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We propose a novel class of lasers based on a fourth order exceptional point of degeneracy (EPD) referred to as 
the degenerate band edge (DBE). EPDs have been found in Parity-Time-symmetric photonic structures that require 
loss and/or gain, here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are 
lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing 
based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a 
light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of 
the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular 
band edge laser and to a conventional laser in cavities with the same loaded quality (Q) factor and length. In 
particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude 
lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this 
novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates 
well-beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers. 

 

I. INTRODUCTION 

Demonstration of a low-threshold laser operating at a 
single frequency is an important quest in the optical and 
physical sciences. In this regard, the use of periodic 
structures with engineered dispersion diagram is a popular 
and effective way to enhance the interaction between the gain 
medium and the electromagnetic wave and therefore tailoring 
the lasing characteristics of active structures. In the last 
decades, photonic-crystals-based optical devices and 
distributed feedback (DFB) lasers have demonstrated 
inimitable features and high performance due to their 
unprecedented dispersion characteristics, high quality (Q) 
factors, and field enhancement properties  [1–6].  In 
particular, increasing the Q-factor of photonic-crystal-based 
cavities results in a significant reduction of the lasing 
threshold  [2–4,7–11]. Therefore, many techniques have been 
proposed to enhance the Q-factor of photonic-crystal-based 
cavities for engineering light sources, such as introducing a 
small disorder or a defect into the crystal  [7,12], using 
photonic-crystal heterostructures  [9,13], and by locally 
modulating the width of the photonic-crystal 
waveguide  [14,15]. Recent advances in developing optical 
lasers rely on engineering the response of the cavity 
structures by employing plasmonic nanocavities  [16–18], 
photonic band-edges  [19–25], Parity-Time (PT)-symmetry 
breaking  [26–32], or by exploiting unique structural 
topologies including metamaterials  [33–36] and 
metasurfaces [37,38]. 

In this paper, we propose a novel class of single-
frequency lasers made of a cavity with degeneracy of four 
Floquet-Bloch eigenwaves coherently interacting with an 
active medium. Such a degeneracy is found in periodic 
structures whose dispersion relations develop points of 
degeneracy at which  

 

 

 

state eigenvectors representing Floquet-Bloch eigenwaves 
coalesce  [21,22,39]. Those points in the spectrum of the 
“cold” periodic structure (”cold” refers to the absence of the 
gain media) are associated with a regular band edge (RBE), a 
stationary inflection point (SIP)  [40,41], or a degenerate 
band edge (DBE)  [22,23], resulting in a second, third, or 
fourth order degeneracy of Floquet-Bloch eigenwaves (in 
both eigenvalues and eigenvectors), respectively. We refer to 
such points as exceptional points of degeneracy (EPDs).  

EPDs have been commonly associated with the presence 
of gain and/or loss and often related to Parity-Time (PT)-
symmetry  [26–32]. However here we point out that the EPD 
may be induced in electrodynamical systems also in absence 
of gain and losses. In gain and loss balanced systems (like in 
systems with PT-Symmetry), EPDs occur in the parameter 
space of the system described by the evolution of their 
eigenmodes either in time (for coupled resonators such as 
those in such as those in  [31,32,41]) or in space (for coupled 
waveguides such as those in  [42,28,43,44]). On the other 
hand, EPDs also realizable in spatially-periodic media 
supporting Floquet-Bloch waves such as photonic crystals 
and periodic waveguides exhibiting RBEs, SIPs, and DBEs, 
in absence of gain and loss. It is then important to emphasize 
that indeed both cases of (i) gain and loss induced EPDs, and 
(ii) periodicity induced EPDs, follow the same mathematical 
fundamental theory of degenerate operators (see page 63-67 
in  [45]), i.e., the eigenvalues and eigenvectors characteristics 
in both cases lead to a Jordan Block degeneracy as described 
in  [22,43–45]. In this paper we investigate the space-
evolution of guided eigenwave in periodic waveguides (i.e., 
along the z-direction) at and near EPDs, that would result in 
unique lasing features.  
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In particular we focus on the DBE degeneracy  [22,39,46,47] 
which arises when four Floquet-Bloch eigenwaves coalesce 
in spatially-periodic structures supporting multiple 
polarization states that are periodically mixed. It features a 
frozen-wave resonance relying on a fundamental property of 
EPDs that causes eigenwave solutions inside a periodic 
structure to diverge, leading to giant field 
enhancement  [22,47]. However, it is important to stress that 
the DBE, which is a fourth order EPD, occurs in a passive 
and lossless system, i.e., without the need of gain or loss. 
Some DBE characteristics have been shown to occur at 

optical frequencies using perturbed coupled silicon 
waveguides  [48,49], or a chain of ring resonators coupled to 
a waveguide  [50]; as well as in metallic waveguides at 
microwaves  [39]. There have been also significant efforts in 
analysis, design, and experimental realization of the DBE 
structures and its slow-wave properties at both 
microwave  [51–53] and optical frequencies  [54,55]. It is 
important to point out that even though DBE is a precise 
EPD condition occurring in lossless waveguides, 
experimental studies made both at microwaves [53] and 
optical frequencies  [50,51] have confirmed the existence of 
features associated with the DBE in the presence of losses 
and fabrication tolerances. Indeed, the robustness of DBE 
features against perturbations due to possible fabrication 
tolerances that may arise during fabrication was 
demonstrated for DBE CROWs in [50]. The DBE has led to 
observing giant gains in optical cavities  [47]; however here 
we leverage a general EPD  concept, for the first time, to 
propose the new regime of lasing, resulting in low-threshold 
and single frequency operation of the degenerate band edge 
laser.  

In previous work [47], an analysis of an ideal multilayer 
anisotropic medium with ideal gain (not represented with rate 
equations in a multilevel energy setup as done here) is carried 
out using the transfer matrix method which has led to a new 
route for possible gain enhancement in cavities with DBE. 
The analysis in [47] has resulted in an oscillation threshold of 
such DBE active cavities that scales as 5N − , where N  is 
the number of unit cells as seen from Fig. 1. In this paper we 
carry the first comprehensive analysis of the proposed DBE 
laser : (i) we demonstrate a special feature of lasing-mode 
selection in the DBE laser that leads to a single frequency 
operation[the analysis of the lasing threshold is elaborated in 
Sec. II through Sec. IV]; (ii) The study included  time 
domain simulations of electromagnetic fields and evolution 
of rate equations describing gain arising from a multilevel 
energy system; (iii) we further show that the proposed DBE 
laser features a significantly lower lasing threshold compared 
to a conventional RBE laser  [24] and a uniform Fabry-Perot 
cavity (FPC) while having the same gain medium, length, 
and same total loaded Q-factor [see Fig. 1(a)]. (iv) The low 
lasing threshold of the proposed DBE laser, which can be up 
to two orders of magnitude lower threshold than conventional 
lasing cavities as shown in Fig. 1(a), is ascribed to the 
enhanced interaction between the gain media and the cavity 
featured by all the four degenerate Floquet-Bloch eigenwaves 
at the DBE wavelength as will be explained throughout the 
paper. (v) We also demonstrate that the DBE laser operates 
without the need of cavities mirrors and the threshold is 
independent of mirror reflectivity as shown in Sec. IV. These 
findings are especially valuable for further developing optical 
devices based on degeneracy properties. Note that although 
the DBE is a slow-light phenomenon occurring strictly in a 
lossless periodic waveguide, we propose the DBE lasing 
regime in a fully-coupled system composed of a “cold” DBE 
cavity and a non-linear gain medium (modeled by (4) in Sec. 

   

 
FIG. 1. (a) Scaling of the lasing threshold pumping rate of three regimes 
of laser operation based on three types of cavities varying as a function of 
the cavities’ lengths (number of unit cells N). The EPD-based laser 
proposed in this paper demonstrates the lowest lasing threshold as well as 
a unique scaling of its threshold versus the active medium length as N−5 

The trend is for lossless cavities, i.e., no dissipative losses in the 
waveguide (methods, analysis, and impact of loss are elaborated in Sec. II 
through Sec. V). (b-d) Geometries of two basic “cold” (cold refers to the 
absence of the gain medium) optical ridge waveguides that exhibit fourth 
order degeneracy (i.e., a DBE). The ridge waveguides here are 
periodically coupled using different coupling mechanism: (b) proximity 
coupling, and (c) using optical microresonators (e.g., microrings or 
microdiscs). Such waveguide geometries with different coupling 
mechanisms are represented here by an equivalent waveguide model with 
structured periodic unit cell. (d) A unit cell of the periodic waveguide 
specifically considered in this paper to prove the proposed concepts. It 
has a length d and is composed of one uncoupled section (gray color) and 
another coupled section (dark red color) with lengths of d1 and d2 
respectively, designed to exhibit a DBE at optical communication 
wavelength of 1550nmdλ = . 
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II.B) for which the interaction is investigated using time-
dependent non-linear evolution equations.  

The concepts discussed are based on a novel interaction 
regime between light and active material. Typically, laser 
sources operate based on conventional Fabry-Perot cavity 
resonances and that causes challenges especially in the 
semiconductor laser realm. However, here we employ a 
fourth-order eigenwave degeneracy (i.e., they form a single 
degenerate eigenmode) to enforce lasing mode-selectivity 
and conceive a class of low-threshold lasers whose threshold 
is independent of mirror reflectivity. 

The layout of the paper is organized as follows. First, we 
show possible implementations of “cold” coupled optical 
waveguides whose Floquet-Bloch eigenwaves support the 
DBE in Sec. II.A. We then theoretically investigate the DBE 
laser based on evolution equations for waves in coupled 
waveguides that account for spatial periodicity as well as loss 
and gain in Sec. II.B and Appendix A. The properties of the 
“cold” DBE structure as well as the steady state gain medium 
response are introduced and investigated in Sec. II.C and 
II.D, respectively. We then report the evolution of the lasing 
action inside the DBE laser using finite-difference time-
domain (FDTD) algorithm as well as the lasing threshold 
analysis [in Fig. 1(a)] in Sec. III and Appendix B. Finally, we 
demonstrate the effect of losses on the loaded Q-factor and 
provide comparisons between conventional lasers and the 
proposed DBE laser in terms of lasing threshold in sec. IV. 

II. LASER THEORY IN COUPLED WAVEGUIDES WITH 
EPDS 

In this paper, we propose and investigate a new class of 
EPD lasers. Our proposed laser operates near the DBE which 
guarantees coherent single frequency oscillation as well as 
low threshold. 

A. Pair of Periodic Coupled Waveguides 
with Four Degenerate Eigenwaves 

Among the many possible lossless optical coupled 
waveguide geometries that may exhibit DBE, i.e., an EPD 
caused by coalescence of four Floquet-Bloch eigenwaves 
into one degenerate eigenwave, we illustrate in Fig. 1(b)-(c) 
two representative waveguide examples. The dispersion 
relation with DBE is shown in Fig. 2. The optical waveguide 
in Fig. 1(b) is composed of periodic segments of coupled and 
uncoupled optical waveguides, with period d. Alternative 
coupling mechanism could be also realized through optical 
resonators as couplers to the waveguide [as in Fig. 1(c)]. The 
reason for utilizing optical resonators (such as microrings or 
microdiscs  [56–58]) is their ubiquitous use in lasers due to 
their high loaded Q-factor and ease of fabrication. In the 
example shown in Fig. 1(c) the DBE cavity is made of  
waveguides coupled to a chain of coupled resonator optical 
waveguide (CROW) as shown in  [50]. (The conventional 
CROW topology would support only an RBE  [59–61].) 
Furthermore, the DBE CROW proposed in  [50] was shown 

to exhibit remarkably high Q-factor resonances near the DBE 
that are robust against disorders and perturbations. Note that 
other geometries can also be designed and implemented 
using various semiconductor photonics technologies [46]. 
The geometries shown in Fig. 1(b)-(c) are simply represented 
using their equivalent coupled waveguide model in Fig. 1(d), 
constituting WG1 and WG2 that is the model used in the rest 
of the paper. Such periodic waveguides have a dispersion 
diagram as in Fig. 2, exhibiting the DBE at 

/(2 ) 193.4THzd df ω π= ≈ , i.e., at  dλ  = 1550 nm, using a 
pair of periodic coupled waveguides as in Fig. 1(d) with 
parameters in Appendix C. Note that the dispersion relation 
in the vicinity of DBE frequency is approximated by 

( ) ( )d dh kω kω ≈ −− 4  where /dk π d= is the wavenumber 
at the DBE., and h is a geometry dependent parameter. At 
any ω the Floquet-Bloch eigenwaves in a pair of coupled 
periodic waveguides comprise four k wavenumbers, 
associated to four eigenvectors that are, in general, mutually 
independent. However, at a DBE frequency the four Floquet-
Bloch eigenwaves coalesce, in wavenumber and 
eigenvectors. A consequence of Floquet-Bloch eigenwave 
degeneracy is that independent basis of wave propagating 
must come in the form 

of generalized eigenvectors at the DBE (see Ch. 7.8 in  [63] 
as well as  [64,65]). At the DBE, waves associated to those 
generalized eigenvectors grow linearly, quadratically and 
cubically with the z coordinate; having vanishing group 
velocity yet still satisfying Maxwell’s equations  [64,66,67]. 
In addition, finite structures made of such periodic coupled 
waveguide experience unusual FPC resonances; compared to 

 
FIG. 2. The dispersion diagram of the “cold” (i.e., in absence of the gain 
medium) coupled-mode waveguides in Fig. 1 near the DBE, showing the 
real part of the Bloch wavenumber k versus angular frequency. A 
distinguished characteristic of the DBE condition is that its dispersion 
curve follows the asymptotic trend ( ) ( )4

d dk kω ω− ∝ −  near the DBE 

angular frequency 2 , 193.4THzd d df fω π= ≈ . The right panel is a 
representation of eigenvectors evolution with frequency in the 
periodically-coupled waveguide. Note that there are four eigenvector 
solutions corresponding to two propagating eigenwaves (forward with 
Re(k)<π/d and backward with Re(k)>π/d) in solid lines and two 
evanescent eigenwaves in dashed lines. At the DBE frequency, these four 
eigenvectors coalesce into one degenerate eigenvector as shown in right 
panel of the figure. Also, there exists a band gap for frequencies higher 
than that of the DBE. 
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uniform FPCs [47]. The DBE laser proposed here oscillates 
based on the FPC resonance closest to the DBE frequency 
and therefore enables a remarkable low-threshold single-
frequency lasing as it will be shown in Secs. III and IV. 

Note that the concepts exposed in this paper are general 
and applicable to any waveguide geometry exhibiting a DBE. 
To illustrate the DBE laser concept however we specifically 
refer to an illustrative example of periodic waveguides 
modeled as a cascade of coupled and uncoupled waveguides 
as in Fig. 3 (details in the Appendices) with coupled-wave 
equations described as follows.  

B. Time Domain Formulation of The 
DBE Laser Action 

We describe in detail the theory of coupled waves 
propagating (along the z-direction) in coupled waveguides 
with EPDs. We assume that each of the two waveguides has 
only a single propagation eigenwave (in each of the ±z-
direction), so the coupled waveguide system has two 
propagating eigenwaves (in each direction). Here coupling 
between the two waveguides (WG1 and WG2) is mediated 
phenomenologically through coupled differential wave 
equations [as in (1)] involving wave amplitudes. (Note that 
this approach is known in the radio frequency as coupled 
transmission lines  [68] and it is inherently related to the 
conventional coupled-mode theory  [69–74] widely used for 
optical systems). We again point out that the lasing regime 
proposed here is based on a fully-coupled system modeled by 
non-linear evolution equations in time, describing the 
dynamics of electromagnetic waves in the DBE cavity that 
incorporates gain material. Discussions about gain 
enhancement properties for slow-light waveguides can be 
found elsewhere, for instance  in  [24,25,47]. We stress that, 
strictly speaking, the presence of gain or loss detunes the 
system away from the mathematical DBE condition as we 
have previously investigated in other cases  [75,65,76,47]. 
However important field properties of the special DBE 
degeneracy are retained when gain is not high. In addition, 
our evolution equations correctly take into account gain in a 
slow-light system and would provide proper results also for 
large gain. 

We consider two traveling waves, in WG1 and WG2, that 
are described by their spatiotemporal amplitudes  1 ( , )a z t+  
and 2 ( , ).a z t+  The two waves propagate along the coupled 
waveguide in the +z-direction. Their amplitudes are 
normalized in such a way to represent power waves as 
pointed out in  [77], so that 

( ) ( )2 2
1 2( , ) ( , ) ( , )S z t a z t a z t+ + += +  is the instantaneous power 

flux in the coupled waveguides along the +z-direction. As 
such the wave amplitudes are conveniently expressed using a 

two-dimensional vector 1 2( , ) ( , ) ( , )
T

z t a z t a z t+ + +⎡ ⎤= ⎣ ⎦a where 

superscript T stands for transpose. From here onward, bold 
symbols denote vectors, while bold double-underlined 

symbols denote 2×2 matrices and bold single-underlined 
symbols denote 4×4 matrices. 

The space-time evolution equations for the wave amplitudes 

( , )z t+a  in a uniform, lossless coupled waveguide are given 
by 

 111 1

222 2

( , ) ( , )
,

( , ) ( , )
m

m

n na z t a z t
c

n nz ta z t a z t

+ +

+ +

⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂ ∂
⎜ ⎟ ⎜ ⎟= − = ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎣ ⎦⎝ ⎠ ⎝ ⎠

n n , (1) 

where  c is the speed of light in vacuum, 11n , 22n  and mn
are effective refractive indices of the coupled waveguide, 
respectively, and n  is a 2×2 matrix whose eigenvalues are 
the effective refractive indexes of the propagating waves in 
the coupled waveguides. Note that the coupling between the 
two waveguides is present through the off-diagonal entries 

mn  of the matrix .n  Indeed, when 0mn =  the two 
waveguides are uncoupled and the space-time evolution of 
the waves in the system described by (1) turns into two 
uncoupled equations whose solutions are the natural 
propagating eigenwaves in WG1 and WG2. When WG1 and 
WG2 are coupled, the two eigenwave solutions are found by 
solving the coupled-wave equation (1). Thanks to reciprocity, 
the eigen solutions of (1) obey the symmetry t → −t. 
Therefore, independent eigenwaves may also propagate in 
the negative z-direction, and their amplitudes are denoted by 

a two dimensional vector 1 2( , ) ( , ) ( , ) .
T

z t a z t a z t− − −⎡ ⎤= ⎣ ⎦a  

The evolution of those wave amplitudes is also obtained from 
(1) through the transformation a+→ a− and t → −t. 
Accordingly, we write the evolution equations for both +a  
and −a  in a matrix form for a uniform waveguide viz,  

    
( , ) ( , ) ( , ) ( , );z t z t z t z tc c
z t z t

+ + − −∂ ∂ ∂ ∂= − =
∂ ∂ ∂ ∂

a a a an n . (2) 

In (1), that applies to a lossless system, the matrix n  is 
purely real and symmetric (so it is Hermitian). The entries of 
n  are real valued and are associated to the refractive index 
of the coupled waveguide system. The matrix n  appears as a 
simple multiplier because in a frequency domain description 
we neglect material and waveguide frequency dispersion.  
This is a valid approximation since we investigate lasing 
action in a narrow frequency range given by the emission 
spectrum of the active atoms. In general, one may construct a 
first order  
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FIG. 3. Schematic representation of an FPC with DBE composed of a finite 
number of periodic unit cells, each made of a coupled and an uncoupled 
section, and terminated at the two ends by output (“load”) waveguides. The 
FPC DBE resonance frequency fr,d is very close to the DBE frequency fd. 

 
evolution equation in the waveguide by assuming a state 
vector ˆ ( , )z tΨ  comprising the wave amplitudes, that evolves 
in the lossless coupled waveguide as 

      
ˆ ˆ( , ) ( , )ˆz t z t

z t
∂ ∂= −

∂ ∂
Ψ ΨM ,  and   

( , )ˆ ( , )
( , )

z t
z t

z t

+

−

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

a
Ψ

a
,  (3) 

where the 4×4 matrix M̂ is a block-diagonal system matrix 
comprised of the matrix n  for each uniform waveguide 
segment, as given in Appendix A. 

It is important to point out that the coupling mechanism 
and the transfer of power between the coupled waveguides 
are well-understood from the evolution of the coupled waves 
as described above. The aforementioned analysis resembles 
the coupled-mode theory for optical waveguides  [69–74]. 
However, we recall that our approach is in fact equivalent to 
transmission line theory  [78] for optical waveguides where 
we incorporate gain and loss in the temporal evolution 
equations as we elucidate in the following.  

It is convenient to study total electromagnetic fields 
inside the cavity by resorting to electric and magnetic fields’ 
amplitudes, namely by two-dimensional vectors 

[ ]1 2( , ) ( , ) ( , ) Tz t E z t E z t=E and 

[ ]1 2( , ) ( , ) ( , ) Tz t H z t H z t=H , respectively, where the 
vector components represent amplitudes of the total fields in 
WG1 and WG2. The two-dimensional vectors E and H are 
related  

to the wave amplitudes a+ and a− as shown in (A2) in 
Appendix A, by resorting to the concept of characteristic 
impedance of the waveguides as discussed  in Appendix A (a 
procedure described in coupled transmission line 
theory  [68]). The reason for adopting this E and H field 
representation is that it is straightforward to include losses 
and gain in the total field formulation. Such coupled-wave 
formulation can be then readily characterized using 
conventional FDTD implemented by a standard Yee [79] 
algorithm that has been extensively studied for transmission 
lines  [80] as well as for formulations based on both E and H 
fields  [80–82]. As done in Ref.  [22,47], for example, the 
state vector that describes the total field amplitudes is 

denoted by ( , ) ( , ) ( , )
TT Tz t z t z t⎡ ⎤= ⎣ ⎦Ψ E H and it is related 

to normalized wave amplitude state vector ˆ ( , )z tΨ  through a 
matrix transformation (see Appendix A). The space-time 
evolution of the total field amplitude state vector ( , )z tΨ  in 
the periodic waveguide is constructed in a similar fashion to 
(3) and is provided in Appendix A, (A6).  

 We proceed by generalizing of the above analysis to 
periodic structures made of sections of uniform coupled 
waveguides in the presence of gain and loss. The nonlinear 
gain is provided by an externally-pumped active medium and 
is incorporated into the analysis through the polarization 
density amplitudes 1( , )P z t  and 2( , ).P z t These polarization 
densities represent the effective polarization field amplitudes 
induced in WG1 and WG2 because of the gain medium and 
depend on how much the field distributions associated to the 
amplitudes 1( , )E z t and 2 ( , )E z t  overlap with the gain 
medium. Hence, generalizing (A6) to the case of gain and 
loss one obtains  

 ( , ) ( , ) ( , )( ) ( , )z t z t z tz z t
z t t

⎛ ⎞⎛ ⎞∂ ∂ ∂ ⎜ ⎟= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

0 00Ψ Ψ PM Ψ
γ 0s

 (4) 

where ( )zM is the system matrix of the lossless and gainless 
coupled waveguide given in (A7). The two-dimensional 
polarization density amplitude vector 

[ ]1 2( , ) ( , ) ( , ) Tz t P z t P z t=P  represent the polarization 
density in WG1 and WG2 induced by the transition of the 
active atoms. Therefore ( , )z tP  accounts for the active 
material (gain), and s  is a 2×2 gain coupling matrix that 
represents the interaction strength of the gain media and the 
coupled waveguide fields. The 2×2 matrix γ  is a per-unit-

length dielectric loss parameter, also given in Appendix A. 
The atomic transitions occur within a simplified, yet realistic, 
four-level energy atomic system shown in Fig. 4. 
Accordingly, the time evolution for the polarization density 
amplitudes in WG1 and WG2 at the presence of a forcing 
electric field is described by the homogeneously broadened 
Lorentzian oscillator model and obtained as  [82–85] 

 
2

2
2 ( , ) ( , )e e ez t N z t

tt
ω ω σ

⎡ ⎤∂ ∂+ Δ + = − Δ⎢ ⎥∂∂⎢ ⎥⎣ ⎦
P s E , (5) 

where 

 ( )3 2
0 216e ecσ πε τ ω= , (6) 

and 21τ  is the photon lifetime of the transition between the 
second and the first energy states (i.e., between energy levels 
2 and 1), e  and m  are the charge and the mass of an 
electron, 0ε  is the free-space permittivity, eω  is the angular 
frequency of emission (chosen for our specific 
implementation at 1550nmeλ = ), and eωΔ  is the full width 
at half maximum  
 



6 
 

 
FIG. 4. A simplified four-level atomic system model in which lasing occurs 
between the atomic levels with population densities N2 and N1. 

line-width of the atomic dipolar transition. The 2×2 matrix s

in (5) is given in Appendix C and indicates which of the two 
waveguides is involved in the coupling between gain media 
and electric field amplitudes. Here, its components are 
simply taken as 1 or 0, though it could take into account also 
other confinement factors. The atomic system has four 
energy levels with atomic population densities of 0 ,N 1,N

2 ,N and 3N while NΔ in (5) is also the population density 
difference between the first and the second energy levels 
(i.e., 2 1)N N NΔ = −   [83,84]. The time- and space-
dependent population density ( , )jN z t  at each energy level  

0,1,2,3j =  is obtained from the nonlinear rate equations 
provided in the Appendix A. Here, we assume that the total 

active material density ( )3
0i.e., ( , )T jjN N z t==∑  is 

uniformly distributed and is invariant with space and time. 
The cavity is optically-pumped with pumping rate pR  

transferring active atoms from the ground state ( th0 level) 
into the highest energy level ( rd3 level). The lasing action 
occurs when the atomic transition from the second level to 
the first one is slow and radiative, leading to a population 
inversion (i.e., lasing condition is when 21 32 10,τ τ τ> which 
results in 2 1N N> ). Here, we assume that the active material 
is Erbium (Er3+) and it is doped into the substrate. The 
pumping rate pR  is a tunable parameter and can be varied by 
the external pump intensity in a real experiment. Therefore, 
we fully characterize the laser cavity by simultaneously 
solving the coupled set of nonlinear rate equations given in 
(A9) along with the wave equations in (4) and the Lorentzian 
equation in (5). Here, we utilize the FDTD  
algorithm to solve this system of equations along with proper 
boundary conditions. Details on the FDTD algorithm 
employed here are included in Appendix B. The boundary 
conditions for the system imply that the periodic waveguide 
is terminated at both sides by output waveguides (see Fig. 3) 
whose loading is represented by their characteristic 
impedances given in Appendix C (Table CIII). To study the 
operational scheme of the DBE lasers we first investigate the  
characteristics of the “cold” DBE cavity (also discussed 
in  [47,76]), where for “cold” we mean absence of gain; 

however we pay attention to losses and include realistic 
parameters of the coupled waveguide. 
 

C. Steady state gain medium response 

In order to provide insight into characteristics of the DBE 
laser, the response of the “cold” DBE cavity is investigated 
as well as the steady state response of the DBE cavity with 
gain medium.  Assuming time harmonic fields as i te ω− , the 
electric field and polarization density amplitude vectors in (4) 
are given by  ( , ) Re ( ) i tz t z e ω−⎡ ⎤= ⎣ ⎦E E and ( , ) Re ( ) ,i tz t z e ω−⎡ ⎤= ⎣ ⎦P P

respectively, in which ( )zE  and ( )zP  are phasors.  

In addition, we consider the active material population 
density at each energy level from the steady state point of 
view (at the steady state we have / 0, 0,1, 2, 3).jdN dt j= =  
As such the population difference NΔ  is constant and 
expressed  as a function of the gain medium parameters; as 
typically done in steady state linearized gain models  [84]. 
Therefore, the polarization density vector is simply related to 
the electric field vector through 

 2 2( ) ( ) ( )e

e e

gz N z z
ii

σ
ωω ω ω ω

= Δ =
− + Δ

P s E s E  (7) 

This equation defines the linearized gain parameter 

( )2 2/e e eg i N iω σ ω ω ω ω= Δ − + Δ  with unit of Siemens/m. 

This is analogous to the description where polarization 
density amplitudes are related to the electric field amplitudes 
through the susceptibility (see definition in page 494–541 
in  [83] and page 103-108 in   [84]). The parameter g 
represents gain/loss when its real part is negative/positive, 
whereas its imaginary part represents reactive loading due to 
the gain medium, under the small signal (linear) regime. In 
the example investigated here, only WG2 has active material 
(i.e., Erbium Er3+) and therefore only the 2,2-entry, shown in 
Appendix C, of the gain coupling matrix s  is non-vanishing. 
Active medium parameters are detailed in Appendix C, and 
the plot of the gain parameter g, with unit of Siemens/m, is 
shown in Fig. 5(a) for a pumping rate of 6 16 10 spR −= × . 
Fig. 5(a) shows that the gain parameter profile follows a 
Lorentzian shape with a negative real part within the 
frequency band of interest where, for simplicity, the periodic 
coupled waveguide in Fig. 3 is devised to have the DBE 
angular frequency dω  coinciding with the emission angular 
frequency eω . 

D. Cold DBE cavity characteristics 

The properties of the “cold” DBE cavity, i.e., without the 
gain medium, are described here. We investigate the transfer 
function and the loaded Q-factor of the DBE cavity, using the 
transfer matrix analysis (refer to  [47,65] for a thorough 
analysis of waveguides with DBE using the transfer matrix 



7 
 

method). The analysis of cold DBE cavities has been done in 
various references, to mention a few  [66,64,67,54,47], 
however here we only demonstrate the principal 
characteristics relative to lasing and the main contributing 
factors to lowering the lasing threshold and the single mode 
property in a DBE laser. 

 Note that the evolution equations of the wave amplitudes 
in the coupled waveguides can be described with first order 
differential coupled-wave equations that may be written in a 
Hermitian form (in the absence of gain and loss), as 
conventionally done in coupled-mode theory [86]. Therefore, 
this lossless system can be locally referred to as Hermitian 
(in the context of coupled-wave propagation [86,87]). In 
other words, the time harmonic coupled wave equations (1) 

are given in terms of the phasors ( )z±a  with 

( , ) Re ( ) i tz t z e± ± −⎡ ⎤= ⎣ ⎦a a ω  in a frequency domain description as 

such  

    0 0
( ) ( , )( ) ; ( )z z tik z ik z
z z

+ −
+ −∂ ∂= =−

∂ ∂
a an a n a , (8) 

where 0 /k c= ω . By inspecting (8), one concludes that the 
matrix 0k n is Hermitian since it is symmetric and therefore 
diagonalizable  (refer to  [44] for details) in each uniform 
segment of the lossless coupled waveguides.  

The fundamental consequence of spatial periodicity of the 
lossless coupled waveguides under considerations (as those 
in Fig. 1) is  that a non-uniform ( )zn allows the EPD to occur 
even though  the individual lossless uniform waveguides 
constitute Hermitian matrices as explained in detail in  [88] 
using a transfer matrix formalism. In the following results are 
obtained using the TL formalism in Sec. II.B implemented 
via a transfer matrix formalism following  [66,88], skipping 
the details here.  

The finite length resonator is terminated by waveguides 
as shown in Fig. 3 and whose characteristic impedances are 
given in Appendix C (Table CIII). We first plot in Fig. 5(b) 
the transfer function  [66] 

 
FIG. 5. (a) Active material steady state gain parameter g that follows a 
Lorentzian line shape in frequency for a pump rate 6 16 10 spR −= × . (b) 

Transfer function of the cold DBE cavity, defined as 2 2| ( ) / (0) |E N E + , with 
N=20, plotted versus frequency using both frequency domain analysis as 
well as the FDTD method explained in Appendix B. The DBE cavity 
resonance frequency (sharpest peak) occurs at , 193THzr df ≅  (i.e., 

, 1553 nmr dλ ≅ ). 

 
Fig. 6. Diagram of the transfer function of the cold DBE cavity versus the 
normalized frequency and the number of cells N. We also plot the fitting 

function 
4

, /r d d Nω ω ζ= − , with 64 dζ ω≈  (dashed line) which shows 

how the DBE resonance (the sharpest resonance) approaches the DBE 
frequency. 

Sharp transmission peaks near the DBE angular frequency 
dω  are observed and the peak closest to the DBE frequency 

has the highest Q-factor  [47], and we refer to it as the DBE 
resonance of the structure with finite length and we  
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FIG. 7. Loaded Q-factor for “cold” DBE cavities with and without losses as 
a function of number of the cavity unit cells. We observe the unconventional 
scaling of the loaded Q-factor for “cold” DBE cavities as N5 with N being 
the number of unit cells. Here we show the calculated Q-factor as well as the 
fitting formula α+βN5 with α =767.7 and β = 0.001. The quality of the 
fitting is provided by a root mean square error (RMSE) [64] of 0.998 for 
large N (N>15). As shown in the figure, such unconventional scaling of Q 
will be deteriorated by incorporating losses represented by increasing the 
distributed loss parameter γ. 

denote it by ,r dω . Note that such peak is the sharpest one, 
and in Fig. 5(b) occurs at , , /(2 ) 193THz,r d r df ω π= ≅ i.e., at 

, ,2 / 1553 nm,r d r dcλ π ω= ≅  and that several peaks are 
within the emission spectrum [Fig. 5(a)] of the gain material. 
The resonance frequency closest to the DBE frequency is 
dominant over all other resonances in the FPC with DBE. 
Because of the fourth power in the dispersion relation 

( ) ( )d dh kω kω ≈ −− 4 , a FPC resonance will occur at an 
angular frequency ,r dω  extremely close to dω , where the 
group velocity vanishes, hence causing a very high density of 
states at ,r dω  [42]. This leads to the FPC resonance with 
highest group delay and highest local density of states 
(LDOS) as was shown in Ref.  [47].  It is because of the 
largest density of states associated to the resonance peak at 

,r dω , a single frequency operation of a laser cavity with 
DBE is expected, as it will be shown in Sec. IV.   

For the sake of completeness, we compare the transfer 
function result obtained using the transfer matrix analysis 
with that calculated using the FDTD method that will be used 
later on in the paper. Fig. 5(b) shows identical agreement 
between both methods in analyzing the transfer function of 
the cold DBE cavity. In Fig. 6 we show the peaks of the 
transfer function varying number of unit cells in the periodic 
structure, calculated using the transfer matrix method. This 
figure shows that the transmission resonance frequencies are 
sharper when closer to the DBE frequency, and that the 
transmission resonance peak (i.e., the DBE resonance at ,r dω
) shifts toward the DBE frequency dω  as the number of cells 
N increases, following the trajectories  

 4
, / ,r d d Nω ω ζ= −   (9) 

where 4( / ) 64 .dh dζ π ω= ≈  This formula serves to 
estimate the working DBE resonance frequency as a function 
of number of unit cells. It should be observed that such DBE 
cavities have more or less twice the number of resonance 
frequencies as a uniform cavity with the same length, and 
that they are even closer to each other than those in a uniform 
cavity. Nevertheless, a single frequency of lasing operation 
will be demonstrated, due to the very high density of states of 
the resonance at ,r dω  [47].  

In Fig. 7 we show some properties of the loaded Q-factor 
for DBE cavity. The loaded Q-factor is defined as 

tot , ( ) /r d e m LQ W W Pω= +  where eW  and mW  are the total 
electric and the magnetic time-average stored energies, while 

LP  is the total time-average power loss. In the calculation of 
the power loss we consider the power dissipated in the 
material and that received by the loads. We plot the 
calculated loaded Q-factor at the DBE resonance versus the 
number of unit cells in Fig. 7 where we show how it scales 
with N. (Resonance is recalculated at each length, for each 
case.) In particular, we observe the unusual trend of the 
loaded Q-factor where the loaded Q-factor increases as N5 for 
large N for the lossless DBE cavity (as shown in Fig, 7 by the 
fitting formula: loaded Q =a+bN5). However, dissipative 
losses in the dielectric [represented by the parameter γ in (4) 
and in (A8)] limits such anomalous trend. In other words, the 
loaded Q-factor ceases to increase at one critical cavity 
length at which starts to deteriorate when losses overwhelm 
the response, i.e., eliminate transmission peak of the cavity. 
Note that for γ > 17 S/m, which is a high loss condition, the 
FPC with DBE composed of 20-unit cells would have 
negligible transmission and therefore the loaded Q-factor 
would be less than 1000. Such high loss cases are not 
considered here though may have advantages in certain class 
of lasers with PT-symmetry for instance  [31,44]. Here, it is 
important to pay attention to the design of the DBE cavity by 
choosing the optimum number of cells to control the effect of 
losses and allow for the DBE resonance condition. We stress 
that the values of Q-factor (in Fig. 7) are only representative 
for the DBE cavity investigated here, and higher values of Q 
could be obtained for an optimized design considering other  
implementations, utilizing CROWs for instances as in  [50]. 

III. DEGENERATE BAND EDGE (DBE) LASER 
The evolution of the lasing dynamics in active DBE 

cavities is described by the nonlinear time-domain equations 
stated in Sec. II and Appendix A. In particular, the transient 
response of lasing action is well described by the evolution of 
gain in the cavity. In the small signal regime, photons within 
the DBE resonance at  ,r dω ω=   have the longest lifetime 
and the highest effective gain coefficient as defined in [42], 
among all other resonances in the cavity. As long as the 
overall gain experienced by such photons (electromagnetic 
waves) inside the cavity in a roundtrip is higher than the 
cavity losses (due to dissipative mechanism and escaping 
energy from the cavity  
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FIG. 8. Transient response of the electric field amplitudes recorded at all 
four waveguide outputs (Fig. 3) of the DBE laser (with 20N =  unit cells) at 

0z = and z L= for a pumping rate of 7 1
p 10 sR −= . The zoomed area in 

right-bottom figure indicates the single frequency laser operation at the 
steady state. The laser steady state outputs are at a single frequency of 
~192.5THz (~λ = 1556.9 nm) which is very close to the DBE resonance 
frequency , 193 THz r df =  ( , 1553nmr dλ = ). 

ends), the intensity of the electromagnetic waves grows; and 
the DBE resonance has the highest growth rate among all 
other resonances in the cavity. Further analysis for the linear 
gain enhancement in DBE structures is established in  [47].  

On the other hand, for large electromagnetic wave 
intensities inside the cavity, nonlinearities are manifested in 
the rate equations, saturation occurs, and the output field 
amplitude reaches a steady-state. Here, we analyze the lasing 
action in the optical-waveguide-based DBE laser using the 
FDTD algorithm (see details in Appendix B). The parameters 
of the DBE laser are provided in Appendix C. Note that 
transient and steady state results are obtained here assuming 
that an initial short Gaussian pulse (whose parameters are 
provided in Appendix B) is launched into the WG2 from the 
left (Fig. 3).  

The transient responses of the electric field amplitudes at 
all four waveguide outputs, for the case of a lossless DBE 
cavity, are plotted for a pumping rate of 7 1

p 10 sR −=  in Fig. 

8. Note that the pumping rate of 7 110 s−  used in Fig. 8 is 
larger than the lasing threshold pumping rate as we show 
later. We observe from Fig. 8 that the output field amplitudes 
saturate to the steady state at around 350psst ≈ thanks to the 
nonlinearity in the gain medium described in the nonlinear 
rate equations (see Appendix A). Note that the output electric 
field amplitudes in the waveguide outputs oscillate at a single 
frequency of ~192.5THz (~λ = 1556.9 nm) as seen in Fig. 8 
bottom, right panel; which is very close to the DBE cavity 
resonance frequency of ,r df ~193 THz (see Fig. 5), yet there  

 

 
FIG. 9. The normalized electric field intensity (normalized to its maximum 
within the reported time window) inside the WG2 of the DBE laser cavity 
versus time: (a) 0-70 picoseconds interval, (b) 0-500 picoseconds interval. 
We observe a well-established oscillation with the DBE frequency after a 
short time.  

 

FIG. 10. Steady-state time-averaged electric field amplitude intensities 
inside the WG1 and the WG2 of the DBE laser cavity with N=20 (L=4.8μm). 
We observe that the steady-state field amplitudes profile resembles the 
resonance field amplitudes profile in the “cold” DBE cavity (i.e., without the 
gain medium) meaning that the DBE features are still occurring, even in the 
presence of non-linear gain. 

is a very slight frequency shift due to the gain medium 
frequency pulling  [83]. 

We first illustrate the mode selectivity by showing the 
space-time field evolution inside the cavity in Fig. 9 for 
which the DBE resonant field concentrated at the cavity 
center starts to grow exponentially after ~70 ps. Therefore; 
although many FPC resonances experience gain as seen in 
Fig. 5, the DBE resonance experiences the highest gain and 
dominates the output spectrum thanks to its unique field 
distribution and highest Q-factor. In addition, we plot the 
steady-state time-averaged electric field intensity inside the 
DBE laser cavity in Fig. 10. The steady-state field intensity is 
mainly concentrated near the cavity center for WG2; while 
the maximum field intensity in WG1 is at least two orders of 
magnitude lower than that in WG2. Nevertheless, the 
presence of WG1 is crucial to achieve the DBE. In addition, 
the steady-state field profile inside the DBE laser cavity 
resembles the field of the DBE resonance in the cold DBE 
cavity (not shown here for brevity, see Ref.  [47,66]). Such 
observation indicates that the DBE features, which pertain to 
lossless and gainless periodic waveguides, are still persistent 
even when the cavity contains a non-linear gain. However, 
when operating just above the lasing threshold shown next, 
the main features of the DBE are  
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FIG. 11. The time average of the steady state electric field amplitude at the 
end of the WG1 (the root mean squared (RMS) defined as 

( ) ( )2

1

21rm s
1 2 1 1 ,

T

T
E T T E t z L dt−= − =⎡ ⎤⎣ ⎦∫ where the time interval 

2 1T=T T− is one period of the steady state electric field amplitude at the end 
of the WG1) of the lossless and lossy (with 13 S/mγ = ) DBE laser with 

20N =  unit cells, versus pumping rate. The comparative plot shows that the 
presence of the losses does not change the laser threshold dramatically. 
Moreover, the DBE laser maintains a single mode operation even when 
pumped up to 20 times of its threshold. 

retained. Very high levels of gain (i.e., very high pumping 
rates) may lead to other regimes of operation not considered 
in this paper since high gain may adversely deteriorate the 
DBE condition (see discussion in  [47], and in  [25] for RBE 
structures). 

To calculate the lasing threshold for the DBE laser using 
time-domain simulations, we calculate the root mean square 
(RMS) value of the steady state electric field amplitude at the 
end of the WG1 of the cavity as a function of the pumping 
rate, and shown in Fig. 11. Two DBE laser cases with the 20 
unit cells are investigated in Fig. 11, a lossless DBE laser 
with the total loaded Q-factor of 4200 and a lossy DBE laser 
with 13 S/mγ =  (see Fig. 7) and a total loaded Q-factor of 
3400. Remarkably, the DBE laser is shown to exhibit a 
single-frequency output even when pumped up to more than 
20 times of its threshold as seen from Fig. 11. The threshold 
pumping rate th

pR is defined as the minimum pump rate that 
causes instability, i.e., the electric field amplitude to grow 
exponentially inside the cavity. Numerically, it is calculated 
as the value of pR  at which the output field amplitude 
experiences a sudden transition from being around zero to 
having a significantly larger steady-state value. This is 
achieved by sweeping pR and observing the output steady 
state field amplitudes. As in Fig. 11, the root-mean-square 
(RMS) of the steady state output electric field amplitude 
(here recorded after 1.5 ns) for a lossless DBE laser is 
negligible (~0 V/m) for pR ~1.08×106 s-1 while it is 
significantly large (~0.86×104 V/m) for pR ~1.22×106 s-1, 
indicating that a threshold pumping rate of approximately 

th
pR ~1.15×106 s-1 within a maximum error of ~6% due to 

finite numbers of simulation points. As such, the lasing pump 

threshold for the lossless and the lossy DBE lasers are
th 6 11.15 10 spR −≈ × and th 6 11.4 10 spR −≈ ×  respectively. 

Furthermore, Fig. 11 shows that the RMS value of the steady  

 

FIG. 12. Threshold pumping rate for the lossless DBE laser varying as a 
function of laser length (i.e., Nd ) calculated using FDTD (squares), and 
plotting the fitting curve (for large number of unit cells) as a solid line with

( )th 5
p 0R R Nα β= + , where R0=2×1010 s-1, and the fitting constants α and 

β are given in the caption of Fig. 7. 

state electric field amplitude of the laser output increases 
linearly with the pump rate above threshold. 

We also calculate, using the FDTD method, the threshold 
pumping rate for the lossless DBE laser with different 
numbers of unit cells following the same procedure we have 
used for calculating the lasing threshold for the DBE with 
N=20 unit cells in Fig. 11. Then, we plot the threshold 
pumping rate for the DBE laser varying as a function of the 
number of unit cells N  in Fig. 12. The trend of the threshold 
pumping rate for the DBE laser for large N (i.e., 16N ≥ ) is 
also shown in Fig. 12 by the asymptotic fitting curve 

th 5
pR N −∝  which agrees with the theoretical 

calculations  [47]. The reasons for such unconventional 
scaling of the threshold pumping rate with length is that 
loaded Q-factor of the DBE laser scales as 5N  (see  [47,76] 
for more details), as compared to that of a conventional RBE 
laser which scales as 3N [41] , or that of a homogenous 
cavity that scales simply as N;  as shown in Fig. 1(a), for the 
three regimes of operations discussed in this paper. We point 
out that for large number of unit cells DBE laser threshold 
becomes substantially lower by orders of magnitude than 
uniform FPC lasers as shown in Fig. 1(a). Interestingly, the 
constants of proportionally of the trend of th

pR  as a function 
of N are the same as those used to fit the loaded Q-factor in 
Fig. 7, indicating that th 1

p ( ) ~ ( )R N Q N− . It may seem 
apparent that the pumping threshold is only dictated by the 
loaded Q-factor, yet the field structure of the cavity plays a 
pivotal rule in lowering the threshold as we discuss in the 
following section.  
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FIG. 13. Schematic geometries of the three FPC laser regimes compared in 
this paper: (a) FPC with DBE, (b) FPC with RBE, and (c) uniform FPC. 
Note that the FPC with DBE does not require mirrors at its ends, while they 
are essential in the uniform FPC, and somewhat necessary in the FPC with 
RBE, to ensure high Q-factor. 

IV. COMPARISON BETWEEN THE DBE LASER WITH 
OTHER CONVENTIONAL LASERS 

To elaborate on the reasons of the superiority aspects of 
the DBE laser, we establish here a comparison between the 
proposed DBE laser with two other regimes of laser 
operations: (i) uniform FPC laser and (ii) RBE laser. The 
geometries of the three aforementioned laser cavities are 
shown in Fig. 13 where the DBE and RBE laser cases are 
corresponding to periodic structures operating near their band 
edge frequencies and comprising two periodically coupled 
waveguides, while the uniform FPC cavity is composed of 
two uniform (i.e., nonperiodic) coupled waveguides. Note 
that the choice of coupled waveguides for the RBE and the 
uniform cavity lasers is not necessary, however we here use 
two coupled-waveguides to preserve the analogy to the DBE 
laser for comparison purposes. Additionally, we aim at 
showing fundamentally unique and superior properties of 
DBE laser compared to the two other regimes. Therefore, the 
Q factors and threshold values considered herein for all 
regimes of operation are shown as representative examples. 
Such unprecedented performance and the conclusions drawn 
thereafter are yet valid when implemented in other optical 
platforms supporting the DBE.   

The dispersion relations and the magnitude of the 
transmission coefficients for the RBE and the DBE 
representative examples considered here are shown in Fig. 
14(a)-(b), respectively. Indeed, we consider the 
aforementioned cold cavities (namely the FPCs with the 
DBE, the RBE, and the uniform case) such that they exhibit 
the same resonance frequency, length, and loaded Q-factor 
(that also takes into account losses as we will show later). 
This is achieved by adopting, for instance, the parameters for 
such cavities as in Appendix C. In order to achieve the same 
loaded Q-factor for the three aforementioned cavities with 
the same length, the reflectivity at the cavity ends is properly 
chosen as follows by resorting to the useful and general 
concept of waveguide impedance. We define a load power 

reflectivity at each waveguide (i.e., at each port) as the 
square of the  

 
FIG. 14. (a) Dispersion relation of two “cold” periodic structures exhibiting, 
respectively, a DBE and a RBE, at 193.4 THz (λ=1550nm). (b) Magnitude of 
the transmission coefficients of the two finite length cavities with DBE and 
RBE that are developed to have the same resonance frequency (~193 THz), 
length, and loaded Q-factor (Q = 4200).  

 
FIG. 15. Normalized electric field amplitude inside (a) the RBE “cold” FPC 
and (b) the DBE “cold” FPC varying as a function of the loaded Q-factor of 
the cavity. The loaded Q-factor decreases by incorporating dissipative losses. 
The field is plotted inside WG2 in both (a) and (b), which represents the 
maximum field enhancement for each case (when Q = 4200) occurring 
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respectively at 0.9985ωd and 0.99852ωd. Note that the normalized field 
amplitude inside the DBE cavity is much stronger than that in the RBE 
cavity and is mainly concentrated in the middle of the cavity. 

magnitude of the reflection coefficient at the interface 
between the output waveguide and the last FPC waveguide 
segment due to the difference in their characteristic 
impedances, as in Fig. 13 (see (C2) in Appendix C for 
definitions of reflectivity).  Note that the output WGs’ 
characteristic impedances for the three kinds of cavities as 
reported in Table CIII are varied to ensure that the three 
cavities have the same Q.  

It is important to stress that the uniform cavity requires 
extremely high mirror reflectivity at each end (the power 
reflection coefficient is ~0.995, as defined in Appendix C) to  
have the same loaded Q-factor as the RBE and DBE cavities. 
Indeed, especially for the DBE case, reflection at the ends of 
the cavity is not realized by physical mirrors (i.e., large 
impedance mismatch between waveguide segments) since 
waveguide reflectivities are much lower. Indeed, a large 
reflection for the REB and especially for the DBE cavity is 
caused by mismatch between the degenerate Floquet-Bloch 
eigenwaves and the propagation eigenwaves in the external 
waveguides, and not by the simple characteristic impedance 
mismatch in each waveguide. Similar properties are also 
demonstrated in DBE CROWs  [50] in which impedance 
mismatch or mirrors are not required for generating high Q-
factor values. 

We show in Fig. 15 the field distribution inside the “cold” 
coupled waveguides based FPCs operation at the resonance 
frequency for the two cases: the DBE cavity, considered in 
Sec. II-C and III, as well as the RBE cavity. The fields are 
plotted only for WG2 in both DBE and RBE FPCs and 
sampled only once in each unit cell along the cavity. The 
lossless cavities have a loaded Q-factor of ~4200 (the highest 
value of the Q-range considered here) and decreasing the 
loaded Q-factor occurs by introducing propagation losses in 
the waveguides using the parameter γ in (4) and (A8). The 
large magnitude of the normalized field inside the DBE 
cavity  demonstrates a uniquely-structured resonance field 
that leads to enhancing the local density of states  [47] and 
therefore would lead to a lowered lasing threshold as 
compared to the RBE laser. On the contrary, the standing 
wave electric field magnitude inside a uniform FPC has a 
constant envelope and that envelope is independent on the 
resonant frequency which is not shown in Fig. 15 for brevity 
(see [30], [71] for details). It is worth mentioning that the 
field enhancement in the RBE cavity is not as high compared 
to the DBE counterpart (see Fig. 15). Indeed, the value of 
field enhancement in a cavity is markedly reliant on the 
topology, technology and length of the optical waveguides 
(for instance, a CROW with DBE reported in  [50] can 
provide a higher field enhancement and higher Q-factors than 
the illustrative cases provided here). In essence, the 
maximum field enhancement in an FPC with DBE is at least 
10 times that of an FPC with RBE having the same Q factor 
and analogous topologies as seen in Fig. 15, and such 

observation can be generalized to other implementations of 
FPCs with DBE and RBE.  

Next, we compare the three regimes of laser operation in 
terms of lasing threshold namely for the DBE, RBE and  

 
FIG. 16. Comparison between the lasing threshold pumping rate of the 
proposed DBE laser with the conventional uniform FPC and the RBE lasers 
of equal length (L=4.8μm) and resonant frequency (193 THz) varying as a 
function of their loaded Q-factor. The comparative plot clearly shows that 
the DBE laser has a significantly lower lasing threshold as compared to the 
RBE and the conventional uniform FPC lasers having the same Q-factor. 

uniform cavities. Fig. 16 shows a comparison between the 
lasing threshold pump rate th

pR  of the three aforementioned 
cavities as the loaded Q-factor varies. First and the foremost 
observation is that the lossless DBE laser (the maximum 
loaded Q-factor of ~4200 is given by termination loading) 
develops much lower threshold pump rate as compared to the 
lossless RBE laser of equal Q-factor and length; which in 
turn is also lower than that of the corresponding lossless 
uniform FPC laser. When losses are considered (loaded Q-
factor less than 4200), the DBE laser has a lower threshold 
for all the ranges of the loaded Q-factor considered in Fig. 16 
(i.e., from 1000 to 4200). For example, the DBE laser has 
30% lower threshold than the uniform FPC laser of equal 
length when the loaded Q-factor is ~2000. 

The results presented so far for the DBE laser assumed 
that the DBE cavity has mirrors with reflectivity at both ends, 
for simplicity of calculation, since for comparison we wanted 
to have (i) the same length, (ii) the same resonance 
frequency, and (iii) and the same Q-factor in all the three 
FPC types.  

In general, the DBE resonant field confinement shown in 
Fig. 15(b) occurs even without mirror reflectors. Indeed, no 
mirrors are required for the DBE cavity to develop high Q-
factor and strong field enhancement  [47]. This is manifestly 
different from conventional uniform FPC laser cavities for 
which mirrors with high reflectivity are needed to reduce the 
lasing threshold  [84]. We stress that in the DBE cavity, 
strong reflection of the DBE eigenwaves is still present, 
given by the degeneracy condition and almost unmatched 
Floquet-Bloch eigenwave impedance with the impedance of 
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the load WG1 and WG2 waveguides, and not by the 
mismatch of the individual last waveguides segments to 
WG1 and WG2. The mirror reflectivity defined in Appendix 
C does not represent the Floquet-Bloch eigenwave reflection 
coefficient in the DBE case, rather it represents the reflection 
associated to each individual waveguide discontinuity, 
between the last  

 
FIG. 17. Comparison between the lasing threshold pumping rate for the 
proposed DBE laser (dashed red) and the conventional uniform FPC (dash-
dotted black) varying as a function of the mirror (load) power reflectivity. 
The DBE lasing threshold is significantly low regardless of the mirror 
reflectivity (even with no reflectivity at all) while the lasing threshold for the 
uniform FPC laser strongly depends on its mirror reflectivity [see definitions 
of reflectivity in Appendix C (C2)]. 

waveguide segments of the FPC (from both right and left 
ends) and WG1 and WG2 outside the FPC. In other words, 
the high Q-factor of the DBE cavity relies on Floquet-Bloch 
eigenwave mismatch and not on mirror reflectors [21-22], 
[42]. (A Floquet-Bloch eigenwave characteristic impedance 
is  represented by an impedance matrix  [75]). In Fig. 17 we 
show the lasing pump rate threshold for the DBE laser 
varying as a function of its right-end and left-end mirror 
reflectivity (for this case they are assumed to be equal at each 
end, for both WG1 and WG2) compared to that for the 
uniform FPC laser having the same length. We observe that 
the DBE laser with no mirror reflectors (i.e., when the mirror 
power reflectivity is zero) has a pumping rate threshold 
which is an order of magnitude less that of the uniform FPC 
laser having ~93% mirror power reflection coefficient, as 
depicted from Fig. 17. This means that the DBE laser can be 
directly connected to the same waveguides WG1 and WG2 
used in the FPC, i.e., without changing dimensions and 
without adding reflectors. Note that increasing the mirror 
reflectivity would dramatically decrease the lasing threshold 
for the uniform FPC laser, whereas the DBE laser has almost 
a steady threshold pump rate for reflectivity from 0 to 10%. 
As such, if we choose a mirror reflectivity of 98% for the 
uniform FPC laser; the corresponding uniform FPC length 
must substantially increase to achieve the same threshold of 
the DBE laser. 

We finally show in Fig. 18 the excellent mode selection 
scheme of the DBE laser by observing the purity of its output 
field intensity spectrum in comparison with a long uniform 

FPC laser with relatively similar lasing threshold and same 
Q-factor; both operating at 1550 nm. The uniform FPC laser 
in this case is considered to have 98% mirror power 
reflection coefficient and also 10 times longer active medium 
length (i.e., L) than the DBE case in Sec. III (both are lossless 
cases for simplicity, and their parameters are provided in 
Appendix C). The load impedance of the DBE cavity ends is 
assumed to be the same as given in Appendix C (Table CIII). 
The length of  

 
FIG. 18. Output spectrum of (a) the DBE laser and (b) the long uniform FPC 
laser at the same pumping rate of Rp=107 s-1. The DBE laser in (a) features a 
single frequency operation (i.e., single oscillating mode) whereas the 
uniform FPC laser in (b) shows multiple frequencies of oscillation (i.e., 
multiple lasing modes) in the output spectrum. Vertical dashed lines denote 
the resonance frequencies of the cold FPCs, in both cases. For both plots, the 
spectrum is defined as the magnitude of the Fourier transform of the output 
field E1(t) taken in a time window from 0 to 1500 ps (for which steady state 
regime is obtained). 

the uniform FPC laser is chosen such that both the DBE and 
the uniform FPC lasers have an equal lasing threshold of the 
order of 106 s-1, and also a similar Q-factor of ~4000. Note 
that both cavities have multiple resonances within the gain 
emission spectrum. 

We plot in Fig. 18 the normalized output steady state field 
intensity spectrum for the DBE and uniform FPC lasers, both 
pumped above their respective threshold with Rp=107 s-1 for 
both cases. The long “cold” uniform FPC has multiple 
resonances within the gain emission spectrum with a small 
free spectral range, i.e., spectral separation of the FPC 
resonance frequencies of ~1.6 THz. Moreover, such 
resonances have the same spectral width, therefore, they 
experience comparable gains, as discussed in  [31,84]. This 
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will in turn lead to multiple frequencies of oscillation within 
the laser (this is a typical scenario in conventional lasers, see 
page 42 in   [30]). Indeed, the steady state output field 
intensity  
spectrum for the uniform FPC laser plotted in Fig. 18 shows 
multiple frequencies associated with the multiple lasing 
modes excited cavity (the resonant frequencies of the FPC 
without gain are depicted by dashed vertical lines in Fig. 18). 
On the  
contrary, the output intensity spectrum for the DBE laser 
seen in Fig. 18(a) shows a well-defined single-frequency 
(i.e., single oscillating mode) operation at ~192.5 THz near 
the cold DBE resonance frequency ,r df ~193 THz (as 
discussed earlier in Sec. II and Fig. 8). This indicates that the 
field of the DBE FPC resonance experiences a substantial 
gain contrast against all other FPC resonances (see Fig. 5), 
which leads to low-threshold lasing and mode selectivity 
when operating near the DBE. The remarkable single-
frequency operation of the DBE low-threshold laser 
demonstrates its robustness as well as practicality for 
realizing single frequency coherent and low-noise sources. 

V. CONCLUSION 
We have demonstrated a novel regime in low-threshold 

lasers based on exceptional point of degeneracy referred to as 
the degenerate band edge (DBE) in a pair of coupled periodic 
waveguides. We have provided the underlying theory behind 
such regime of operation of lasers that utilizes EPDs. In 
particular, we have demonstrated the DBE laser the features a 
significantly lower lasing threshold as compared to its 
conventional counterparts, i.e., a RBE laser and a uniform 
FPC laser, having the same resonant frequency, total length, 
and loaded Q-factor. The time-domain simulation results 
have also shown that the threshold pumping rate for the DBE 
laser exhibits an unprecedented scaling law of the threshold 
with length as 5N − , where N is the number of unit cells. 
Non-linear gain media inclusion in the DBE cavity does not 
significantly perturb such mathematical condition, and the 
presented results have shown that the DBE laser can be 
pumped up to 20 times the threshold value and still maintain 
a single mode and a structured field distribution similar to 
that in the cold DBE cavity. The DBE laser does not require 
mirrors at its ends, indeed in some provided examples the 
mirrorless DBE cavity was terminated on a pair of 
waveguides identical to the ones inside the cavity. 
Furthermore, we have demonstrated the mode selection 
scheme associated with the DBE that leads to a single-
frequency operation of the DBE laser in contrast to the 
conventional lasers that may operate with multiple oscillating 
frequencies. The concepts proposed, and phenomenological 
conclusion drawn here, can be readily applied to provide 
robust threshold conditions, high efficiency and high output 
power, as well as low phase noise of not only optical but also 
infrared and terahertz sources.  
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APPENDIX A: COUPLED WAVES 
FORMULATION AND RATE EQUATIONS 

The evolution of the real-valued spatiotemporal wave 

amplitudes ( , )z t+a  and ( , )z t−a  are provided in (1)−(3) for 
a lossless and gainless uniform coupled waveguide. The 
system evolution matrix M̂  in (3) is obtained from (2) and it 
is a 4×4 matrix given by 

 
1ˆ
c

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

n 0

0 n
M  . (A1) 

In this paper, it is convenient to resort to a fundamental 
description of waves propagating in the two coupled 
waveguides WG1 and WG2 (Figs. 1 and 3) using real-valued 
spatiotemporal field amplitudes 1 1( , ), ( , )E z t H z t and 

2 2( , ), ( , )E z t H z t , respectively. As discussed in Sec. II-B It 
is convenient to use the two-dimensional vectors 

[ ]1 2( , ) ( , ) ( , ) Tz t E z t E z t=E and 

[ ]1 2( , ) ( , ) ( , ) Tz t H z t H z t=H . Note that wave amplitudes 
+a  and −a  are related to the total field amplitudes through 

a multiplication involving the characteristic impedance 
matrix  as (see page 39 in  [90] and also  [74]) 

1 11 1,
2 2

− −+ −⎡ ⎤ ⎡ ⎤= + = −⎣ ⎦ ⎣ ⎦a Z E ZH a Z E ZH  (A2) 

where Z  is the 2×2 characteristic impedance  

 
11

22

m

m

Z Z
Z Z
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Z  , (A3) 

symmetric and positive-definite matrix of the coupled 
waveguide (considered to piecewise uniform along z and 
without gain or loss) which is defined using couple 
transmission line theory as in  [78,91]. We recall that Z  is 

defined as 1 1
E H
− −=Z T T  where ET  and HT  are 2×2 matrices 

identified as the similarity transformations that bring the 
electric and magnetic field amplitude vectors, respectively, to 
their eigenwave, or decoupled, form (see details in page 94-
100 in  [91]). Therefore if we neglect dispersion (as 
discussed in Ch. 8 in  [78] for instance) we can assume that 
Z  is a real matrix and is used as a multiplier in (A2). Indeed, 
in a frequency domain description, we assume that the 
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dispersion of Z  and n  is totally negligible compared to 
other dispersions in the system, i.e., those introduced by 
periodicity and the gain medium in the narrow frequency 
spectrum investigated here. Hence the refractive index and 
the characteristic impedance are purely real, and the 
normalization in (A2) is done through right-multiplying the 
spatiotemporal field amplitudes vectors with the square root 
and inverse of the impedance matrix .Z  Since the 
characteristic impedance matrix Z  is positive-definite; the 
square roots taken in (A2) are defined as the unique positive-
definite square root of the matrix Z . Recall that a positive 
definite matrix has a unique positive definite square root 
which is obtained via diagonalization of the matrix and then 
by taking the principal square root (positive real part) of its 
real and positive eigenvalues, see Chapter 11 in  [92].  

It is then convenient to use the total field amplitude state 

vector ( , )z tΨ  defined as ( , ) ( , ) ( , ) .
TT Tz t z t z t⎡ ⎤= ⎣ ⎦Ψ E H   

Transformation (A2) allows to represent the state vector 
( , )z tΨ  in terms of the wave amplitude state vector 

( ) ( )ˆ ( , ) ( , ) ( , )
TT T

z t z t z t+ −⎡ ⎤= ⎢ ⎥⎣ ⎦
Ψ a a in (3) by a simple 

transformation 

  ˆ=Ψ UΨ  . (A4) 

The 4×4 matrix U is a transformation of the physical electric 
and magnetic field amplitudes to the normalized wave 
(scattering) amplitudes which follows from (A2) and given 
by  
 

 
1 1− −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎦−⎣

Z Z

Z
U

Z
 . (A5) 

The corresponding system equation for the field amplitudes 
state vector ( , )z tΨ  is given by 

 
( , ) ( , )z t z t
z t

∂ ∂= −
∂ ∂

Ψ ΨM  , (A6) 

Using the transformation (A3) between  ( , )z tΨ  and 
ˆ ( , )z tΨ  we thereby find the system matrix M  in (A2) and 

(4) in terms of the other system matrix M̂ in (3) as 

 1
1 1

ˆ 1
c

−
− −

=
⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

0 n
U U

0
M

Zn

Z Z
M

Z
.  (A7) 

Further discussion about such transformations are found 
in  [93]. In general, matrices Z  and n   do not necessarily 
commute. However, based on our choice of parameters for 

all the cases provided in this paper, matrices n  and Z  
commute (i.e., =n Z Z n ), which also means that 

=Z n Z nZ . Indeed, the reason of why matrices n  and 

Z  commute is because the two coupled waveguides in each 
segment of the periodic cell are identical, as shown in 
Appendix C. In other words, the diagonal entries of matrixes 
Z  and n for the coupled segments of the waveguide are 
equal; therefore Z  and n  commute. For the uncoupled 
segments, Z  and n  are diagonal matrices therefore they 
commute. The coupled waveguide analysis in this paper can 
be also represented using conventional coupled-mode 
theory  [69–74], however this is outside the scope of this 
paper, and as mentioned in Sec. II-B we found convenient to 
use the time domain transmission line formulation in (4) that 
is readily implemented in the FDTD  [79]  [80–82].  

The load waveguides on the left and right sides of the 
cavity are assumed not coupled to each other and they are 
also modeled using their characteristic impedances, which 
can be cast as the diagonal elements of a diagonal matrix  

L
Z . The load waveguides at the right and left ends of the 

cavity can be different from each other.  

Gain and losses in the system are included via the 
polarization amplitude P  and γ   in (4) that describes the 

TD evolution, and not via the M̂ and M matrices in (3) and 
(4).   The per unit length loss parameter γ  in (4) is a 2×2 

matrix given by 

               
0

0
γ

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

γ  , (A8) 

where γ  has the unit of Siemens/m and represents per-unit-
length loss in the coupled waveguides. In a transmission line 
formalism, each parameter γ  represents the per-unit-length 
shunt conductance. The gain media is represented by a four-
level energy system as schematically shown in Fig. 4. The 
dynamics of the population densities of different energy 
levels are dictated by the nonlinear rate equations given 
below. In this regard, the population density of each level 
denoted as jN  (with 0,1,2,3j = ) is space-and time 
dependent and given by   [82,84,94]  
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where T denotes matrix transpose and 

( , ) ( , )
T

z t z t t s E P tμν ν μ
μν

⎡ ⎤ ∂ ∂ = ∂ ∂⎣ ⎦ ∑sE P  and h  is the 

reduced Planck’s constant. The sum of the population 
densities is also equal to the total active material doping 

density, 
3

0T jjN N==∑ . The waveguide and gain medium 

physical parameters used in the examples in this paper are 
given in Appendix C. 

APPENDIX B: FDTD ALGORTHM FOR 
COUPLED WAVEGUIDE CAVITY WITH GAIN 

In this Appendix, we describe the FDTD algorithm used 
in this paper for the analysis of the coupled waveguide 
interacting with gain media featuring the space-time 
evolution of the waveguide electric and magnetic fields’ 

amplitudes [ ]1 2( , ) ( , ) ( , ) Tz t E z t E z t=E and 

[ ]1 2( , ) ( , ) ( , ) .Tz t H z t H z t=H We discretize the 
computational domain (time and space) based on the Yee 
algorithm  [79,80], in one dimension, such that the electric 
field amplitude is stored at integer node positions (in the z
direction) while staggered by 2tΔ in time, namely 

[ ]( )1 2 , 1 2n
i i z n t+ = Δ + ΔE E . Here, iand n  are integers and 
zΔ  and tΔ  are grid intervals in space and time, 

respectively. The magnetic field amplitude on the other hand 
is stored at integer times while staggered by 2zΔ in the z
direction, i.e., [ ] ( )( )1

1 2 1 2 , 1n
i i z n t+
+ = + Δ + ΔH H . The 

population density and polarization density amplitude vectors 
are also sampled at the same locations and times as the 
electric field amplitude. Using the central difference 
approximation, the time dependent differential equations in 
(4) and (5) are, respectively, written in the discrete form as 

( )( )
( )( )
( ) ( )

( ) ( )

1 2 1
1 2 1 2

1 2 1 21

1 2 1 2 1 21
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and 

( ) ( ) ( )

2
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1 2 3 22 2 2
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Accordingly, the nonlinear rate equations for the four-level 
atomic system [given in (A9)] are also discretized as 
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where  
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 (B4)  

Explicit equations (B1)-(B3) compose the complete FDTD 
update equations for a coupled waveguide with an optically 
pumped four-level gain medium. The computation is a three-
step recursive process: (i) the polarization density amplitude 
vector is calculated through (B2), (ii) the electric and 
magnetic field amplitudes are calculated using (B1), and (iii) 
the population density at each energy level is then calculated 
from (B3). This three-step recursive process is repeated until 
the end of the simulation time.  

APPENDIX C: PARAMETERS OF COUPLED 
WAVEGUIDES AND GAIN MEDIA  

The periodic waveguide has been developed to have a 
DBE at frequency /(2 )d df ω π= = 193.5 THz (i.e., free-
space wavelength dλ = 1550 nm), which coincides with the 
dipolar emission frequency of the active material in WG2 

193.5THzef = . The other periodic coupled waveguide used 
for comparison throughout the paper is developed to have an 
RBE at the same frequency. Throughout the paper, we have 
assumed that the gain media is present only in WG2 and only 
the field in WG2 interacts with the gain medium. Therefore, 
the matrix s  in (4) and (7) is taken as  

 
0 0
0 1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

s . (C1) 
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The unit cell in the periodic structure in Figs. 1, 3 and 13 is 
made of two segments. The characteristic impedance matrix 
Z  and refractive index matrix n  of the first (uncoupled) 
segment, and the second (coupled) segment (see Figs. 1 and 
13) of the constitutive lossless coupled waveguides with 
DBE and RBE are, respectively, given in Tables CI and CII. 
These parameters can be realized using Silicon ridge 
waveguides  [95,96] using the geometry in Fig. C1. The 
parameters for the uniform coupled waveguide used for 
comparison are also provided in Tables CI and CII.  
 

 
FIG. C1. Cross section of (a) uncoupled (single), and (b) coupled 
waveguides with two identical rectangular Silicon ridges for which the 
parameters in Tables C1-CIII are based on.  

 
As an illustrative example, just to prove the proposed DBE 
laser concepts, the lengths of the uncoupled and the coupled 
sections (see Fig. 1) are 1 22 2 0.096μmd d= = . The DBE 
and RBE laser cavities are here composed of 20 unit cells 
with period of 1 2 0.24μmd d d= + =  and have a total length 
of 4.8μmL = . In our examples, we have taken the 
parameters in Tables CI-CIII to model Silicon ridge 
waveguides on a SiO2 substrate (as depicted schematically in 
Fig. 1(a) as well as in Ref. [78]). The cross-section of each 
uncoupled waveguide is shown in Fig. C1(a) and is 
composed of a Silicon rectangular ridge of width w and 
height h, while the coupled waveguides' cross-section is 
shown in Fig. C1(b) and is composed of two identical Silicon 
rectangular ridges in proximity, with lateral gap spacing of g. 
For example, in the DBE coupled waveguide geometry, the 
two uncoupled waveguides are identical with w = 520 nm 
and h = 400 nm; moreover, the coupled waveguides are also 
identical and their parameters are w = 800 nm, h= 400 and 
g=250 nm. The corresponding parameters in Tables C1-CIII 
are then obtained based on full-wave simulations of the 
coupled Silicon ridge waveguides, from which the effective 
refractive indices as well as the characteristic impedances are 
extracted (full-wave simulations were carried out using CST 
Microwave Studio, frequency domain solver based on the 
finite element method).  

The left and right mirror power reflectivities associated to 
the loading waveguides at the two ends of the cavity (Fig. 13) 
are calculated as follows. We consider the impedances of the 

loads of WG1 and WG2 ( 1 2i.e., andr r
L LZ Z  at the right end 

of the cavity, and 1 2andl l
L LZ Z  at the left end of the cavity) 

and the characteristic impedance entries of the first and last 
segments of the two waveguides upon which the cavity is 

terminated ( 11 22i.e., andc cZ Z  for the coupled segment and 

11 22. ., andu ui e Z Z  for the uncoupled one). The superscripts c 
and u denote the coupled and uncoupled segments 
respectively, while r and l denote right and left ends of the 
cavity, respectively. Accordingly, we define the four mirror 
power reflectivity terms as 

 

2 2
1 11 2 22

1 2
1 11 2 22

2 2
1 11 2 22

1 2
1 11 2 22

,

,

r c r c
L Lr r
r c r c
L L

l u l u
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l u l u
L L

Z Z Z Z
R R

Z Z Z Z

Z Z Z Z
R R

Z Z Z Z

− −
= =

+ +

− −
= =

+ +

 (C2) 

where 1
rR  and 2

rR  are the power reflectivities of the WG1 
and WG2 respectively, at the right end of the cavity, whereas 

1
lR  and 2

lR  are the power reflectivities of the WG1 and 
WG2 respectively, at the left end of the cavity.  

In all the cases reported in this paper (except for those in 
Fig. 17), the characteristic impedances of the coupled and 
uncoupled waveguides and load impedances for the DBE, 
RBE, and uniform FPCs (see Fig. 13) are reported in Tables 
CI through CIII. Therefore, the power reflectivities can be 
readily calculated from (C2) for each laser cavity.  Moreover, 
the load waveguides of WG1 and WG2 are different from 
each other; while the right and left load impedances are equal 
for WG1 as well as for WG2 (in other words , ,

1 2
r l r l
L LZ Z≠  

while 1 1
r l
L LZ Z=  and 2 2

r l
L LZ Z= ) and such differences are 

used to tailor the Q-factors and the thresholds of the three 
types of laser cavities and for comparison purposes. Note that 
the uniform FPC is symmetric from both right and left ends 
therefore we have 1 1

l rR R=  and 2 2
r lR R= . 

Only for the results presented in Fig. 17 the mirror 
reflectivity is varied in the DBE cavity, as well as for the 
uniform laser cavity, contrary to those in Table CIII. To 
produce the results in Fig. 17, load impedances for WG1 and 
WG2, for both left and right ends of the cavities, are chosen 
such that the reflectivity of all four mirrors is the same. In 
other words, for Fig. 17 we choose 1 1 2 2

r l r lR R R R= = = , for 
both cases of the DBE and the uniform FPC laser cavities 
which is then varied and the corresponding lasing threshold 
is plotted for both cases in Fig. 17. Note that the mirror 
reflectivity values considered in this paper can be readily 
realized using Silicon ridge waveguides  [95,96].  
 
TABLE CI. The self and mutual effective refractive indices of the 
coupled and uncoupled sections of the waveguide forming the DBE 
and the RBE. We report also the coupled waveguides parameters for 
the uniform cavity. 

 Uncoupled section Coupled section 
 n11 n22 n11=n22 nm 

DBE 2.81 2.81 2.03 1.32 
RBE 2.2 2.98 2.47 0.49 



18 
 

Uniform - - 2.6 1.65 
 
TABLE CII. The self and mutual characteristic impedances for the 
coupled and uncoupled sections of the coupled waveguide with 
DBE and RBE, and for the uniform waveguide. 

 Uncoupled section Coupled section 
 

11
uZ (Ω) 22

uZ (Ω) 11 22 ( )c cZ Z= Ω
 

c
mZ (Ω) 

DBE 159 108 272 187 
RBE 159 108 155 44 
Uniform - - 272 187 

 
TABLE CIII. Characteristic impedances of the output WG1 and 
WG2 coupled to the laser cavities with DBE, RBE and uniform one; 
both right and left ends of the cavity are assumed to be have equal 
load impedances in all cases of the paper, except for the results in 
Fig. 17. 

 Load waveguides impedance 
 

1 1
l r
L LZ Z=  (kΩ) 2 2

l r
L LZ Z=  (kΩ) 

DBE 5 3 
RBE 12 8 

Uniform 375 260 
 

The gain is provided by having optically-pumped active 
atoms (e.g., here Er3+ as described in [70]) doped in the WG2 
cavity segment of the coupled waveguide. The photon 
lifetime of the transitions between the energy levels in the 
Er3+ (see Fig. 4) are 10 0.1psτ = , 21 300psτ = and 

32 0.1psτ = [51]. The emission frequency and gain 
bandwidth are also 193.5THzef = and 5THz,efΔ =  
respectively, and the initial ground-state electron density in 
the WG2 material is 23 3

0 5 10 mN −= ×   [90]. These gain 
medium parameters are assumed to be constant and 
independent of lasing process. 

In our FDTD simulations, we choose the space 
discretization step of 5.99nmzΔ = and the time 

discretization step is set to be 63.176 10 pst −Δ = × , which is 
sufficiently small to have a numerically stable FDTD 
algorithm. The oscillation process is also initiated by 
launching a short Gaussian pulse of peak amplitude 1V/m, 
full width at half maximum (FWHM) of 410tΔ × (where tΔ  
is the FDTD grid interval in time), peak’s time of 
1.3 FWHM×  and modulated at the DBE wavelength 
(λ=1550nm), into the cavity. 
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