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We perform a detailed comparison of the Dirac composite fermion and the recently proposed
bimetric theory for a quantum Hall Jain states near half filling. By tuning the composite Fermi
liquid to the vicinity of a nematic phase transition, we find that the two theories are equivalent to
each other. We verify that the single mode approximation for the response functions and the static
structure factor becomes reliable near the phase transition. We show that the dispersion relation of
the nematic mode near the phase transition can be obtained from the Dirac brackets between the
components of the nematic order parameter. The dispersion is quadratic at low momenta and has a
magnetoroton minimum at a finite momentum, which is not related to any nearby inhomogeneous
phase.

I. INTRODUCTION

Fractional quantum Hall (FQH) effect is notorious for
defying analytical treatment due to the strongly inter-
acting nature of the phenomenon. Various approaches
have been proposed for a quantitative treatment of the
FQH problem. The first successful approach is based on
trial wavefunctions1–4 and gives many insights into exotic
properties of the FQH effect. The approach however, pro-
vides little information about excited states. In a seminal
paper5, Girvin, MacDonald and Platzman tried to ad-
dress this shortcoming by constructing a wavefunction of
an excited density wave state, the Girvin–MacDonald–
Platzman (GMP) mode. Assuming a single mode ap-
proximation (SMA), it is possible to estimate the value
of various gaps and calculate the observables such as the
projected static structure factor, the shear modulus6 and
the optical absorption spectrum5. However, in contrast
to the trial ground state, which is an exact eigenstate of
a model Hamiltonian, there is no Hamiltonian for which
the GMP construction gives an exact energy eigenstate.

Recently the GMP mode has attracted renewed at-
tention. Haldane7 suggested that the long-wavelength
part of the mode is a degree of freedom of geometric
nature that has been missed in previous treatments of
the FQH effect. Maciejko et al.8 and You et al.9,10 con-
sidered a nematic phase transition11–13 where the GMP
mode plays the role of the order parameter and the SMA
can be reliable. The low-energy effective theories that
these authors constructed disagree quantitatively from
each other. The discrepancy was resolved in a “bimet-
ric” theory of the FQH states, proposed recently by two
of us14. The spirit of this theory is quite close to Hal-
dane’s original suggestion: the only degree of freedom is
the massive spin-2 excitation, corresponding to the long-
wavelength part of the GMP mode, with a nonlinear,
covariant action. The theory successfully reproduces the
symmetries and correlation functions known from first
quantized approaches15–17, and is consistent with con-
straints from particle-hole symmetry.

One objective of the present paper is to bring the bi-

metric theory into contact with the idea of the compos-
ite fermion18, a very successful approach to FQHE19,20

which provides a natural explanation for the Jain’s se-
quences and the Fermi-liquid behavior of half-filled Lan-
dau level. The theory has been recently revised to sat-
isfy particle-hole symmetry at half filling. The resulting
Dirac composite fermion (DCF) theory21 has recently
been analyzed and found to provide results consistent
with particle-hole symmetry and other constraints, but
different from the old Halperin–Lee–Read (HLR) the-
ory22 (see however Ref. [23]). From the point of view
of the composite fermion theory, the nematic phase tran-
sition occurs due to an instability of the Fermi liquid
when the Landau parameter F2 approaches the limit of
stability, −1. Then, the quadrupole deformation of the
composite Fermi surface becomes soft, and plays the role
of the nematic order parameter. In Ref. [22] a bosonized
approach to the composite Fermi liquid theory has been
developed, in which the Landau parameters can be set
to arbitrary values, in particular, those corresponding to
the vicinity of a nematic phase transition.

Our analysis shows, in particular, that the bimetric
theory and the DCF theory agree with each other wher-
ever they can be compared. The bimetric theory and the
DCF theory have different and complementary regimes of
validity. The bimetric theory can be formulated for any
value of the filling factor (including, e.g., ν = 1/3) and is
applicable near the phase transition and for long wave-
lengths. The DCF approach works only for filling factors
near ν = 1/2; in this paper, we consider the two Jain
sequences, which we term the “negative” and “positive”
sequences,

ν = νN− ≡
N

2N + 1
and ν = νN+ =

N + 1

2N + 1
, (1)

at large N . The bimetric theory and the DCF theory can
be compared at large N and small qN . At large N , one
can obtain additional information from the DCF theory
in the momentum regime Nq` ∼ 1, where the momentum
expansion has already broken down.

The structure of this paper is as follows. In Sec. II we
provide an overview of the correspondence between the
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bimetric theory and the DCF theory. We also describe an
approach, based on the Dirac brackets, to the spectrum of
the lowest excitation near the nematic phase transition.
In Sec. III we briefly review the non-linear bimetric the-
ory with attention to the Jain sequences. We switch to
the DCF theory in Sec. IV. After providing a brief intro-
duction, we derive the quadratic effective action for the
dynamics of the quadrupolar (spin-2) deformation of the
Fermi surface. We find the complete agreement between
the quadratic effective action for the bimetric theory and
the DCF theory near the nematic phase transition. In
Sec. V, we calculate the linear response functions at fi-
nite frequency and the dispersion relation of the spin-2
mode. These calculations can be done in either theory,
since the two theories agree upon linearization. Finally,
in Sec. VI, we verify the validity of the SMA for the static
structure factor at the phase transition. Section VII con-
tains concluding remarks.

II. ALGEBRAIC CONSIDERATIONS

A fair amount of information about the nematic phase
transition can be obtained without going into field-
theoretical details of the bimetric and DCF theories. This
section emphasizes the algebraic, kinematic aspects of the
problem. We first map the degrees of freedom between
the two theories. We establish the connection between
the Berry phase terms in the bimetric Lagrangian with
the commutators and the Dirac brackets on the DCF
side. The computation of the Dirac brackets allows us
to determine the nontrivial shape of the dispersion curve
near the phase transition.

A. Mapping between the bimetric and DCF
theories

In bimetric theory, the low-energy degree of freedom
(the nematic order parameter) is a dynamic unimodular
metric ĝij(x), which can be parametrized by the real and
imaginary parts of a complex field Q = Q1 + iQ2

ĝij = exp

(
Q2 Q1

Q1 −Q2

)
, Q = Q1 + iQ2 . (2)

In the DCF theory, the low-energy degree of freedom
is the shape of the Fermi surface. At each spacetime
point x, the Fermi surface is a closed curve in the two-
dimensional momentum space. Using polar coordinates
(k, θ), such a curve can be parametrized by specifying
the dependence of the radial coordinate over the angu-
lar coordinate; k = kF (θ). For small perturbations, one
expands

kF (θ) = kF +

∞∑
n=−∞

une
inθ. (3)

Near the nematic phase transition, quadrupole deforma-
tion of the Fermi surface u±2, which corresponds to a
Fermi surface of elliptical shape, becomes the lightest
degree of freedom. We now identify9 this quadrupolar
deformation of the Fermi surface with the dynamic met-
ric ĝij in the bimetric theory. More precisely, at linear
order, we identify u±2 with Q and Q̄. To make the cor-
respondence precise, one turns on a small perturbation
of the external metric gij = δij + hij , hij � 1, and com-
pares the ground state (the state with lowest energy) in
the two descriptions. In bimetric theory, the potential en-
ergy term favors ĝij = gij , i.e., Q1 = h12 and Q2 = h11.
In the DCF theory, the ground state is a state where the
Fermi surface is deformed to

gijkikj = k2
F . (4)

For small metric perturbations, gij = δij +hij , the shape
of the Fermi surface is then

kF (θ) = kF

(
1 +

h11

2
cos 2θ +

h12

2
sin 2θ

)
, (5)

which corresponds to

u2 =
kF
4

(h11 − ih12), u−2 =
kF
4

(h11 + ih12). (6)

Thus, one obtains the following relationship between the
two theories

u2 = − i
4
kFQ, u−2 =

i

4
kF Q̄. (7)

B. Commutator between components of nematic
order parameter

One of the most important features of bimetric theory
is the presence of a term with one time derivative in the
action, Q̄Q̇, indicating that Q and Q̄ do not commute.
The coefficient of this “Berry phase” term has been a
point of controversy: the values suggested in Refs. [8]
and [9] do not agree. In Ref. [14], this coefficient was
determined, in particular, by requiring that the nematic
mode is solely responsible for the difference between the
values of the Hall viscosity at low and high frequencies.
The result is

[Q̄(x), Q(x′)] =
16π

ν(S − 1)
`2δ(x− x′) + · · · (8)

where ` is the magnetic length: ` = 1/
√
B where B is the

external magnetic field, S is the shift of the quantum Hall
state, and · · · are higher spatial derivatives of δ(x− x′),
to which we will return later. For the Jain state with
ν = N/(2N+1), S = N+2, and up to the next-to-leading
order in N , one has

[Q̄(x), Q(x′)] =
64π

2N+1
`2δ(x− x′). (9)
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On the other hand, in the DCF liquid, the shape fluc-
tuations of the Fermi surface satisfy the commutation
relation24,25

[un(x), un′(x
′)] = − 2π

k2
F

(
nbδn+n′,0

+ ikF δn+n′,−1∂z̄ + ikF δn+n′,1∂z
)
δ(x− x′) . (10)

where b is the magnetic field acting on the composite
fermion, and ∂z and ∂z̄ are defined in Appendix C. The
commutator between the quadrupole modes is thus

[u−2(x), u2(x′)] =
4πb

k2
F

δ(x− x′). (11)

With the mapping (7), Eqs. (9) and (11) agree with each
other, if

k2
F = 2

√
Bbν(S − 1) . (12)

Substituting the values for the Jain’s state under consid-
eration, we see that kF =

√
B up to O(1/N2). The corre-

sponding density of the composite fermions is B/4π, con-
sistent with the Dirac composite fermion theory, but de-
viates from its value in the HLR theory by O(1/N). The
nematic phase transition is another circumstance where
the predictions of the Dirac composite fermion theory
and the HLR theory (in the versions used so far) differ
from each other to 1/N order.

C. q2 correction to the commutator, Dirac
brackets, and the shape of the dispersion curve

It has been argued further in Ref. [14] that the Q̄∇2Q̇
term (which originates from the gravitational Chern-
Simons term ω̂dω̂ where ω̂ is the spin connection con-
structed from ĝij) also has a coefficient completely deter-
mined by the topological properties of the quantum Hall
state. For Jain’s state at large N , the commutator is [see
also Eq. (36) below]

[Q̄(x), Q(x′)] =
64π`2

2N+1

(
1 +

N2+N

6
`2∇2

)
δ(x− x′),

(13)
where we have kept only the leading and first sublead-
ing orders in the expansion over 1/N . At first sight, the
∇2 correction in Eq. (13) does not have a correspond-
ing counterpart in the commutators (11). However, the
process of integrating out modes un with n ≥ 3 is rather
subtle: in the Hamiltonian formalism, one cannot simply
set the heavy fields u±3, u±4, etc., to zero in the Hamil-
tonian, as they do not commute with each others and
with the fields u±2 which are being kept.

The situation at hand is that of a Hamiltonian the-
ory in which the phase space coordinates are divided
into “soft” modes, denoted by ξa, and “hard” modes,
ξA, and where there is a hierarchy between the energy
scales of the soft and hard modes. At low energies, the

hard modes are not excited and effectively one has the
constraints ξA ≈ 0. In Appendix A we show that, if ξA do
not commute, then generally these should be considered
second-class constraints, and the integrating out of ξA
leads to the replacement of the commutators (or Poisson
brackets) [ξa, ξb] by the Dirac brackets26,27 [ξa, ξb]D:

[ξa, ξb]D = [ξa, ξb]−
∑
A,B

[ξa, ξA][ξ, ξ]−1
AB [ξB , ξb], (14)

where [ξ, ξ]−1
AB is the AB component of the matrix in-

verse of the matrix [ξA, ξB ]. The dynamics of the soft
degrees of freedom ξa given by commuting it (using the
Dirac brackets) with the effective Hamiltonian, obtained
from the original Hamiltonian by setting the hard modes
to zero: H(ξa) = H(ξa, ξA)|ξA=0 (for more details, see
Appendix A).

In the context of our problem, the hard modes ξA are
un with |n| ≥ 3, and the soft modes ξa are u±2. In our
computation of the Dirac bracket of u±2, one needs to
take into account in Eq. (14) only A,B = ±3. More-
over, to the order q2, the inverse matrix [u, u]AB can be
computed, neglecting all modes except u±3. One obtains

[u−2(x), u2(x′)]D =
4π

2N+1

[
1 +

(2N+1)2

24
`2∇2

]
δ(x−x′).

(15)
The coefficient in front of the ∇2 term coincides with
that of Eq. (13) to subleading order in 1/N .

The q2 correction in Eqs. (13) and (15) becomes large
when q ∼ `/N , i.e., when the length scale under consid-
eration is comparable with the radius of the semiclassical
orbit of a composite fermion with momentum kF mov-
ing in magnetic field b. It is possible to go beyond the
q2 order and evaluate the Dirac brackets between u±2

from Eq. (14) to all orders in the momentum expansion
in the regime Nq` ∼ 1. The result is (see Appendix B
for details):

[u−2(q), u2(q′)]D =
2π

k2
F

bF (q)(2π)2δ(q + q′). (16a)

where q = (2N + 1)q` and F (q) is expressed through the
Bessel functions,

F (q) =
q

2

J1(q)

J2(q)
. (16b)

The q0 and q2 terms in the Taylor expansion of the right-
and side of Eq. (16) reproduces Eq. (15). Note that F (q)
vanishes at the first zero of the Bessel function J1, which
has an important implication for the dispersion relation
of the nematic mode. To see that, we write down the
Ginzburg–Landau Hamiltonian near the nematic phase
transition:

H =
kF

4πm∗

∫
d2x

(
c2`

2|∇u2|2 + c0|u2|2 + β|u2|4)
)
, (17)

where c0, c2, and β are phenomenological constants. We
assume that at the nematic phase transition c0 vanishes,
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FIG. 1. The shape of the dispersion curve of the neutral mode
at the nematic phase transition for ν = N/(2N+1) in the limit
of infinite N . The horizontal axis is q = (2N+1)q` and the
vertical axis is the energy of the excitation in arbitrary unit.
The zero at q ≈ 3.8 should become a nonzero minimum at
finite N .

but c2 and β are positive. The dispersion relation of the
excitation on the symmetric side of the phase transition
can be read out from Eqs. (17) and (16):

ω2(q) = [c0 + c2(q`)2]ωc
qJ1(q)

2J2(q)
, q = (2N + 1)q` (18)

where ωc = b/m∗. The shape of the dispersion rela-
tion exactly at the nematic phase transition is shown in
Fig. 1. At small q the dispersion relation is quadratic.
Our treatment allows one to follow the dispersion curve
to q ∼ N−1`−1, where it diverges from being quadratic.
The dispersion curve reaches a maximum at q ≈ 2.90 and
touches zero for q ≈ 3.83, the first zero of the Bessel func-
tion J1. Presumably, effects neglected in our calculation
(e.g., long-ranged Coulomb interactions or terms more
suppressed in powers of N) will transform the zero of the
dispersion curve to a magnetoroton minimum. Note that
the minimum is located at the same momentum as away
from the nematic phase transition. We also find that
the energy of the neutral mode rapidly increases as q ap-
proaches the first zero of the Bessel function J2, q ≈ 5.14.
When the energy of the mode is comparable with the en-
ergy of the other excitations, the approximation breaks
down and formula (18) no longer works.

Note for q = 0 to be a local minimum of the dispersion
relation, the following condition needs to be satisfied:

c0 <
24

(2N + 1)2
c2, (19)

which, at large N , happens only sufficiently close to the
critical point. Note also a qualitative similarity between
Fig. 1 and the dispersion curve found in Ref. [28].

A general conclusion that one can draw from the above
calculation is that, in the quantum Hall context, the pres-
ence of a minimum at finite momentum in the dispersion
curves of the neutral mode (a rather prevalent feature of
quantum Hall state) does not necessarily signify an in-
cipient phase transition towards an inhomogeneous phase

such as a Wigner crystal. In fact, as we have seen, as long
as c2 and β are positive at the phase transition, the mag-
netoroton at finite q never becomes unstable. Rather,
near the phase transition another minimum develops at
q = 0, and that mode is the one that becomes unstable
when the phase transition is crossed. This is consistent
with Ref. 12, where a nematic phase was found in a rather
large part of the interaction parameter space.

III. BIMETRIC THEORY FOR JAIN STATES

In this section, we will review the bimetric theory, de-
veloped in Ref. [14] (see also [29]) and apply it to the
Jain series.

A. Leading order terms

Bimetric theory describes the gapped dynamics of a
spin-2 degree of freedom ĝij . We assume that ĝij is a
symmetric, positive-definite rank-2 tensor. The inverse of
ĝij will be denoted as Ĝij . We will refer to ĝij as intrinsic
metric, meaning that it is the emergent geometric degree
of freedom of the physical FQH system.

Given this tensor we can define the vielbein according
to

ĝij = êαi ê
β
j δαβ . (20)

Given this data we introduce the Christoffel connection
Γ̂lk,i and the spin connection ω̂µ through the compatibil-
ity conditions

∇̂kĝij = ∂kĝij − Γ̂lk,iĝlj − Γ̂lk,j ĝli = 0 , (21)

∇̂µêAν = ∂µê
A
ν − Γ̂λν,µê

A
λ + ω̂AB,µê

B
ν = 0 . (22)

Solving the compatibility conditions, Eqs. (21) and (22),
we find the explicit expressions for the connection

ω̂0 =
1

2
εα
βÊiβ∂0ê

α
i , (23)

ω̂j =
1

2
εα
β
(
Êiβ∂j ê

α
i − Γ̂ki,j ê

α
k Ê

i
β

)
, (24)

Γ̂ik,j =
1

2
Ĝi` (∂j ĝk` + ∂kĝj` − ∂`ĝjk) , (25)

Γ̂ij,0 =
1

2
Ĝik∂0ĝjk . (26)

In addition to the intrinsic metric ĝij we also intro-
duce the ambient metric gij , and all corresponding ob-
jects without “hats”. Given the two copies of geometric
data we will allow for breaking the two corresponding
copies of the diffeomorphisms down to the diagonal sub-
group. This reduces the symmetry and allows for new
structures, not present in a single copy of geometry.

For the FQH application we will impose a constraint√
g =

√
ĝ. This constraint leads to the removal of the

“dilaton” degree of freedom from the dynamics. It will
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effectively reduce the fluctuations of ĝij down to the area-
preserving distortions.

We also introduce a one-form

Cij,µ = Γij,µ − Γ̂ij,µ . (27)

As a difference of two connections, Cij,µ transforms like a
rank-3 tensor. One can construct two independent one-

forms from Cij,k: the trace Cii,k ∼ ∂k ln
√

ĝ
g and the

antisymmetric part Cµ = εi
jCij,µ. The former vanishes

due to the FQH constraint, while the latter does not.
Note, that Cµ has nice transformation properties only
when the same diffeomorphism is applied simultaneously
to Γ and Γ̂. Thus any action that involves Cµ will break
the two copies of diffeomorphisms (acting on g and ĝ
correspondingly) down to a diagonal subgroup.

The Lagrangian for the bimetric theory, to the leading
order in derivatives, is given by14

Lbm,1 =
νς

2π
Adω̂ − m̃

2

(
1

2
ĝijg

ij − γ
)2

− νς

4π
(∂iEi)B ,

(28)
where ν = N

2N+1 is the filling fraction, ς = S−1
2 (S is

the shift). The parameter m̃ sets the gap of the spin-
2 mode, and γ tunes the theory between the isotropic
and nematic phases. Here we will be interested in the
isotropic phase and choose γ < 1. Finally, the last term
appears because in the LLL the temporal component of
the spin connection must enter in the combination with
the electric field30, ω̂0 + 1

2∂iEi.
Taking a variation over A0 we find that the projected

electron density is given by the Ricci curvature of ĝij

ρ =
νς

4π
R̂ . (29)

Finally, we note that for the Jain series

νς =
1

8

(
2N + 1− 1

2N + 1

)
≈ 2N + 1

8
, (30)

where in the last equation, as in most of this paper, we
have kept only the leading and next-to-leading orders in
1/N .

B. Higher gradient corrections

In what follows we will need to consider terms that are
higher order in the gradient expansion than the terms we
described so far. The two sub-leading terms of interest14

are the (non-universal) kinetic energy term and the (uni-
versal) gravitational Chern-Simons term. These terms
must emerge on the general grounds as was discussed in
detail in Ref. [14].

We start with the non-universal term

Skin[ĝ; g] = −α
4

∫
d3x
√
g gklCkCl

∼ −α
4

∫
d3x
√
g
∣∣∣Γ− Γ̂

∣∣∣2 . (31)

The geometric meaning of (31) was discussed in great
detail in Ref. [14]. Close to the nematic phase transition
point this term must be added to the action. It will con-
tribute to the q2 behavior of the GMP mode dispersion
relation. We will discuss the effects of this term quanti-
tatively in the following sections.

The subleading universal term was also discussed in
great detail in Ref. [14]. It is a purely gravitational
Chern-Simons term

SgCS[ĝ] = − ĉ

4π

∫
ω̂dω̂ − ĉ

8π
`2
∫
∂iE

iR̂ , (32)

The coefficient of the ∂iE
iR̂ term is discussed in Ref. [14].

The effects of the term are subtle, but curious. We
refer the interested reader to the Ref. [14]. Here we will
only be interested in the linearization. The gravitational
Chern-Simons term can be expanded as∫

ω̂dω̂ =

∫
ω̂0R̂− εijω̂i ˙̂ωj . (33)

Note that the first term is inherently non-linear and its
effects are presently not understood. The coefficient ĉ
has been computed for the Jain states previously14 and
is given by

ĉ ≈ N2(2N + 3)

24
. (34)

The full bimetric Lagrangian is given by

Lbm[ĝ] = Lbm,1[ĝ] + LgCS[ĝ] + Lkin[ĝ] . (35)

C. Linearized effective Lagrangian

To analyze the theory (and to compare it to the DCF)
it is convenient to linearize it in flat space – setting
gij = δij – close to the minimum of the potential (sec-
ond term in Eq. (28)). Then the intrinsic metric can
be parametrized as in Eq. (2). We linearize Eqs. (2),(35)
close to Qi = 0. Putting everything together we find the
linearized theory

Lbm = − i
2

2N+1

32π

[
`−2Q̄Q̇− 1

2

(
E∂Q̄− Ē∂̄Q

)]
− i

2

N2(2N+3)

192π

[
Q̄∆Q̇+

1

4

(
Ē∂̄∆Q+ E∂∆Q̄

+ Ē∂̄3Q+ E∂3Q̄
)]
− m

2
QQ̄− α|∂Q|2, (36)

where m = (1 − γ)m̃ and we have used the linearized

Ricci curvature R̂ ≈ 2i(∂2Q̄− ∂̄2Q).

The commutator between Q and Q̄ can be read from
the Q̄Q̇ and Q̄∆Q̇ terms in Eq. (36); we find Eq. (13)
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D. Poisson structure

Upon canonical quantization of (28) we find the fol-
lowing canonical commutation relations (CCRs)

[Êiα(x), êβj (x′)] = − 2i

ρ0ς
δijεα

βδ(x− x′), (37)

where ρ0 = ν
2π`2 . These CCRs lead to the following com-

mutation relations for the metric

[ĝij(x), ĝkl(x
′)] = − 2i

ρ0ς

(
εilĝjk + εjkĝil

+ εjlĝik + εikĝjl
)
δ(x− x′), (38)

which coincides with the sl(2,R) Lie algebra (up to
rescaling). The mapping onto the sl(2,R) algebra be-
comes evident in complex coordinates:

[ĝzz(x), ĝz̄z̄(x
′)] =

16

ρ0ς
ĝzz̄(x) δ(x− x′) , (39a)

[ĝz̄z̄(x), ĝzz̄(x
′)] =

8

ρ0ς
ĝz̄z̄(x)δ(x− x′) , (39b)

[ĝzz(x), ĝzz(x
′)] = [ĝzz̄(x), ĝzz̄(x

′] = 0 . (39c)

In terms of the complex variables Q and Q̄, the compo-
nents of the metric tensor are found to be

gzz = −2iQ
sinh

√
QQ̄√

QQ̄
≈ −2iQ, (40)

gzz̄ = 2

√
QQ̄ ≈ 2−QQ̄. (41)

Eqs. (39a)–(41) imply that, at the linearized level

[Q(x), Q̄(x′)] = − 4i

ρ0ς
δ(x− x′), (42)

At nonlinear level, the fields Q and Q̄ do not have simple
commutation relations, however, the components of the
intrinsic metric tensor, which are nonlinear functions of
Q and Q̄, do have simple CCRs. We will only require the
linearized CCRs for the composite Fermi liquid theory
discussed in the next section.

IV. DIRAC COMPOSITE FERMI LIQUID
THEORY

In this section, we briefly review the Dirac compos-
ite Fermi liquid theory; in particular, we introduce the
action and fix the notations. The full derivation of the
model can be found in Refs. [31],[22]. By extending the
Dirac composite Fermi liquid theory to a finite back-
ground magnetic field, one can describe the Jain states
ν± = 1

2 ±
1

2(2N+1) near the half filling, where N is large.

To simplify the presentation, in this section, we will
use an alternative notation for the complex components
of a vector

V± =
V1 ∓ iV2

2
. (43)

A. Dirac composite fermion

Here we summarize the result of Ref. [22]. For sim-
plicity, we will concentrate on the case of short-ranged
interaction, for which the results can be written in more
compact form.

The action of the Dirac composite fermion theory,
which can be used to obtain results to leading and next-
to-leading order in 1/N , is

S[ψ, a;A] = i

∫
d3x

(
ψ†Dtψ + vFψ

†σiDiψ
)

+
1

4π

∫
d3x

(
−Ãda+

1

2
AdA− m∗

2B
ẼiẼi

)
, (44)

where Ai = Ãi = Ai,

A0 = A0 +
∇ · E
4B

, (45)

Ã0 = A0 + C0δB, (46)

and C0 is a constant determined by the potential V (r) of
the two-body interaction between the electrons,

C0 =
1

2

∞∫
0

dr r

[
1−

(
1− r2

2`2

)
e−r

2/2`2
]
V (r). (47)

As explained in Ref. [22], the kinetic terms for aµ, gen-
erally allowed by symmetries, can be neglected if one
works to leading and next-to-leading orders in 1/N . The
absence of the kinetic term for aµ leads to the following
constraints

ρCF =
B

4π
, (48a)

jiCF =
1

4π
εijẼj , (48b)

where Ej = ∂jÃ0 − ∂0Aj .

B. Bosonized approach

In this section, we employ the bosonized
approach22,25,31 to study the theory of Dirac CF
in the long wavelength limit where the RPA and the
Fermi liquid are equivalent32 up to next-to-leading order
in 1/N .

1. Shape quantization of Fermi surface

When the emergent magnetic field b is weak, one can
start from a composite Fermi liquid with Fermi momen-
tum kF . The dynamics of the composite fermions at low
energy regime can be parametrized by bosonic pertur-
bations of the shape of the Fermi surface, Eq. (3). The
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composite fermion density can be written in terms of the
dilation of the FS, u0, as32

ρCF = ρ̄CF +
kF
2π
u0 , (49)

while the CF current, JCF , can be written in terms of
u±1

32

J±CF =
kF vF

4π
u±1 . (50)

In the Fermi-liquid approximation the momentum den-
sity of the CFs is P±CF = kF

vF
J±CF .

Note that u0 is proportional to the fluctuation of the
density of the CFs, and u±1 to the current. We can
identify u1 = uz̄ and u−1 = uz, then ji ∼ ui, with i being
the spatial index. The composite fermion theory is now
formulated in terms of a Hamiltonian H = H(un) with
the canonical commutation relations (CCR) (10)22,25

For the Hamiltonian, one can take the following
quadratic functional22,25

HCF =
vF kF

4π

∫
d2x

∞∑
n=−∞

(1 + Fn)un(x)u−n(x), (51)

where Fn are the Landau parameters, and g a gauge cou-
pling constant. We take F1 = 0, since 1 + F1 can be
absorbed in the normalization of the Fermi-velocity vF .
Note that Fn = F−n, by the invariance with respect to
the product of time reversal and spatial reflection. For
convenience, we will use the notation fn = 1 + Fn.

Near the nematic phase transition, F2 → −1 and the
u±2 modes become light. In this case a gradient term
∇u2∇u−2 needs to be added to the Hamiltonian. The
modification is equivalent to replacing the Landau pa-
rameter F2 by a momentum-dependent Landau parame-
ter, i.e.,

f2 = c0 + c2(q`)2, (52)

where we assume

c0 � 1, c2(q`)2 � 1. (53)

We also assume that fn = O(1) for n > 2. In the low
energy limit ω/ωc � 1, un (|n| > 2) modes can be inte-
grated out leading the single-mode effective field theory
described below.

2. Equations of motion and constraints

The equations of motion for un, coming from the
Eqs.(10),(51) are

dun
dt

= −i[un, H] +
∂un
∂t

. (54)

The last term in Heisenberg equation (54) is nonzero
whenever un explicitly depends on time. The explicit
form of u±1 is given by

u±1 = −i 4π
k2
F

ψ†D̃±ψ . (55)

Applying ∂t to both sides we find, at linear order in per-
turbations,

∂tu±1 = − 4π

k2
F

∂t(δa±)ψ†ψ = −∂tδa± . (56)

A similar argument33 leads to

∂tun = 0, (n 6= ±1). (57)

to linear order in perturbations. Using Hamiltonian (51)
together with CCR (10) and Eqs. (55) and (57), we arrive
at

0 =
[
ω + sgn(b̄)nfnωc

]
un(q, ω)

+ ω
(
δn,1δã+ + δn,−1δã−

)
− ωc

[
qz̄fn+1un+1(q, ω) + qzfn−1un−1(q, ω)

]
, (58)

where

ωc =
|b̄|vF
kF

, qi = qi`
B̄

|b̄|
= (2N + 1)qi` , (59)

and fn = 1 + Fn, and qz and qz̄ are defined according
to the conventions in Appendix (C). In the derivation of
(58), we have ignored the terms δã · un, since they are
higher order in perturbation.

The constraints (48), in terms of the bosonic variables,
read

u0 =
δB

2kF
, u±1 = ±i Ẽ±

(2N + 1)ωc
. (60)

These constraints will prove crucial in what follows.

C. DCF liquid near a nematic phase transition

In this section, we derive the effective action for the
DCF liquid close to a nematic phase transition, where
f2 = c0 � 1. Near the phase transition, we should add
an extra contribution ∼ u2∇2u−2 to the Hamiltonian
(51), since the term f2u2u−2 is no longer dominant.

1. Effective Lagrangian

The recursion relation (58) for |n| > 2 for the Jain
series at filling ν− (when sgn(b̄) = 1), at small frequency
takes form

u±n =

(
±2q±

q

)±n−2
Jn(q)

J2(q)

f2

fn
u±2, |n| > 2 (61)
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Using Eq. (61) the remaining Eqs. (58) are brought to
simple form34

(ω ± ωc)u±1 + ωδa± − f2ωcq∓u±2 = 0 , n = ±1, (62)(
ω ± f2ωcF (q)

)
u±2 − ωcq±u±1 = 0 , n = ±2, (63)

and

F (q) = 2− qJ3(q)

2J2(q)
=

q

2

J1(q)

J2(q)
. (64)

Notice that Eq. (63) can be obtained by using the
Hamiltonian (51), where all terms involving un with
|n| ≥ 3 have been dropped, with the Dirac bracket
Eq. (16) Expanding Eq. (16) over q, we find, to order
q2, Eq. (15). Since the computation of the Dirac brack-
ets do not involve the Hamiltonian, the dynamics at low
energy is independent of the higher Landau parameters
Fn with |n| ≥ 3.

Returning to the equations of motion, we now use the
constraints (60) to exclude u±1 and determine the gauge
field a± in terms of u±2. We find

ωδa± = ∓i ω ± ωc
(2N + 1)ωc

Ẽ± − ωcq∓f2u±2 , (65)[
ω ± ω2(q)

]
u±2 = ±i`q±Ẽ± , (66)

where

ω2(q) = f2ωcF (q). (67)

According to Eqs. (66), ω2(q) is the frequency of os-
cillations of u±2 in the absence of external sources, and
hence is the gap of the spin-2 mode.

Thus, we have shown that every degree of freedom is
completely determined by the quadrupolar deformation
of the Fermi surface u±2, which, in turn, obeys Eq. (66).
We wish to find a variational principle for Eq. (66), which
is easy to do since the equation is linear in u±2. Fix-
ing the coefficient of the adA term to be the same as in
Eq. (44), we find the Lagrangian to be

LSMA
ν− =

2N + 1

2πF (q)

[
ω − ω2(q)

]
u2(−ω,−q)u−2(ω,q)

− (2N + 1)`

2πF (q)

[
iq−Ẽ−(−ω,−q)u2(ω,q)

+ iq+Ẽ+(−ω,−q)u−2(ω,q)
]
, (68)

The full effective Lagrangian is obtained after integrat-
ing out δaµ, which generates a number of contact terms
that we denote collectively as Lct

ν− [Aµ]. The full effective
Lagrangian is thus given by

Lν− = LSMA
ν− [u±2;Aµ] + Lct

ν− [Aµ] , (69)

where

Lct
ν− [Aµ] = i

ν−
4π
εµνρAµ(−ω,−q)qνAρ(ω,q)

− `2

16π

[
1− 2N + 1

F (q)

]
iqkE

k(−ω,−q)B(ω,q).

(70)

Detailed derivation of (69) is left for the Appendix D.

The positive Jain series can be obtained following the
same steps, but setting sgn(b̄) = −1 in (58).

2. Mapping between DCF and Bimetric theory

The goal of this section is to establish precise dictio-
nary between the effective Lagrangians (36) and (69)
in their common regime of validity, i.e., large N and
q`N � 1. This mapping provides a non-linear comple-
tion of (69) and a procedure of coupling the quadrupolar
fluctuations of the Fermi surface to the ambient geometry
in this regime.

To leading and next-to-leading orders in the gradient

expansion, we can replace F (q) = 2 − q2

12 in Eq. (69) to
find

LSMA
ν± = ∓ i

2

2N + 1

2π

[
u2u̇−2 + i`(Ẽ−∂̄u2 + Ẽ+∂u−2)

]
± i

2

N2(2N+3)`2

12π

[
u2∆u̇−2 + i`(Ẽ−∂̄∆u2 + Ẽ+∂∆u−2)

]
− (2N + 1)ωc

2π
u2(c0 − c2`2∆)u−2 . (71)

We have written this action for both Jain sequences.

Comparing Eq. (36) with Eq. (71), we find that the
DCF and bimetric actions are equivalent upon the fol-
lowing identifications of parameters:

Q̄ = −4i`u−2 , Q = 4i`u2, (72)

m =
c0(2N + 1)ωc

16π`2
, α =

c2(2N + 1)ωc
32π

. (73)

We have matched three parameters: m, α and the rela-
tive coefficient between u±2 and Q. As a consequence of
the matching the coefficients of the gravitational Chern-
Simons term (in its linearized version) was matched auto-
matically. This matching correspondence can be traced
to the fact that both theories produce the same projected
static structure factor in leading and sub-leading orders
in momentum expansion.

The map between DCF and bimetric theory can be
considered as an alternative derivation of the bimetric
theory. In the next section we will compute the linear re-
sponse functions. These computations, at the tree level,
can be done in either theory with identical results.

V. LINEAR RESPONSE IN DCF THEORY

In this section we will compute the linear response from
the effective Lagrangian (69).
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A. Jain state ν−

Integrating out u±2 reduces to the substitution of

u±2 = ± i`q±Ẽ±
ω ± f2ωcF (q)

, (74)

back into the Lagrangian (69). This leads to the effective
action for the external electromagnetic field S[Aµ]. Be-
low we present the linear response functions that follow
from that action.

The charge density is given by

ρν− =
N

2N + 1

B̄

2π
, (75)

and corresponds to the filling factor ν = N/(2N + 1) in
a Jain’s sequence.

The susceptibility is given by

χν−(ω, q) =
q4

16π(2N + 1)3`2
f2ωc

ω2 − ω2
2(q)

. (76)

The projected static structure factor, defined as,

s̄ν = − i

ρν

∫
dω

2π
χν(ω, q), (77)

takes the simple form independent of f2,

ν±s̄ν± =
q3`3

8

J2(q)

J1(q)
(78)

To compare the result with the bimetric theory, one ex-
pands the result in a double series over q and 1/N . One
can see that, to leading and next-to-leading orders in
1/N , the static structure factor, up to q6 order, can be
written as

ν−s̄ν−(q) =
ν−(Sν−−1)

8
(q`)4 +

ĉ

8
(q`)6 + . . . , (79)

where Sν− = N + 2 is the Wen-Zee shift of the Jain state
at filling factor ν− and ĉ was defined in Eq. (34).

For the Hall conductivity, it is more convenient to write
formulas for

σ̃H(ω, q) = σH(ω, q)− C0χ(ω, q), (80)

which is given by, after a simple calculation,

σ̃Hν−(ω, q) =
ν−
2π
− 1

8π

[
−(q`)2 + q`

J2(q)

J1(q)

]
− 1

8π(2N + 1)2q`

J2(q)

J1(q)

ω2

ω2 − ω2
2(q)

. (81)

To order q2, σH and σ̃H coincide and is given by

σHν−(ω, q) =
ν−
2π

[
1 +
Sν− − 2

4
(q`)2

]
+

(2N + 1)(q`)2

32π

ω2

ω2 − ω2
2(q)

+O(q4) . (82)

We define the “projected Hall conductivity” by

σ̄Hν = σHν − νσH1 , (83)

where

σH1 =
1

2π

[
1− 1

4
(q`)2

]
(84)

is the Hall conductivity of a completely filled Landau
level. The projected DC Hall conductivity is given by

σ̄Hν−(0, q) =
ν−
2π

Sν−−1

4
(q`)2 +O(q4). (85)

We find that the bimetric theory (36), where the contact
terms have been discarded, evaluates the projected Hall
conductivity directly.

B. Jain state ν+

Performing a similar analysis for Jain state with filling
factor ν+ = (N + 1)/(2N + 1), one obtains the suscepti-
bility

χν+(ω, q) =
q4

16π(2N + 1)3`2
f2ωc

ω2 − ω2
2(q)

. (86)

From now on we will work to order q6 in the structure
factor and q2 in the Hall conductivity. The static struc-
ture factor is

ν+s̄ν+(q) = −
ν+(Sν+−1)

8
(q`)4 +

ĉ

8
(q`)6 +O(q8), (87)

where the shift for ν+ is Sν+ = −N + 1.
The relation ν+s̄ν+ = ν−s̄ν− holds35 as can be clearly

seen from Eq. (79) and Eq. (87). The ac Hall conductivity
is given by

σ̃Hν+(ω, q) =
ν+

2π
− 1

8π

(
−(q`)2 − q`J2(q)

J1(q)

)
+

1

8π(2N + 1)2q`

J2(q)

J1(q)

ω2

ω2 − ω2
2(q)

, (88)

and to order q2

σHν+(ω, q) =
ν+

2π

[
1 +
Sν+ − 2

4
(q`)2

]
− (2N + 1)(q`)2

32π

ω2

ω2 − ω2
2(q)

+O(q4). (89)

The projected dc Hall conductivity is given by

σ̄Hν+(0, q) =
ν+

2π

Sν+−1

4
(q`)2 +O(q4). (90)

Combining (82) and (89), we arrive at the following re-
lationship for the projected AC Hall conductivity

σ̄Hν−(ω, q) + σ̄Hν+(ω, q) = 0 , (91)

which is in agreement with identity derived in Ref. [36].
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VI. HIGHER SPIN FIELDS AND THE SMA

In this section, we address the question of the validity
of the SMA for the static structure factor. For this we
do not assume that the system is near the nematic phase
transition and compute the static structure factor up to
the q6 order. To this order, only the spin-2 and spin-3
modes contribute, and the result can be written as22

χ(ω, q) = −2N + 1

32π`2
ω̃2(q)

ω2 − ω̃2
2(q)

(q`)4

+
ĉ

8π`2

[
(1− x)

∆2

ω2 −∆2
2

+ x
∆3

ω2 −∆2
3

]
(q`)6 , (92)

where ω̃2(q) is the dispersion relation for the spin-2 mode,

ω̃2(q)

∆2
= 1−

−c2
c0

+
(2N + 1)2

24
(

1− ∆2

∆3

)
 (q`)2 + · · · , (93)

while ∆2 = 2c0ωc and ∆3 = 3f3ωc are the energies of the
spin-2 and spin-3 modes, respectively, and

x =
∆2

2

(∆3 −∆2)2
. (94)

Next we evaluate the projected static structure factor
defined in Eq. (77). Note that the only contribution to
s̄4 comes from the spin-2 mode, while s̄6 receives the
contributions from both spin-2 and spin-3 modes. More
concretely, we find

ν±s̄±(q) = s̄
(2)
4 (q`)4 +

(
s̄

(2)
6 + s̄

(3)
6

)
(q`)6 +O(q8), (95)

where s̄
(n)
m is the contribution of the spin-n mode to the

coefficient in front of qm in the long-wave expansion of
the static structure factor. Using Eq. (92) we find these
coefficients

s̄
(2)
4 =

2N + 1

32
, s̄

(2)
6 =

ĉ

8
(1− x) , s̄

(3)
6 =

ĉ

8
x . (96)

The two contributions to s̄6 are not quantized separately,
but the sum is quantized.

Near the nematic phase transition, ∆2/∆3 → 0 the
entire contribution to the s̄6 comes from the second mode
since x → 0. In this case (and only in this case) the
contribution of the second mode is quantized

lim
∆2/∆3→0

s̄
(2)
6 =

N2(2N + 3)

192
=
ĉ

8
. (97)

Thus, we confirm that the SMA becomes more and more
reliable for the q6 part of the SSF when one approaches
the nematic phase transition.

VII. DISCUSSIONS AND CONCLUSIONS

We have performed a detailed comparison between the
bimetric and DCF theories of Jain states, close to half

filling. We find that at the linear level the two theories
agree in the common domain of validity: close to the
nematic phase transition and at sufficiently small mo-
mentum. It would be interesting to extend the analysis
of the DCF theory to nonlinear level and compare it to
bimetric theory. This is likely to be important if one is
interested in the symmetry broken phase, which is not
considered in this paper.

Bimetric theory has been aplied to the general Jain
series at filling ν = N

2pN+1 . The composite fermion de-

scription of these states with p > 1 is less certain than
for those with p = 1, where particle-hole symmetry pro-
vides a guiding principle. It was conjectured that these
states are described by a FS with π/p Berry phase37,38.
Perhaps bimetric theory can shed light on the composite
fermion theory for p > 1.

The DCF theory naturally comes equipped with an in-
finite number of higher spin fields. Our computations (in
particular, those of the Dirac brackets) explicitly show
that the rigid structure of the bimetric theory is only
reached upon integrating out these fields. In particular,
the q2 correction to the Berry phase term for the ne-
matic order parameter comes from integrating out the
spin-3 degrees of freedom. There may exist a nonlin-
ear theory that includes all of the higher spin fields and
naturally provides the canonical structure on all shape
deformations of the composite Fermi surface. Such the-
ory may provide an understanding of the role of the W∞
algebra39, including the exact GMP algebra. The con-
struction of such a theory is presently an exciting open
problem.
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Appendix A: Dirac brackets

Consider a classical theory where we can separate two
sets of degrees of freedom, ξa and ξA, with the Hamito-
nian

H = H(ξa, ξA). (A1)
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We assume that ξA are much heavier than ξa. The equa-
tion of motion for ξA is

ξ̇A = {ξA, H} = {ξA, ξa}
∂H

∂ξa
+ {ξA, ξB}

∂H

∂ξB
. (A2)

At low energies (energies much smaller than the energy
scales of the uA modes), the time derivative in this equa-
tion can be neglected, giving

∂H

∂ξA
= −{ξ, ξ}−1

AB{ξB , ξa}
∂H

∂ξa
, (A3)

where {ξ, ξ}−1
AB is the matrix inverse of {ξA, ξB}. Now

we can write the equation of motion for ξa:

ξ̇a = {ξa, ξb}
∂H

∂ξb
+ {ξa, ξA}

∂H

∂ξA

= {ξa, ξb}
∂H

∂ξb
− {ξa, ξA}{ξ , ξ}−1

AB{ξB , ξb}
∂H

∂ξb
. (A4)

This can be rewritten as

ξ̇a = {ξa, ξb}D
∂H

∂ξb
≡ {ξa, H}D, (A5)

where the Dirac bracket is defined as

{ξa, ξb}D = {ξa, ξb} − {ξa, ξA}{ξ, ξ}−1
AB{ξB , ξb}. (A6)

Appendix B: Evaluating the Dirac bracket

The commutators between un can be written in mo-
mentum space as,

[un(q), u−m(q′)] = Cnm(q)(2π)2δ(q + q′), (B1)

with Cnm is a matrix whose nonzero elements are

Cnn = − 2π

k2
F

nb, (B2a)

Cn,n+1 = Cn+1,n = − 2π

kF
qz̄, (B2b)

Cn,n−1 = Cn−1,n = − 2π

kF
qz. (B2c)

The Dirac bracket between u±2 is then

[u2(q), u−2(q′)]D = (C22 − C23C
−1
33 C32)(2π)2δ(q + q′),

(B3)
where C−1

MN is the inverse of the matrix CMN , M,N =

3, 4, . . .. To compute C−1
33 it is sufficient to solve the

system of linear equations

C3NxN = 1, (B4a)

CMNxN = 0, M ≥ 4. (B4b)

Then C−1
33 = x3. Without losing generality we take qx =

q, qy = 0. The solution to Eq. (B4) is

xn =
kF
2π

2

q

(−1)nJn(q)

J2(q)
, (B5)

and from that we find Eq. (16)

Appendix C: Conventions

Here we summarize the complex notations. We define

z = x+ iy , z̄ = x− iy . (C1)

The derivatives are defined as

∂z = ∂ =
1

2
(∂x− i∂y) , ∂z̄ = ∂̄ =

1

2
(∂x + i∂y) . (C2)

The Laplace operator is given by ∆ = 4∂∂̄. Components
of any one-form are defined as

Az = A = Ax − iAy , Az̄ = Ā = Ax + iAy . (C3)

Similarly for higher rank tensors we have

gzz = g11 − g22 − i(g12 + g21) , gz̄z̄ = ḡzz , (C4)

gzz̄ = g11 + g22 + i(g12 − g21) . (C5)

With these definitions non-zero components of the Levi-
Civita symbol are

εzz̄ = −εz̄z = 2i . (C6)

Any contraction of indices requires extra factors of 1/2

uivi =
1

2
(uv̄ + ūv) . (C7)

The cross-product takes form

εijuivj =
i

2
(ūv − uv̄) . (C8)

The exception for the contractions is a contraction with
derivative, since derivative already has extra factor of 1/2
in its definition

∂ivi = ∂v̄ + ∂̄v , εij∂ivj = i(∂̄v − ∂v̄) . (C9)

Consider a counterclockwise rotation by an angle φ

R =

(
cosφ − sinφ
sinφ cosφ

)
. (C10)

Under this rotation we have

z → e+iφz , ∂ → e−iφ∂ , Az → e−iφAz , (C11)

gzz → e−2iφgzz , gzz̄ → gzz̄. (C12)

Finally, we define the complex momentum as

kz = k = k1 − ik2 , kz̄ = k̄ = k1 + ik2 . (C13)

Then the rules of Fourier transform are

F [∂f ] =
ik

2
f , F [∂̄f ] =

ik̄

2
f , (C14)

F [∆f ] = 4F [∂∂̄f ] = −|k|2f. (C15)
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Consider a unimodular symmetric tensor

g = exp

(
Q2 Q1

Q1 −Q2

)
, Q = Q1 + iQ2, Q→ e−2iφQ.

(C16)
We find its complex components

gzz = −2iQ
sinh |Q|
|Q|

≈ −2iQ , gz̄z̄ = 2iQ̄
sinh |Q|
|Q|

≈ 2iQ̄ ,

gzz̄ = 2 cosh |Q| ≈ 2 +QQ̄ , |Q| =
√
QQ̄ . (C17)

Next we find the linearized spin connection

ωi = −1

2
εjk∂jgki . (C18)

Then

ωz = − i
2
∂̄gzz = −∂̄Q , ωz̄ = −∂Q̄ , (C19)

The Ricci scalar is

R = 2εij∂iωj = 2i(∂̄ω − ∂ω̄) = 2i(∂2Q̄− ∂̄2Q). (C20)

Also

ω0 =
1

2
εijgikġkj =

i

4
(Q̄Q̇− ˙̄QQ). (C21)

The kinematic part of the action is

S =
νς

2π

∫
Adω̂

=
i

2

νς

2π`2

∫
Q̄Q̇+ i

νς

2π

∫
A0(∂2Q̄− ∂̄2Q)

+
iνς

4π

∫
A∂Q̄− Ā∂̄Q. (C22)

The density is

ρ =
νς

4π
R̂ = i

νς

2π
(∂2Q̄− ∂̄2Q). (C23)

Appendix D: Detailed derivation of the single-mode
action (69)

In this Appendix, we will derive the equations (69) in
detail. Combining Eqs. (65) and (66), we obtain

[ω ± f2ωcG(q)]u±2 = ∓q±ωα±, (D1)

where

G(q) = F (q)− q2

4
=

q2

4

J0(q)

J2(q)
, (D2)

and we define

α+ = δã++
iẼ+

(2N+1)ωc
, α− = δã−−

iẼ−
(2N+1)ωc

. (D3)

We can rewrite Eq. (66) as

i
Ẽ±

2N + 1
= q∓f2ωcu±2 − ωα±. (D4)

We propose a quadratic Lagrangian which satisfies the
field equations (D1) and (D4)

L = H(q)
[
ωu2u−2 − f2ωcG(q)u2u−2

− `(2N+1) (ωq−u2α− + ωq+u−2α+) +K(q)ωα+α−

]
+

i

2π

(
αzẼz̄ − αz̄Ẽz

)
+

i

8π
εµνρAµqνAρ −

b̄

4π
A0, (D5)

where H(q) and K(q) are 2 functions will be determined
momentary. The last 3 terms of effective action (D5)
come from the second line of equation (44)40. The equa-
tions of motion (eom) for u±2 are the same as (D1). The
eom for αz and αz̄ are

H(q) [∓K(q)ωα± − ωq∓u±2] = ∓ i

2π
Ẽ±. (D6)

Combining Eqs. (D1) and (D6) give us

H(q)

[
∓
(
K(q)− q2

4

)
ωα± ± q∓f2G(q)u±2

]
= ∓ i

2π
Ẽ±.

(D7)
Comparing Eqs. (D7) and (D4), we obtain

H(q) =
2N + 1

2πG(q)
, K(q) = G(q) +

q2

4
= F (q). (D8)

Substituting Eq. (D8) into Eq. (D5), we arrive at the
effective Lagrangian

L =
2N+1

2πG(q)

[
ωu2u−2 − f2ωcG(q)u2u−2

.− `(2N+1) (ωq−u2α− + ωq+u−2α+) + F (q)ωα+α−

]
+

i

2π

(
αzẼz̄ − αz̄Ẽz

)
+

i

8π
εµνρAµqνAρ −

b̄

4π
A0. (D9)

We can further integrate out αz and αz̄ by the equations
of motion

α+ = − i

2N + 1

G(q)

F (q)

Ẽ+

ω
− q−
F (q)

u2, (D10)

α− = − i

2N + 1

G(q)

F (q)

Ẽ−
ω

+
q+

F (q)
u−2, (D11)

and obtain the action (69).
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