should have
the right parity anomaly term to enforce gauge invarance.
The loop model partition function for this theory has the

same form as that with A = 0, except now J couples to
A, and we have the background Chern-Simons term

Z[A] =

∫

DJDa δ(∂µJµ) e−|m|L[J]+iS[J,a,A] , (4.5)

where

S[J, a,A] =

∫

d3x

[

J(a−A) + 1

4π
ada− 1

4π
AdA

]

,

(4.6)
and we suppress all contractions of spacetime indices in
the action. Please note that in Eq. (4.5), as in pre-
vious sections, short-ranged interactions are not made
explicit. The manipulations that follow in the context
of Chern-Simons theory are only consistent if the bosons
have (strong) short-ranged repulsive interactions. This
is also natural since for D < 4 spacetime dimensions the
free massless scalar field fixed point is essentially inacces-
sible.
As we know well now, integrating out a results in a

nonlocal linking number term for J

− πΦ[J ] +
∫

d3x

[

JA− 1

4π
AdA

]

, (4.7)

where we have changed variables J → −J since the par-
tition function does not depend on the overall sign of
J . For A = 0, we recover Eq. (3.10) with θ = −π.
Since the J variables are gapped and bosonic, the re-
sponse of this theory is determined solely by the back-
ground Chern-Simons term, which gives a Hall conduc-
tivity σxy = − 1

4π , precisely what we would expect from
a massive, properly regulated Dirac fermion, which has
a parity anomaly term?

Ψ̄(i /DA −M)Ψ− 1

8π
AdA , (4.8)

with M < 0. Indeed, this is what one finds by following
Polyakov’s logic starting with Eq. (4.7). This identifica-
tion already suggests that the sign of the linking number
term is identified with the sign of the mass of the fermion
in the phase. See Appendix B for a more explicit justi-
fication of this statement. Again, M is related, but not
equal, to m.
Thus, we find that the properly regulated loop model

partition function for a Dirac fermion in its T-broken
(integer quantum Hall) phase is

Zfermion[A;M < 0] e−iCS[A]/2 =

∫

DJ δ(∂µJµ) e−|m|L[J]+iSfermion[J,A;M<0]e−iCS[A]/2 , (4.9)

where

Sfermion[J,A;M < 0] =

∫

d3xJA (4.10)

−
(

πΦ[J ] +
1

2
CS[A]

)

,

and we define

CS[A] =

∫

d3x
1

4π
AdA . (4.11)
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Our reason for factoring out a CS[A]/2 term in Eq. (4.9)
is to isolate the effect of the parity anomaly, which can
be thought of as arising from a heavy fermion doubler (or
regulator). In practice, Eq. (4.9) tells us how to write
the loop model partition function of a Dirac fermion in
its T-broken phase, where the low energy effective action
is −CS[A].
Having completed our analysis for the unbroken phase

of Eq. (4.3), how do we write the loop model partition
function in the broken symmetry (superfluid) phase of
Eq. (4.3)? In the Dirac fermion picture, this should be
the T-symmetric (trivial insulator) phase, obtained from
Eq. (4.8) with M > 0. Instead of modeling the bro-
ken symmetry phase of the φ variables directly, we use
bosonic particle-vortex duality34,35 to exactly write the
loop model partition function in this phase as one de-
scribing the symmetric (insulator) phase of vortex vari-

ables φ̃ (with corresponding loop variables J̃). Recall
that this changes the dependence on the background
fields and inverts the sign of the linking number term,
as we saw with the loop model in Section II and demon-

strate in Appendix A. This leads to a loop model with
statistical angle θ = +π. The loop model partition func-
tion in the T-symmetric phase is therefore

Z̃[A] =

∫

DJ̃Db δ(∂µJ̃µ) e−|m|L[J̃ ]+iS̃[J̃,b,A] , (4.12)

where

S̃[J̃ , b, A] =

∫

d3x

[

J̃(b− A)− 1

4π
bdb

]

. (4.13)

Integrating out b and changing variables J̃ → −J̃ yields
the action

+ πΦ[J̃ ] +

∫

d3x J̃A , (4.14)

consistent with a Hall conductivity σxy = 0, as we would
expect from Eq. (4.8) with M > 0. Following through
with Polyakov’s argument from here allows us to write

Zfermion[A;M > 0] e−iCS[A]/2 =

∫

DJ δ(∂µJµ) e−|m|L[J]+iSfermion[J,A;M>0]e−iCS[A]/2 , (4.15)

where

Sfermion[J,A;M > 0] =

∫

d3xJA (4.16)

+

(

πΦ[J ] +
1

2
CS[A]

)

,

Bringing everything together, the loop model partition
function of a free Dirac fermion with Lagrangian,

Ψ̄(i /DA −M)Ψ− 1

8π
AdA , (4.17)

having fixed the sign of the parity anomaly term, is

Zfermion[A;M ]e−iCS[A]/2 = det[i /DA −M ]e−iCS[A]/2 (4.18)

=

∫

DJ δ(∂µJµ) exp
(

−|m|L[J ] + iSfermion[J,A;M ]− i

2
CS[A]

)

.

where the loop model action Sfermion for general M is

Sfermion[J,A;M ] =

∫

d3xJA (4.19)

+ sgn(M)

(

πΦ[J ] +
1

2
CS[A]

)

,

Here, too, we have left implicit the necessary interactions
between the loops. Eq. (4.18) is the main result of this
subsection.
In field theory language, we have derived the duality

of a massive free Dirac fermion

Ψ̄(i /DA −M)Ψ− 1

8π
AdA (4.20)

to a gauged Wilson-Fisher scalar with a mass term,

|Daφ|2 − r|φ|2 − |φ|4 +
1

4π
ada+

1

2π
adA , (4.21)

starting from the loop model representation of the scalar
theory. For r > 0, the scalar theory is in its symmetric
phase, which we showed can be related to the T-broken,
M < 0 phase of the fermionic theory, which has σxy =
−1/(4π). Conversely, the T-symmetric, M < 0 phase
of the fermionic theory is dual to the symmetry broken
phase of the scalar theory, where r < 0. In this phase,
σxy = 0.
We can also consider acting time reversal T on the

duality (4.18). This flips the signs of the Chern-Simons
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and BF terms, as well as the fermion mass M , i.e. this
duality corresponds to Eq. (4.18) with M → −M and a
parity anomaly term with positive sign. In this case, the
T-broken phase now has Hall conductivity σxy = + 1

4π .

B. A Duality Web of Loop Models

1. Fermionic Particle-Vortex Duality

Equipped with the loop model partition function for a
Dirac fermion coupled to a gauge field, we now proceed
to derive new loop model dualities. We start by deriving
a loop model version of the duality between a free Dirac
fermion and 2+1 dimensional quantum electrodynamics
(QED3)

21–23? ,

iΨ̄ /DAΨ−
1

8π
AdA

l (4.22)

iψ̄ /Daψ −
1

4π
adA− 1

8π
AdA .

Here, it will be more convenient to consider the ver-
sion of this duality with properly quantized coefficients of

Chern-Simons and BF terms in the strongly interacting
theory16,

iΨ̄ /DAΨ−
1

8π
AdA

l (4.23)

iψ̄ /Daψ +
1

8π
ada− 1

2π
adb+

2

4π
bdb− 1

2π
bdA ,

where Eq. (4.22) can be recovered by integrating out
the auxiliary gauge field b, which comes at the cost of
violating flux quantization, Eq. (4.1). Note that the signs
of the 1

8πada and 1
8πAdA terms, which can be thought

to arise from heavy fermion doublers coupled to a and A
respectively, need not match across this duality.

To obtain loop models, we add a mass term −MΨ̄Ψ,
M < 0, to the free theory and a mass term −M ′ψ̄ψ,
M ′ > 0, to QED3 so that both theories are in their T-
broken phase. The partition function of the free theory is
Eq. (4.18) with M < 0. Similarly, we can obtain a loop
model analogue of QED3 by acting T on Eq. (4.18),
plugging in M ′ > 0, gauging A → a, and adding the
correct couplings to b

ZQED3
[A;M ′ > 0] e−iCS[A]/2 =

∫

DJDaDb δ(∂µJµ)e−|m|L[J]+iSQED3
[J,a,b,A;M ′<0] , (4.24)

where

SQED3
[J, a, b, A;M ′ > 0] = πΦ[J ] +

∫

d3x

[

Ja+
1

4π
ada− 1

2π
adb+

2

4π
bdb− 1

2π
bdA

]

. (4.25)

We can integrate out a without violating flux quantization to obtain

Seff =πΦ[J ] +

∫

d3x

[

−π
(

J − db

2π

)

d−1

(

J − db

2π

)

+
2

4π
bdb− 1

2π
bdA

]

=

∫

d3x

[

Jb+
1

4π
bdb− 1

2π
bdA

]

, (4.26)

where we have used the fact that Φ[J ] =
∫

Jd−1J . Inte-
grating out b gives the action of Eq. (4.18) with M < 0,
so we obtain the loop model duality

Zfermion[A;M < 0] = ZQED3
[A;M ′ > 0] . (4.27)

If we instead work with the trivial insulating phase, sim-
ilar manipulations lead to

Zfermion[A;M > 0] = ZQED3
[A;M ′ < 0] . (4.28)

The interpretation of these loop model dualities as
fermionic particle-vortex dualities is immediate. First,
since the sign of the linking number term is the same
as the sign of the mass of the fermion, we recover the

mapping of mass operators Ψ̄Ψ←→ −ψ̄ψ. What’s more,
if we violate flux quantization by integrating out b, we
recover the matter-flux mapping:

JΨ ←→
1

4π
da , (4.29)

where JµΨ = Ψ̄γµΨ is the global U(1) current of the free
fermion. This may seem odd since we never actually
changed variables in deriving these dualities. However,
we were never working with fermionic variables to be-
gin with, but bosonic ones. Thus, the loop variables
above should not be interpreted as the currents of the
free fermion. Instead, Polyakov’s duality (4.18) makes
clear that since A couples to JΨ in Sfermion, correlation

12



functions of JΨ are generated by derivatives of

FJΨ
[A;M ] = logZfermion[A;M ] , (4.30)

where we have subtracted off the ± 1
2CS[A] parity

anomaly term, as it does not contribute to the correla-
tion functions of JΨ. Since A couples as 1

4πAda− 1
8πAdA

in SQED3
after b is integrated out, subtracting off the

same parity anomaly term in the QED3 theory implies
the mapping of Eq. (4.29).

2. General Abelian Bosonization Dualities

We now consider more general boson-fermion dualities.
The field theory duality web16,17 can be used to relate
a theory of a Wilson-Fisher scalar coupled to a Chern-
Simons gauge field at level kφ ∈ Z,

|Daφ|2 − |φ|4 +
kφ
4π
ada+

1

2π
adA , (4.31)

to a dual theory of Dirac fermions coupled to a Chern-
Simons gauge field. To do this, we invoke the duality
between a Wilson-Fisher boson and a Dirac fermion cou-
pled to a Chern-Simons gauge field at level 1/2

|DAφ|2 − |φ|4 ←→ iψ̄ /Dbψ +
1

8π
bdb+

1

2π
bdA+

1

4π
AdA .

(4.32)
Plugging this result into Eq. (4.31), we obtain a duality

|Daφ|2 − |φ|4 +
kφ
4π
ada+

1

2π
adA

l (4.33)

iψ̄ /Dbψ +
1

8π
bdb+

1

2π
ad(b+A) +

kφ + 1

4π
ada .

Integrating out the gauge field a on the fermionic side,
would run into conflict with flux quantization Eq. (4.1)
and gauge invariance (if the theory is defined purely in
2+1 dimensions). However, continuing in spite of this,
one would obtain a duality between bosons coupled to a
Chern-Simons gauge field at level kφ and fermions cou-
pled to a Chern-Simons gauge field at level26

kψ =
1

2

kφ − 1

kφ + 1
. (4.34)

This relation can be generalized to the self-dual theories
which occupied our attention for much of this work, Eq.
(3.14), which, in addition to Chern-Simons terms, have
marginally long-ranged interactions. The introduction
of such long-ranged interactions can be accommodated

by replacing kφ and kψ with τφ = kφ + i 2π
e2
φ

and τψ =

2kψ + i 4π
e2
ψ

respectively,

τψ =
τφ − 1

τφ + 1
. (4.35)

For clarity, in this section we will only explicitly consider
the limit e2φ,ψ → ∞. Our results can be readily general-
ized away from this limit by replacing k’s with τ ’s.
We can easily check that the theories on either side of

the duality Eq. (4.33) have the same phase diagram.
Adding +m2|φ|2 to the scalar theory Higgses out the
emergent gauge field a and leaves the theory in a trivial
insulating phase. Similarly, adding −Mψ̄ψ, with M < 0,
to the fermion theory and integrating out b also Higgses
out a (the parity anomaly term being cancelled), leading
to the same phase. Conversely, adding −m2|φ|2 to the
scalar theory leads to a topological quantum field theory
of the form

kφ
4π
ada+

1

2π
adA , (4.36)

which can also be obtained on the fermionic side by
adding −Mψ̄ψ with M > 0. Integrating out ψ adds
a parity anomaly term to the action,

1

4π
bdb+

1

2π
ad(b +A) +

kφ + 1

4π
ada . (4.37)

Integrating out b leads to Eq. (4.36). Our interest will be
in this phase: our goal will be to show that in this phase
the loop model partition function of massive fermions
coupled to b is the same of that of the massive bosons
coupled to a.
The world line partition function for the gapped bosons

in the phase described by Eq. (4.36) is (turning off back-
ground fields)

Zboson[kφ] =

∫

DJDa δ(∂µJµ) e−|m|L[J]+iSboson[J,a;kφ],

(4.38)
where we used the definition

Sboson[J, a; kφ] =

∫

d3x

[

Ja+
kφ
4π
ada

]

. (4.39)

Integrating out a yields an effective action

Seff [J ] = −
π

kφ
Φ[J ] . (4.40)

The loop model partition function for the fermion can
be written down by acting with T and gauging the back-
ground field A → b in Eq. (4.18). The world line parti-
tion function for fermions in the phase (4.37) is therefore

Zfermion[kψ,M > 0] (4.41)

=

∫

DJDaDb δ(∂µJµ) e−|m|L[J]+iSfermion[J,b,a;kψ,M<0] ,

where kψ is the level of the gauge field b coupled to the
fermion with the auxiliary gauge field a integrated out? ,
Eq. (4.34), and we define
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Sfermion[J, b, a; kψ,M > 0] = πΦ[J ] +

∫

d3x

[

Jb+
1

4π
bdb+

1

2π
adb +

kφ + 1

4π
ada

]

. (4.42)

We now have two options. The first is to integrate out
a, but that would violate flux quantization, Eq. (4.1).
Instead, we integrate out b first. Its equation of motion
is

J +
da

2π
= − db

2π
. (4.43)

Charge quantization of the bosonic J variables implies
that this equation is consistent with flux quantization.
Integrating out b therefore gives

Seff [J, a] = πΦ[J ] +

∫

d3x

[

−π
(

J +
da

2π

)

d−1

(

J +
da

2π

)

+
kφ + 1

4π
ada

]

= πΦ[J ]− πΦ[J ] +
∫

d3x

[

−Ja− 1

4π
ada+

kφ + 1

4π
ada

]

=

∫

d3x

[

−Ja+ kφ
4π
ada

]

, (4.44)

where we have used the definition of Φ[J ] in passing to
the second line. The path integral does not depend on
the sign of J here, so integrating out a yields the same
answer as in the bosonic case, Eq. (4.40).
We therefore find an equality of the loop model parti-

tion functions

Zboson[kφ] = Zfermion[kψ,M > 0] . (4.45)

This is the general three dimensional bosonization iden-
tity for loop models. The same analysis can be carried
out in the superfluid phase of the theory in Eq. (4.31),
which is the insulating phase of its particle-vortex dual,
in which the Chern-Simons gauge field has “level” −1/kφ
(again a statement about the theory obtained after vi-
olating flux quantization and integrating out auxiliary
gauge fields). Denoting the partition function of this the-
ory as Zboson[−1/kφ], we indeed find

Zboson[−1/kφ] = Zfermion[kψ,M < 0] . (4.46)

Starting from Polyakov’s loop model duality (4.18), we
have thus derived a loop model version of the general
CFT duality of Eq. (4.33) by matching fractional spin
factors!
This derivation also provides an answer to the question

of what it means to have fractional spin different from 0
or 1/2, a vexing issue since Polyakov’s argument first ap-
peared. From the perspective of the duality of Eq. (4.33),
it is incorrect to think of theories of world lines with gen-
eral fractional spin as theories of free particles with a
strange spin. Rather, one should think of the theories on
either side of the duality as strongly interacting Chern-
Simons theories coupled to matter. We further note that
these theories are also thought to be dual to non-Abelian

Chern-Simons-matter theories18, but it is not clear to us
how to construct an explicit loop model description of
these theories. This may be an interesting direction for
future work.

V. DISCUSSION

In this article we have shown that, upon introducing
fractional spin, 2+1 dimensional loop models with sta-
tistical and long-ranged interactions of Eq. (2.2) are
not invariant under shifts of the statistical angle, despite
remaining self-dual under particle-vortex duality. This
means that, while PSL(2,Z) still has a natural action on
these theories, only the S transformation should be taken
as a good duality transformation. It also means that the
superuniversal transport properties of the loop models in
Ref.33 do not have an analogue in Chern-Simons theories
coupled to gapless matter, which we argued must include
fractional spin.
By introducing fractional spin into the loop models of

Ref.33, we were led to develop simple loop model versions
of various members of the web of 2+1 dimensional field
theory dualities16,17, starting from a seed duality relat-
ing the partition function of a massive Dirac fermion to
a bosonic loop model with a fractional spin term. This
makes clear the consistency of relativistic loop model du-
alities with the duality web of conformal field theories.
It also should be considered a nontrivial check of these
dualities.
We emphasize that the duality of the loop models sug-

gests that these theories may have a critical point, which
should presumably be a relativistic CFT. Proving this
statement requires solving the loop model and finding
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its continuum limit at the phase transition. This has
not been done. Our purpose here was to inquire to
what extent the critical points of the loop models can
be described by a CFT on the duality web. A successful
construction of this continuum limit would in fact be a
derivation of the duality web.
Because of the simplicity of the loop model dualities

presented here, it would be of interest to use loop mod-
els to motivate new field theory dualities or derive al-
ready proposed dualities which live outside the duality
web. However, some difficulties persist. It still remains
to carefully implement the short-ranged interactions in
the loop model dualities presented here. This is a nec-
essary requirement to develop loop model derivations of
dualities with multiple flavors of matter fields, which can
have different global symmetries depending on the form
of the short-ranged interactions. Such dualities have been
of interest in the study of deconfined quantum critical
points79. It also remains to construct a precise lattice

formulation of the loop models presented here, which we
defined based on their long distance properties due to the
subtleties surrounding placing Chern-Simons theories on
a lattice.
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Appendix A: Derivation of Self-Duality

1. Euclidean Lattice Model

In this appendix, we derive the self-duality of the Euclidean lattice model of Ref.33,

Z =
∑

{Jµ}
δ(∆µJ

µ)e−S , (A1)

where

S =
1

2

∑

r,r′

Jµ(r)Gµν (r − r′)Jν(r′) +
i

2

∑

r,R

Jµ(r)Kµν (r, R)J
ν(R)

+ i
∑

r,r′

e(r − r′)Jµ(r)Aµ(r′) +
∑

R,R′

h(R−R′)ǫµνρJµ(R)∆νAρ(R
′) (A2)

+
1

2

∑

r,r′

Aµ(r)Π
µν (r, r′)Aν(r

′) .

Our conventions and notation are described in Section II. We first consider the case in which the background fields
Aµ = 0. Following Ref.34, we invoke the Poisson summation formula to make the formerly integer-valued Jµ real-
valued

Z =
∑

{mµ}

∫

DJ δ(∆µJµ)e
−S[J]+2πi

∑
rmµ(r)J

µ(r) , (A3)

where mµ is a new integer-valued variable. We can impose the delta function-imposed Gauss’ Law ∆µJ
µ = 0 by

rewriting Jµ as the curl of an emergent gauge field aµ

Jµ(r) =
1

2π
ǫµνλ∆νaλ(r) . (A4)

Plugging this into the action, we obtain

S =
1

2(2π)2

∑

r,r′

aµ(r)Gµν (r − r′)aν(r′) +
i

2(2π)2

∑

r,R

aµ(r)Kµν (r −R)aν(R) + i
∑

R

aµ(R)ǫ
µνλ∆νmλ(R) . (A5)

We can now change to vortex loop variables,

J̃µ = ǫµνλ∆νmλ , (A6)
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which satisfy their own Gauss’ law ∆µJ̃
µ = 0. The partition function in these variables is thus

Z =
∑

{J̃µ}

∫

Da δ(∆µJ̃
µ)e−S[J̃,a] . (A7)

We now proceed to integrate out a. In the long distance limit, we can use Eqs. (2.3)-(2.4) to write the propagator
for aµ as

Gµν(p) = (2π)2
[

g2

g4 + 4θ2
1

|p| (δ
µν − pµpν/p2) + 2θ

g4 + 4θ2
ǫµνλ

pλ
p2

]

, (A8)

where we have added a gauge fixing term 1
2ξ (∆µa

µ)2 in the limit ξ → 0 (Landau gauge). Integrating out a gives the

dual loop model action

SD[J̃ ] =
1

2

∑

p

J̃µ(−p)Gµν(p)J̃ν(p) . (A9)

In position space, this has the same form as Eq. (A2), but with

g2 7→ g2D =
g2

g4/(2π)2 + θ2/π2
, θ 7→ θD = − θ

g4/(2π)2 + θ2/π2
. (A10)

In other words, duality maps τ = θ
π + i g

2

2π as a modular S transformation

τ 7→ − 1

τ
. (A11)

Now consider the case with background fields turned on, Aµ 6= 0. Then aµ couples to

iJ̃µ + i
e

2π
ǫµνλ∆

νAλ +
h

2π
(∆2δµν −∆µ∆ν)A

ν . (A12)

When aµ is integrated out, this leads to couplings between J̃µ and Aµ which in momentum space take the form

iJ̃ρGρµ
(

− e

2π
ǫµνλp

νAλ +
h

2π
(p2δµν − pµpν)Aν

)

=
i

2π

[

θDe+ |p|g2Dh
]

J̃ρA
ρ +

i

2π

[

− 1

|p|g
2
De + θDh

]

ǫµνρJ̃µpνAρ . (A13)

So under duality the charges map as

e 7→ 1

2π

[

θDe+ |p|g2Dh
]

, h 7→ 1

2π

[

− 1

|p|g
2
De+ θDh

]

, (A14)

meaning that, under particle-vortex duality, electric and magnetic charges are mapped to dyons!
Similarly, the background polarization tensor is shifted under duality. If we define it in momentum space as

Πµν = Πeven(p)(δµν − pµpν/p2) + Πodd(p)ǫµνλ
pλ

|p| , (A15)

then

Πeven 7→ Πeven + |p|(e2 − h2p2)
g2D

(2π)2
− 2p2he

θD
(2π)2

, (A16)

Πodd 7→ Πodd − |p|(e2 − h2p2)
θD

(2π)2
− 2p2eh

g2

(2π)2
. (A17)
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2. Conformal Field Theory

The above lattice derivation carries over to conformal field theories of the form (now working in Minkowski space)

L = |Daφ|2 − |φ|4 −
1

4g2D
fµν

i√
∂2
fµν +

1

4θD
ada (A18)

+e(x)JµA
µ + h(x)JdA+Aµ(x)Π

µν (x, x′)Aν(x
′) ,

where φ is a complex scalar field at its Wilson-Fisher fixed point (thus the notation −|φ|4), Da = ∂µ − iaµ, fµν =
∂µaν − ∂νaµ, Aµ is a background U(1) gauge field, and Jµ is the global U(1) current Jµ = i(φ∗∂µφ−φ∂µφ∗). We also
use the notation AdB = ǫµνρAµ∂νBρ. For a discussion of the self-duality of this theory with Dirac fermion matter,
see Ref.26.
The coupling constants g2D and θD are indeed the corresponding quantities in the loop model description (A10). If

we deform this model into its symmetric phase (the trivial insulator) with the operator −m2|φ|2, we can construct a
loop model with Lagrangian

Jµa
µ − 1

4g2D
fµν

i√
∂2
fµν +

1

4θD
ada , (A19)

where we have set Aµ = 0 for clarity. Integrating out aµ results in a loop model characterized by a modular parameter

τ = −
(

θD
π + i

g2D
2π

)−1

= θ
π + i g

2

2π .

We can derive the self-duality of the theory (A18) by assuming the bosonic particle-vortex duality relating a
Wilson-Fisher fixed point to the critical point of the Abelian Higgs model34,35,

|DAφ| − |φ|2 ←→ |Daφ̃|2 − |φ̃|4 +
1

2π
adA , (A20)

and applying it to the Lagrangian, Eq. (A18). Again turning off background fields for clarity, we obtain

L ←→ |Dbφ̃|2 − |φ̃|4 +
1

2π
adb− 1

4g2D
fµν

i√
∂2
fµν +

1

4θD
ada . (A21)

Integrating out a in the dual theory gives an action

L̃ = |Dbφ̃|2 − |φ̃|4 −
1

4g2
f ′
µν

i√
∂2
f ′µν +

1

4θ
bdb , (A22)

where f ′
µν = ∂µbν − ∂νbµ. g2, θ are related to g2D, θD by the modular S transformation (A10). The analogous

transformation laws for the source terms Eq. (A14) and Eqs. (A16)-(A17) can be obtained in the same way.

Appendix B: Derivation of Polyakov’s Duality

In this appendix, we review Polyakov’s argument for the duality (3.10), which relates a theory of non-intersecting
bosonic loops (i.e. bosonic loops with strong short-ranged repulsion) to a theory of a single free species of Dirac
fermions12. Some of the finer points of this argument were ironed out in Refs.69,70,74–76, to which we point the reader
interested in a more detailed analysis. For a review of how to construct world line partition functions from gapped
quantum field theories, see Refs.2,67,68,70.
We start from the bosonic loop model on the right hand side of Eq. (3.10). The amplitude for a path of length L

with tangent vector ê(s) between two points x and x′ is

G(x− x′) =
∫ ∞

0

dL

∫

Dê δ
(

1− |ê|2
)

δ

(

x′ − x−
∫ L

0

ds ê(s)

)

e−|m|L±iπW[ê] , (B1)

where W [ê] is the Berry phase term in the twist, Eq. (3.9),

W [ê] =
1

2π

∫ L

0

ds

∫ 1

0

du ê · (∂sê× ∂uê) . (B2)
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The momentum space representation is obtained via Fourier transform

G(p) =

∫ ∞

0

dL

∫

Dê δ
(

1− |ê|2
)

e−|m|L±iπW[ê]eip
µ
∫
L

0
ds êµ(s) . (B3)

This is none other than the coherent state path integral for a spin-1/2 particle in a magnetic field bµ = ±2pµ. The
equation of motion for ê is

∂sêµ = ±2ǫµνλêνpλ = i[H, êµ] , (B4)

where H is the Hamiltonian operator. This implies that, since the Hamiltonian for the spin is H = −~b · ~S = ∓pµêµ,
upon quantization ê should satisfy commutation relations

[êµ, êν ] = 2iǫµνρê
ρ , (B5)

meaning that we can perform the path integral over ê by identifying it with the Pauli matrices êµ → σµ. There is one
slight problem with the above discussion, however: in reality, the magnetic field is not 2pµ but 2pµ/3, meaning that
this identification involves the appearance of an extra constant factor which can be eliminated by rescaling m→M76.
Performing the integral over L finally gives the propagator of a free Dirac fermion of mass M

G(p) ∝ 1

ipµσµ −M
, (B6)

where we have written ±|M | ≡ M . One thus expects the partition function (3.10) to reproduce the correlation
functions of a free Dirac fermion of mass M at sufficiently long distances.
Note that the theory we have discussed here is not coupled to gauge fields. As is well known, when coupled to a

gauge field, theories of a single Dirac fermion exhibit the parity anomaly. See Section IVA for a discussion of how
the parity anomaly appears in the context of this duality.

1 F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).
2 E. Fradkin, Field Theories of Condensed Matter Systems,

Second Edition (Cambridge University Press, Cambridge,
U.K., 2013).

3 J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
4 S. C. Zhang, T. H. Hansson, and S. Kivelson,
Phys. Rev. Lett. 62, 82 (1989).
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