Dissipation in quantum turbulence in superfluid \(^{4}\)He above 1 K

J. Gao, W. Guo, S. Yui, M. Tsubota, and W. F. Vinen

Phys. Rev. B 97, 184518 — Published 29 May 2018

DOI: 10.1103/PhysRevB.97.184518
Dissipation in quantum turbulence in superfluid 4He above 1K

J. Gao and W. Guo
National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA and
Mechanical Engineering Department, Florida State University, Tallahassee, FL 32310, USA

S. Yui and M. Tsubota
Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan

W.F. Vinen
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
(Dated: May 14, 2018)

There are two commonly discussed forms of quantum turbulence in superfluid 4He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, L, in the former case is often described by the equation $dL/dt = -\chi_2(\kappa/2\pi)L^2$, where κ is the quantum of circulation, and χ_2 is a dimensionless parameter of order unity. The decay of total turbulent energy, E, in the second case is often characterized by an effective kinematic viscosity, ν', such that $dE/dt = -\nu'k^2L^2$. We present new values of χ_2 derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of ν' from experiment, and we present a brief introductory discussion of the relationship between χ_2 and ν', leaving a more detailed discussion to a later paper.

PACS numbers: 67.25.dg, 67.25.dk, 67.25.dm

I. INTRODUCTION

Below about 2.17 K, liquid 4He becomes a superfluid, in which an inviscid irrotational superfluid component coexists with a viscous normal-fluid component [1]. Any vorticity in the superfluid component is confined to quantized vortex lines, each of which carries a single quantum of circulation $\kappa = h/m$, where h is Planck’s constant and m is the mass of a He atom [2]. Flow in each of the two fluids can be turbulent. Turbulence in the superfluid component (quantum turbulence) takes the form of an irregular tangle of vortex lines which interact with each other and, through a force of “mutual friction”, with the normal fluid [3]. Turbulence in the normal fluid is similar to that in a classical fluid, but modified by the mutual friction. Dissipation, associated with viscosity, plays an important role in classical turbulence; notably, in providing a sink where the energy flux in a high Reynolds number Richardson cascade can be absorbed at small length scales. It must play a similarly important role in quantum turbulence, although, as we shall see, dissipative mechanisms are then more complex than in the classical case.

Except at temperatures well below 1K, where the normal fluid has disappeared, dissipation in the turbulent superfluid component is due, as we shall see, to the mutual friction. If we ignore a small transverse (non-dissipative) component, the force of mutual friction per unit length of vortex line can be expressed in terms of a dimensionless parameter α [3]. Except at temperatures very close to the superfluid transition temperature, α is significantly less than unity, with the result that vortex line motion is determined largely by vortex-vortex interactions, the mutual friction leading to only a relatively slow shrinkage in the total length, L, of vortex line per unit volume. Dissipation in the normal fluid is due to both mutual friction and viscosity.

It is the aim of this paper to discuss these forms of dissipation for two commonly studied types of quantum turbulence (QT), the dissipation being observed in the free decay of the turbulence.

QT can be most easily produced by a heat current, which is carried in superfluid helium by a counterflow of the two fluids, and this is the form of QT that was first subject to detailed experimental study [4–6]. It was thought for many years that this thermal counterflow turbulence (TCT) involved only the superfluid component, and took the form of a more or less random vortex tangle, for which the turbulent energy is confined to scales comparable with or less than the average spacing, $\ell = L^{-1/2}$, between the vortex lines. The corresponding energy spectrum, $E_Q(k)$, has the form

$$E_Q(k) = \frac{\rho_s\kappa^2}{4\pi\rho\ell^3} f\left(\frac{k\ell}{2\pi}\right),$$ \hspace{1cm} (1)

where the function $f(x)$ depends on the precise form of the “random tangle”\(^\text{7}\), but tends to unity for large x, and tends rapidly to zero for $x < 1$ [7]. ρ_s/ρ is the superfluid fraction. It was suggested, on dimensional and physical grounds [6], that, when the heat current is switched off,
the line density might decay as
\[\frac{dL}{dt} = -\frac{\chi_2 \kappa}{2\pi} L^2, \]
(2)

where \(\chi_2 \) is a dimensionless parameter of order unity.

Noting that the energy per unit mass associated with a random tangle of vortex lines is given by
\[E_Q = \int_0^\infty E_Q(k)dk \approx \frac{\rho_s \kappa^2}{4\pi \rho} L \ln \frac{\ell}{\xi_0}, \]
(3)

where \(\xi_0 \) is the vortex core parameter, we see that the turbulent energy per unit mass would then decay as
\[\frac{dE}{dt} = -\nu' \kappa^2 L^2, \quad \frac{\nu'}{\kappa} = \frac{\chi_2 \rho_s}{8\pi^2 \rho} \ln \frac{\ell}{\xi_0}, \]
(4)

where \(\nu' \) is an effective kinematic viscosity.

Recent experiments [8, 9], based on the use of He3 ex-cimer molecules as tracers of the normal-fluid flow, have shown that this form of QT, involving only what we shall call a random vortex tangle, exists in TCT only at sufficiently small heat fluxes; at larger heat fluxes the tangle is accompanied by turbulence in both fluids on scales up to the size of the containing channel. We shall write the resulting energy spectrum as
\[E(k) = E_Q(k) + E_{Cs}(k) + E_{Cn}(k), \]
(5)

where \(E_Q(k) \) is still given by Eq.(1), \(E_{Cs}(k) \) is produced by partial polarization of the vortex lines, and \(E_{Cn}(k) \) relates to the turbulent energy in the normal fluid. In the steady state this large-scale turbulence in the two fluids is partially coupled and has an energy spectrum, \(E(k) \propto k^{-n} \) on scales significantly larger than \(\ell \), where the exponent \(n \) varies with the heat flux but is always larger that the Kolmogorov value [10], 5/3 [8]; that \(n > 5/3 \) is a reflection of the fact that coupling is incomplete, so that there is dissipation on all length scales [9].

After the source of heat is turned off, the heat flux in the channel decays to zero in a time given by a thermal RC time constant (typically 10 ms). Then the two fluids become fully coupled in a similar time, retaining for a time the \(k^{-n} \) energy on large scales. Finally, over a further period of typically 1-10 s, the energy spectrum on large scales evolves into the form expected for in a classical inertial-range Richardson cascade; i.e. a Kolmogorov spectrum, \(E(k) \propto k^{-5/3} \) [10].

We emphasize three points relating to the fully coupled turbulence: as long as full coupling is maintained, there is no dissipation due to mutual friction; the large scale non-dissipative motion in the superfluid component is generated by a partial polarization of the vortex lines; and large scale motion in the normal component is non-dissipative because the viscosity of the normal fluid is sufficiently small. As we shall see more clearly later, dissipation can occur in both fluids on scales comparable with or less than \(\ell \), that in the superfluid component being due to mutual friction, partial decoupling having occurred, and that in the normal component being due a combination of viscosity and mutual friction. Because dissipation on scales of order \(\ell \) is now much more complicated than is the case if the turbulence is confined to the superfluid component and to scales of order \(\ell \), Eq.(4) need no longer apply.

The decay of line density associated with large-scale coupled turbulence was first studied by Stalp et al [11], the coupled turbulence having been generated in the wake of a moving grid. These authors showed that their experimental results could be explained in purely classical terms, if it was assumed that there was at all times a Richardson-Kolmogorov cascade \((E(k) \propto k^{-5/3}) \), terminated at small scales by dissipation described by the equation
\[\frac{dE_C}{dt} = -\epsilon = -\nu' \kappa^2 L^2, \]
(6)

where \(\nu' \) is another effective kinematic viscosity; \(E_C \) is the total quasi-classical turbulent energy, given by integrating \(E_{Cs}(k) \) over \(k \) (the contribution of \(E_Q(k) \) to the total energy is small and can be neglected). Stalp et al argued that Eq.(6) is the analogue of the expression \(\nu' \langle \omega^2 \rangle \) for dissipation in classical homogeneous turbulence, where \(\langle \omega^2 \rangle \) is the mean square classical vorticity. We emphasize that, although the expressions (4) and (6) for the rate of decay of turbulent energy are similar in form, they relate to different physical situations, and in neither case has there been any really rigorous discussion of their validity. Furthermore, as we shall discuss later, the two effective kinematic viscosities, \(\nu' \) and \(\nu' \) need not have the same value. In future we shall refer to large-scale coupled turbulence of the type produced by flow through grid, or in the decay of strongly excited TCT at large times, as quasi-classical quantum turbulence.

We remark here that a Kolmogorov energy spectrum can, strictly speaking, apply only to a steady state in which energy is fed in continuously at some large scale \(D \) at a rate \(\epsilon \); there is then a constant energy flux, equal to \(\epsilon \), down an inertial sub-range, \(2\pi \ell / D \gg \kappa \gg 2\pi / \ell \), within which the energy spectrum has the full Kolmogorov form \(E(k) \sim \epsilon^{2/3} k^{-5/3} \) (we are ignoring the effects of intermittency). In decaying turbulence the energy flux, \(\epsilon \), cannot be strictly independent of either time or wave number, so that the Kolmogorov dependence on wave number, \(k^{-5/3} \), cannot be strictly correct. In practice, however, most of the energy is often concentrated in the largest eddies (wave numbers close to \(2\pi / D \)), so that \(\epsilon \) is independent of \(k \), for \(k > 2\pi / D \), to a reasonable approximation; and the decay is sufficiently slow that the Kolmogorov spectrum holds with a slowly decreasing value of \(\epsilon \).

Except perhaps for a simple theoretical calculation of \(\chi_2 \), reviewed later in Section III, there has so far been hardly any serious theoretical justification for the two forms of dissipation, and for many years even experimental justification was inadequate. Similarly it has proved difficult to derive reliable values of the two effective kinematic viscosities from experiment. In the case of \(\nu' \) (or
equivalently χ_2) there had been no careful study of the
decay of TCT at heat currents sufficiently small that
there was no large-scale turbulence. In the other case val-
ues of ν' were obtained from observations of the decay of
vortex line density combined with questionable assump-
tions about the form of the large-scale energy spectrum
as it relates to turbulence in a channel of finite cross-
section. Only very recently has ν' been determined in a
more satisfactory way for the case of decaying TCT [12],
although the results have yet to be compared carefully
with those obtained solely from the decay of vortex line
density. The general aims of this paper are, as far as
possible, to remedy these various shortcomings.

The results of our new experiments on the decay of a
random vortex tangle and our measurements of χ_2 are
described in Section II. In Section III we summarize an
existing theory of χ_2, assess its likely validity, and com-
pare its predictions with experiment. In Section IV we
describe the numerical simulations relating to a random
vortex tangle, and we compare the results with the exper-
iment and with the theory of Section III. In Section V we
present a critical summary of our present knowledge of
the experimental values of the effective kinematic viscos-
ity ν', and in Section VI we present a brief introductory
theoretical discussion of the relationship between χ_2 (or
ν') and ν', leaving a more serious discussion of what is
actually a difficult problem to a later paper. We present
an overall summary of our work in Section VII.

II. DISSIPATION IN A RANDOM VORTEX TANGLE: THE EXPERIMENTAL MEASUREMENT OF χ_2.

Our new experiments on the decay of vortex line den-
sity associated with TCT have been based on the ob-
served attenuation of second sound, using what is now a
standard technique, as described in, for example, refer-
ces [5, 13]. The actual apparatus is identical with that
described in reference [8].

As we have explained, the form of decay of vortex line
density given by Eq.(2) can be expected to be observed
in the decay of TCT only if the steady heat flux is small
enough to ensure that there is no large-scale turbulence.
This is indeed the case is evident in the decay shown by
the lowest line in Fig.1.

In Fig.2 we show data for a decay from a small heat flux plotted in a form, $(1/L)_2$ versus t, which serves to
demonstrate more clearly that Eq.(2) is indeed obeyed.

Values of χ_2 deduced from decays of this type are
shown as a function of temperature in Fig.3.

III. DISSIPATION IN A RANDOM VORTEX TANGLE: A THEORY OF χ_2

In this section we shall summarise a theory of χ_2 that
was proposed by Vinen and Niemela [3], and we shall
compare the results with experiment.

We assume that the force of mutual friction per unit
length of vortex line is given by

$$ f = -\rho_s \alpha \hat{\kappa} \times [\hat{\kappa} \times (\mathbf{v}_n - \mathbf{v}_L)], \quad (7) $$

where $\hat{\kappa}$ is a unit vector along the length of the vortex and
\mathbf{v}_L is the velocity with which the vortex moves perpen-
dicular to its length. We have neglected any transverse
component of the mutual friction. We shall further as-
sume that during the decay described by Eq.(2) the nor-
mal fluid is at rest, apart from the local dragging by a
moving vortex that is incorporated into the definition of
the mutual friction parameter α [14]. Dissipation is
then due entirely to mutual friction. Finally, we shall as-
sume that the magnitude of \mathbf{v}_L is given to a good enough
approximation by the local induction approximation
\[v_L = \frac{\kappa}{4\pi R} \ln \left(\frac{R}{\xi_0} \right), \tag{8} \]
where \(R \) is the local radius of curvature of the vortex, and \(\xi_0 \) is the vortex core parameter. In other words, we have neglected the effect of both long-range interactions and the force of mutual friction itself on the motion of a vortex. It follows that the rate of dissipation of energy per unit mass of helium is given by
\[\frac{dE_r}{dt} = -\frac{\rho_s}{\rho} \kappa \alpha L \langle v_L^2 \rangle = -\alpha \left(\frac{\rho_s \kappa^3}{16\pi^2\rho} \right) \left[\frac{1}{R^2} \left(\ln \frac{R}{\xi_0} \right)^2 \right] L, \tag{9} \]
where \(\langle \ldots \rangle \) denotes an average over the vortex tangle. We neglect the slow variation of the logarithmic term with \(R \), putting \(R = R_0 \approx \ell \) in that term, and we follow Schwarz [15] by assuming that
\[\langle \frac{1}{R^2} \rangle = c_2^2 L, \tag{10} \]
where \(c_2 \) depends only on temperature. It follows that
\[\frac{\nu_0'}{\kappa} = \frac{\alpha c_2^2 \rho_s}{16\pi^2\rho} \left[\ln \frac{\ell}{\xi_0} \right]^2, \tag{11} \]
and therefore
\[\chi_2 = \frac{\alpha c_2^2}{2} \ln \frac{\ell}{\xi_0}. \tag{12} \]
This derivation is based on three assumptions: that, as we have mentioned, there is no motion of the normal fluid; that the vortex lines form a random tangle; and that use of the local induction approximation is justified. We shall present an argument in favour of the first assumption in Section VI. The other assumptions seem reasonable.

Values of \(\chi_2 \) derived from Eq.(12) are included in Fig.3. The required values of \(c_2 \) are taken from the simulations of the steady state described in Section IV, and values of \(\alpha \) are taken from reference [16]. We see that within the error bars there is agreement with experiment.

IV. DISSIPATION IN A RANDOM VORTEX TANGLE: SIMULATIONS RELATING TO \(\chi_2 \)

A brief report of simulations leading a verification of the form of the decay of line density and to values of \(\chi_2 \) at a temperature of 1.9 K has already been published [17]. Here we present the results of a more detailed studies, covering a range of temperatures, first for the case of spatially uniform flows, and then for flows between solid boundaries.

A. The steady state for spatially uniform flows.

For a given temperature we must first simulate the steady state counterflow, for two reasons. It is from these states that the decays must start, and we can determine whether values of the parameter \(c_2 \), obtained for the steady state, lead via Eq.(12) to agreement with experimentally observed values of \(\chi_2 \).

Our numerical simulation is based on the vortex filament model with the full Biot-Savart integral. We carry out simulations for spatially uniform flows in a cubical box, side 1 mm, with periodic boundary conditions in all directions. We replace the vortex lines by a discrete set of points with minimum spatial resolution \(\Delta \xi = 8.0 \times 10^{-4} \) cm. We integrate in time with a fourth-order Runge-Kutta scheme with time resolution \(\Delta t = 1.0 \times 10^{-4} \) s. The initial state is a set of randomly oriented vortex loops of radius 0.23 mm. The spatially uniform applied velocities satisfy the condition of no net mass flow \(\rho_n v_n + \rho_s v_{s,a} = 0 \). We have checked that any contribution to the net superflow from the evolving vortex tangle is negligible in comparison with \(v_{s,a} \). The parameters used in the simulations are shown in Table I.

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>(\alpha)</th>
<th>(\alpha')</th>
<th>(v_n) (mm s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.052</td>
<td>0.017</td>
<td>9.0</td>
</tr>
<tr>
<td>1.5</td>
<td>0.073</td>
<td>0.018</td>
<td>7.0</td>
</tr>
<tr>
<td>1.6</td>
<td>0.098</td>
<td>0.016</td>
<td>6.0</td>
</tr>
<tr>
<td>1.7</td>
<td>0.127</td>
<td>0.012</td>
<td>5.0</td>
</tr>
</tbody>
</table>

We run the simulations for 20 s. The vortex line density, \(L_0 \), is found to reach a steady average value, \(L_0 \), with fluctuations, in about 5 s. The parameter \(c_2 \), calculated from the Eq.(10) and the equation...
\[\left\langle \frac{1}{R^2} \right\rangle = \frac{1}{\Omega L} \int \frac{d\xi}{R^2}, \]
\[\text{(13)} \]

where \(\Omega \) is the volume of the numerical box, together with the values of \(\chi_2 \) derived from Eq.(12), are shown as a function of time for a temperature of 1.4 K in Fig. 4. As we see, they too reach steady states after a few seconds, but with significant fluctuations. We have performed similar simulations for several temperatures, the results of which are summarized in terms of time-averages in Table II. The computed values of \(\chi_2 \) in Fig. 3 were taken from Table II. The significant fluctuations to which we have referred have their origin, at least in part, in the relatively small computational box, compared with vortex line spacings; this is confirmed by the observed increase in the percentage fluctuation in \(\chi_2 \) as the vortex line density is decreased, which is evident for the temperature of 1.4K in Table II. We also emphasize that the theoretical/computational values of \(\chi_2 \) plotted in Fig. 3 were derived from Table II; the agreement with experiment was therefore evidence that Eq.(12) is at least approximately valid if the values of \(c_2 \) are taken from numerical simulations of the steady state. We must now turn to numerical simulations of the decaying turbulence, to check whether the simulated decays obey Eq.(2) with values of \(\chi_2 \) that agree with those in Table II.

TABLE II. Statistically steady values of the vortex line density, \(L_0 \), the parameter \(c_2 \), the mean radius of curvature, \(R_0 \), and the corresponding values of \(\chi_2 \) derived from Eq.(12).

<table>
<thead>
<tr>
<th>(T) K</th>
<th>(v_n) cm/s</th>
<th>(L_0) (\times 10^3) cm</th>
<th>(c_2)</th>
<th>(R_0) cm</th>
<th>(\chi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.9</td>
<td>6.54 ± 0.30</td>
<td>2.47 ± 0.12</td>
<td>5.03 ± 0.25</td>
<td>2.04 ± 0.19</td>
</tr>
<tr>
<td>1.5</td>
<td>0.7</td>
<td>5.80 ± 0.24</td>
<td>2.31 ± 0.13</td>
<td>5.71 ± 0.32</td>
<td>2.54 ± 0.29</td>
</tr>
<tr>
<td>1.6</td>
<td>0.6</td>
<td>6.14 ± 0.25</td>
<td>2.16 ± 0.12</td>
<td>5.93 ± 0.31</td>
<td>2.99 ± 0.31</td>
</tr>
<tr>
<td>1.7</td>
<td>0.5</td>
<td>6.34 ± 0.30</td>
<td>2.06 ± 0.11</td>
<td>6.12 ± 0.33</td>
<td>3.53 ± 0.37</td>
</tr>
<tr>
<td>1.4</td>
<td>1.1</td>
<td>10.0 ± 0.27</td>
<td>2.44 ± 0.08</td>
<td>4.10 ± 0.13</td>
<td>1.97 ± 0.13</td>
</tr>
</tbody>
</table>

B. Decays from spatially uniform flows

In these simulations the applied velocities, \(v_n \) and \(v_{n,a} \), are turned off at time \(t = 0 \), and the way in which the line density decays with \(t \) is determined. Data are averaged over 30 decays at each temperature.

Fig.5 shows the way in which the simulated line density decays with time at 1.4K, in the form of a plot of \(1/L \) against time.

We see that, in contrast to the corresponding experimental decay (Fig.2), Eq.(2) is apparently not obeyed; the slope of the plotted line, which ought to be proportional to the constant \(\chi_2 \) increases markedly with time (the values of \(\chi_2 \) are also too large). The increase at times greater than about 1 s may be due in part to the vortex line density becoming too small (the ratio of line spacing to the spatial period has become greater than about 0.3), and in part to the effect of the logarithmic factor in Eq.(12). A possible explanation of the discrepancy at smaller times is that the parameter \(c_2 \) in Eq.(12) changes during the simulated decay. That \(c_2 \) does indeed change during the simulated decay is shown in Fig.6(a); further-

![Fig. 4. Value of \(c_2 \) derived from simulations of the approach of counterflow to a steady state, and the corresponding value of \(\chi_2 \) derived from Eq.(12).](attachment:fig4.png)

![Fig. 5. (color online) \((1/L) \) plotted against time from simulations at \(T = 1.4K \) and \(v_n = 9 \) mm s\(^{-1}\).](attachment:fig5.png)
more, as we see from Fig.6(b), this changing c_2 leads via Eq.(12) to a changing value of χ_2 that would lead, at least qualitatively, to a decay curve with the shape shown in Fig.5. Similar results emerge from simulations at other temperatures.

![Fig. 6. a) The variation of the parameter c_2 with time from simulations of the decaying line density at $T = 1.4K$ and $v_n = 9 \text{ mm s}^{-1}$. (b) The variation of χ_2 with time, obtained by substituting c_2 from Fig.6a into Eq.(12).](image)

That the variation with time of the slope of the line in Fig.5 is indeed due to the variation with time of the parameter c_2 is shown more strikingly in Fig.7, where we compare on the same graph the time dependence of the value χ_2 derived both by differentiating $1/L$ in Fig.5 with respect to time and by substituting the value of c_2 from Fig.6(a) into Eq.(12). Even the random fluctuations of c_2 are reflected to a significant degree in fluctuations in χ_2 derived from Fig.5. The situation at other temperatures is similar. We conclude then that the theory underlying Eq.(12) is in reasonably good agreement with the results of the simulations, but not, to a significant extent, with experiment. This suggests strongly that some factor relevant to the experiments is missing from both the theory and the simulations. A possible candidate for this factor is the fact that, in contrast to the theory and the simulations, the experiments relate to flow in a channel of finite cross-section. We investigate this possibility in the next sub-section.

![Fig. 7. (color online) Plots of χ_2 against time derived as explained in the text.](image)

C. Decays from flows in channels of finite cross-section

Simulations relating to decaying counterflow in two types of channel have been carried out: one is formed between two parallel solid boundaries, separated by 1 mm; the other is a channel with square ($1 \text{ mm} \times 1 \text{ mm}$) cross-section, again with solid boundaries. The conditions at the solid boundaries are that the normal fluid velocity vanishes, and that the normal component of the superfluid velocity vanishes. Otherwise, periodic boundary conditions are applied. In the steady state a parabolic velocity profile in the normal fluid is prescribed. Here we shall present only the results for two parallel boundaries; the results for the channel with square cross section are broadly similar, but are less clear cut because of large fluctuations in the line density in the steady state. Data relating to the steady states in the case of the parallel plates are displayed in Table III.

TABLE III. Parameters analogous to those in Table II, for flow between parallel plates.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>v_n (cm s$^{-1}$)</th>
<th>L_0 (103 cm$^{-2}$)</th>
<th>c_2</th>
<th>R_0 (10$^{-3}$ cm)</th>
<th>χ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1.1</td>
<td>5.94 ± 0.64</td>
<td>2.17 ± 0.14</td>
<td>6.03 ± 0.37</td>
<td>1.60 ± 0.20</td>
</tr>
<tr>
<td>1.5</td>
<td>0.9</td>
<td>5.67 ± 0.43</td>
<td>2.02 ± 0.14</td>
<td>6.61 ± 0.41</td>
<td>1.97 ± 0.26</td>
</tr>
<tr>
<td>1.6</td>
<td>0.8</td>
<td>6.58 ± 0.70</td>
<td>1.84 ± 0.12</td>
<td>6.76 ± 0.39</td>
<td>2.19 ± 0.28</td>
</tr>
<tr>
<td>1.7</td>
<td>0.7</td>
<td>6.74 ± 0.67</td>
<td>1.79 ± 0.11</td>
<td>6.86 ± 0.41</td>
<td>2.68 ± 0.33</td>
</tr>
</tbody>
</table>

Before we proceed further we recall that the presence of solid boundaries in the steady state is known from simulations to lead to severe spatial inhomogeneity in the vortex line density [18–21]; the vortex line density is greatly enhanced near the boundary (values of L_0, and other parameters, in Table III are spatial averages). We must therefore enquire whether there is also inhomogeneity in the value of c_2. That there is indeed such inhomogeneity is shown in Figs 8 and 9, derived from the simulations. We see that the parameter c_2 is strongly reduced in re-
gions where the vortex line density is increased, and that this reduction persists in time during a decay.

![Plot showing how c_2, averaged over time in the steady state, varies with position across the channel.](image)

FIG. 8. (color online) Plots showing how c_2, averaged over time in the steady state, varies with position across the channel. Blue line: flow between parallel plates; red line: spatially uniform flow. Temperature = 1.4 K.

![Diagram showing how c_2 varies with position across the channel and with time during a decay.](image)

FIG. 9. (color online) Diagram showing how c_2 varies with position across the channel and with time during a decay. Temperature = 1.4 K.

The experimental observations of χ_2, reported in Section II, relate to the decay of spatially averaged vortex line densities. Our simulations of the decays between parallel plates lead to the corresponding values of χ_2 that are displayed in Fig.10, where they are compared with the predictions of Eq.(12), in which we have substituted spatially averaged values of the parameter c_2 taken from our simulations. We see that the agreement between the simulations and the predictions of Eq.(12) is still good and provides further confirmation that the theory of Section III is valid. Furthermore, for times less than 1 s, the variation with time of χ_2 has largely disappeared, and that the actual values of χ_2 are in better agreement with experiment. This improved agreement with experiment is comforting and suggests that boundary effects are important in determining values of c_2 and therefore the precise form of the decays. However, reservations must be emphasized. It is now clear that values of c_2 are quite sensitive to the precise form of the flows, and our simulations still relate to flows that are not exactly the same as those in our experiments. The experiments [8] use wider channels; in practice the velocity profile of the normal fluid differs generally from the Poiseuille form [8]; and in practice the vortex lines in the superfluid component are likely to suffer drag or pinning at the solid boundaries. Simulations that take account of these differences are starting to be practicable [22], and could eventually allow more satisfactory comparison with experiment.

![Plots of χ_2 against time for flow between parallel plates.](image)

FIG. 10. (color online) Plots of χ_2 against time for flow between parallel plates.

It should be emphasized that, although there can be no net mass flow in thermal counterflow, the velocity profiles of the two fluids in a channel of finite cross section can be such that there is a finite mass flow locally. When the heat flux is turned off, this local mass flow may persist and may give rise to large scale circulations. We see no evidence that such circulations have any significant effect on the form of the decay, although they may be affecting the value of c_2 during the decay.
V. DISSIPATION IN QUASI-CLASSICAL QUANTUM TURBULENCE: EXPERIMENTAL VALUES OF ν'

We turn now to the decay of large-scale coupled turbulence, as observed in the wake of flow through a grid and in the decay of TCT when the steady heat flux is large. We shall not be concerned with the early stages in these decays. In the case of grid turbulence, it has been supposed \cite{11} that a Kolmogorov spectrum is established quickly, with energy-containing eddies having a size significantly smaller than the channel width; then the energy-containing eddies grow in size, essentially by a classical process (see ref. \cite{23}, pg.347), until their size saturates at a value comparable with the width of the channel. Recent experiments have cast doubt on the supposed details of this evolution of the energy-containing eddies, but, as we shall see, there seems now to be little doubt that eventually the turbulence settles down to a quasi-steady state in which the energy-containing eddies have a fixed size, determined by the channel width, and in which there is an inertial sub-range characterized by a Kolmogorov energy spectrum, terminated by dissipation described by Eq.(6). In the case of the decay of TCT when the steady heat flux is large, the initial stages are complicated, as we outlined in our introduction, but again there is little doubt that eventually the turbulence settles down to a state similar to that seen in the decay of grid turbulence.

As was shown first by Stalp \textit{et al} \cite{11}, the decay of vortex line density in the state to which the turbulence settles down is given by

$$L(t) = \frac{(3C)^{3/2}}{2\pi\kappa\nu^{1/2}}(t - t_0)^{-3/2},$$

where C is the Kolmogorov constant, D is the (time-independent) linear size of the energy-containing eddies, and t_0 is a constant. Eq.(14) is based on an assumed energy spectrum that has the Kolmogorov form with a simple cut-off for wave number less than $2\pi/D$. Until recently, all measurements of the effective kinematic viscosity, ν', have been based on observations of $L(t)$ and the assumption that D is exactly equal to the width of the channel in which the flow is taking place. The questionable assumptions underlying this work meant that the values of ν' were, at best, uncertain to within a factor of perhaps two or three. Furthermore, since the effective size of the energy-containing eddies could depend on the precise way in which the turbulence was generated, values of ν' from different experiments might not agree.

This uncertainty can be circumvented if a measurement of $L(t)$ is combined with a measurement of the way in the total turbulent energy decays, since this decay of total energy yields the value of the energy flux, ϵ, in Eq.(6). The time-dependence of the total energy can be deduced from the recently developed visualization technique based on the use of He2_4 excimer molecules as tracers, provided that it is assumed that the turbulence is isotropic. The first such study, on the decay of TCT, was reported recently \cite{12}, and the resulting values of ν' are displayed in Fig.11, along with values of ν' derived from the same measurements of the decay of line density, but using Eq.(14) (all these measurements relate to a channel with square cross section, 9.5 mm \times 9.5 mm, and D in Eq.(14) was taken to be 9.5 mm). We see that the measurements based on the new technique are systematically slightly larger than those based on Eq.(14), but only by a factor that is barely outside the experimental error.

In Fig.12 we collect together the results of measurements of ν' for various types of decaying coupled quantum turbulence, as described in the caption to the figure. Most of these data were derived from measurements on line density only, and for this reason are subject to some uncertainty. There is a hint that the value of ν' may depend a little on the type of flow, but the relatively large experimental errors make it hard to be sure. All that we can say is that ν'/κ lies in the range 0.1 to 1, its value increasing as the temperature increases from 1.3K to 2.1K.

These measurements of ν' have all been based on the decay of the quantum turbulence. Some information about ν' has also been obtained from observations of vortex line density in the steady flow of superfluid 4He through a channel or through a grid \cite{24}. In essence, it was tentatively assumed that the steady flow led to the generation of large eddies, size D and characteristic velocity U. The velocity U is assumed to be proportional to the average steady flow velocity U_0 ($U = \zeta U_0$, where the constant ζ is a little less than unity), and D is assumed to be independent of U_0. The large eddies are assumed
to decay through a cascade at a rate determined by the turnover time D/U, the energy being ultimately dissipated at a rate given by Eq. (6). These assumptions lead then to a steady vortex line density given by

$$L = \frac{1}{\nu' D} \frac{1}{\nu' \kappa D^{1/2} U_0^{3/2}}. \tag{15}$$

That L is proportional to $U_0^{3/2}$ is confirmed by experiment. Eq. (15) can then be used to estimate ν', subject to reasonable guesses about the values of ζ and D. The results are not inconsistent with those described above, demonstrating that the concept of an effective kinematic viscosity is applicable to dissipation in both steady and decaying turbulence; but reliable absolute values of ν' cannot be deduced.

VI. DISSIPATION IN QUASI-CLASSICAL QUANTUM TURBULENCE: THE RELATION BETWEEN ν'_c AND ν'

A. Introduction

We devote this section to an introductory discussion of the relation between ν'_c, derived from our values of χ_2, and ν'. We have already emphasized that these two kinematic viscosities relate to different physical situations, and that they may not therefore be equal.

In the case of ν'_c, we are dealing with a situation where turbulent energy in the superfluid component is confined to scales of order ℓ or less, in the form of a random vortex tangle, and we assumed in our earlier discussion that there was no turbulent motion of the normal fluid. As we have seen, turbulent energy is then being dissipated by mutual friction, at a rate that is given to a reasonable approximation by the prediction of Eq. (12). In the case of ν' there is again turbulent energy in the superfluid component on scales of order ℓ or less, but this is accompanied by turbulent energy in both fluids at larger scales. On sufficiently large scales there is strong coupling between the two fluids, and viscosity in the normal fluid can be neglected. There is then a Kolmogorov (inertial range) energy spectrum in this coupled motion, leading to constant fluxes of energy in k-space in both the superfluid and normal components (ϵ_s and ϵ_n). We must discuss how this situation changes as the scale of the turbulence moves towards the scale ℓ; in other words how the energy spectra for the two fluids behave as the wave number approaches $2\pi/\ell$. In connection with dissipation, we need ultimately to answer several questions. How, and at what wave numbers, is turbulent energy in the normal fluid dissipated, remembering that such dissipation can be due to both viscosity and mutual friction? Is there significant dissipation in the superfluid component due to mutual friction at wave number smaller than $2\pi/\ell$? And how is dissipation in the superfluid component modified, in comparison with that for a random vortex tangle, for wave numbers of order or greater than $2\pi/\ell$, by any motion on those scales of the normal fluid or by the polarization of the tangle required to generate the large-scale turbulence.

B. Guidance from the calculations of Boué et al

These questions can be answered to some degree by appealing to the work of Boué et al [25]. These authors used a two-fluid Sabra shell-model, based on modified HVBK equations, to calculate the energy spectra for both the superfluid and normal components. The HVBK equations are coarse-grained (continuum) equations of motion for the two fluids, and Boué et al modify them by the addition of an effective kinematic viscosity, equal to our ν', to the equation for the superfluid component. Our ν' is indeed an effective kinematic viscosity in the sense that the associated dissipation, equal to $\nu' k^2 L^2$, appears to be analogous to the classical dissipation $\nu (\omega^2)$, where $\langle \omega^2 \rangle$ is the mean square classical vorticity. However, this analogy is misleading because our ν' is actually due, at least in part, to mutual friction, so that its effect ought not to be represented by a term of the form $\nu' \nabla^2 v_n$, as assumed by Boué et al. Leaving aside this questionable aspect of the analysis by Boué et al, there is still the assumption that coarse-grained equations of motion can be used. This assumption is probably justified in describing turbulence on scales large compared with the vortex line spacing, ℓ, but Boué et al use it on scales as small as the vortex line spacing. It must fail on such small scales, although the precise scale below which it fails noticeably is not clear. We shall return to this point later.
In spite of these shortcomings, it is interesting to examine the conclusions to be drawn from the analysis of Boué et al., especially as they relate to the effect of the finite viscosity of the normal fluid in the range of temperatures in which we are interested (Fig.1(b) in ref [25]). We find that, at temperatures less than about 1.5 K, the normal fluid is brought to rest by its viscosity on a length scale significantly larger than ℓ, but that the superfluid is then brought to rest only on significantly smaller scales, comparable with ℓ. At first sight this is surprising, because it might be thought that with the normal fluid at rest the superfluid would also be brought to rest by mutual friction. There is, however, a simple explanation. On scales larger than ℓ there is according to Boué et al a flow of energy in the turbulent superfluid to higher wave numbers in a Richardson cascade. If the normal fluid is at rest, this cascade has associated with it two characteristic times: the turnover time for eddies centred on wave number k, which is of order \(\tau_k = (ku)^{-1} \), where u is the characteristic velocity in these eddies; and the time taken for the energy in these eddies to be dissipated by mutual friction, which is of order \(\tau_\gamma = \ell^2 / \alpha \kappa \). If \(\tau_\gamma \ll \tau_k \), then the mutual friction has little effect. It is easy to show that this condition is indeed satisfied in the cases we are considering.

At temperatures above about 1.5K Boué et al show that energy is lost from both the normal component and the superfluid component only on length scales comparable with ℓ. It follows then that at all temperatures relevant to the present study turbulent energy is lost from the superfluid component only on length scales comparable with the vortex line spacing, ℓ. We emphasize that this conclusion is dependent on the questionable assumption that turbulence in the superfluid component is behaving quasi-classically on scales down to a value close to the vortex line spacing ℓ.

C. Dissipation in the superfluid component

If we accept this assumption, then we can conclude that, even in quasi-classical quantum turbulence the vortex lines must be moving at a velocity that includes a quasi-classical component, corresponding to a large scale quasi-classical velocity field arising from a partial polarization of the lines. This component is associated with the long-range, non-local, interaction of the vortex lines, and the large-scale coupling between the two fluids ensures that this component is not subject to any dissipation by mutual friction. But the fact that the argument of Section III is based on the local induction approximation ensures that this component is automatically excluded from any contribution to the dissipation (although the existence of the large-scale motion may influence the value of \(c_2 \)).

We conclude then that the dissipation in the superfluid component in quasi-classical quantum turbulence may still given correctly by the theory of Section III, subject, of course, to the assumption implicit in the work of Boué et al that turbulence in the superfluid component can be regarded as quasi-classical on all scales larger than ℓ.

D. The total energy dissipation

To obtain the total energy dissipation we must add the energy dissipated in the normal fluid. We note that at small wave numbers, within the inertial range, where there is complete coupling between the two fluids, the energy fluxes in the normal and superfluid components must be given respectively by \(\epsilon_n = (\rho_n / \rho) \epsilon \) and \(\epsilon_s = (\rho_s / \rho) \epsilon \), where \(\epsilon \) is the total energy flux. It follows that the effective kinematic viscosity \(\nu' \), describing the total dissipation, is given by

\[
\frac{\nu'}{\kappa} = \frac{16\pi^2}{\alpha^2} \left[\ln \left(\frac{\ell}{\xi_0} \right) \right]^2 \frac{\chi_2}{8\pi^2} \ln \frac{\ell}{\xi_0} \tag{16}
\]

We emphasize that, as the case with \(\nu'_c \), there is a strong dependence on the parameter \(c_2 \), to which we shall return.

E. Comparison with experiment

In principle Eq.(16) serves to predict both the value of \(\nu' \) and the relation between \(\nu' \) and \(\chi_2 \) (or \(\nu'_c \)). The latest experimental data displayed in Figs. 3 and 11 are, within large experimental errors, more or less consistent with the predicted relation between \(\nu' \) and \(\chi_2 \). However, such agreement has in practice little real significance, because all three dissipative coefficients depend on the parameter \(c_2 \), the precise value of which depends on the details of the flow concerned. Strictly speaking, our demonstration that \(c_2 \) depends on these details has been established by simulations that relate only to particular flows in which the normal fluid is not turbulent, and for which the density of vortex line is small. These flows rarely correspond
to reality, especially when we are dealing with flows at high velocities that involve turbulence in both fluids and high densities of vortex line. Although the development of simulations that relate to these more general conditions has started, we can be fairly certain that full development will take many years. In the meantime we must assume that the dependence of c_2 on the details of the flow is quite general. The consequences are particularly serious for the value of ν', since the flows to which ν' is applicable are as yet the least accessible to realistic simulation.

In comparing experiment and theory relating to quasi-classical quantum turbulence we must also recognize, as we have already emphasized, that the theory is based on the questionable assumption made by Boué et al that the turbulence in the superfluid component behaves classically (in effect that the discrete vortex structure is unimportant) even when the length scale is comparable with ℓ. Perhaps fully classical behaviour may not be required, but at least there must still be something equivalent to a Richardson cascade, with "eddies" that have lifetimes sufficiently small that they are not damped significantly by mutual friction with a stationary normal fluid. We guess that justification of this assumption can come only from suitable numerical simulations. It is our plan to attempt such simulations in the near future.

VII. SUMMARY AND CONCLUSIONS

We have summarised what we know from experiment about dissipation in quantum turbulence in superfluid 4He above 1K, the dissipation being described by either the parameter χ_2, applicable to turbulence existing in the superfluid component only on scales comparable with the spacing between the quantized vortex lines ("random tangles"), or the effective kinematic viscosity ν' applicable to quasi-classical quantum turbulence, such as that generated by flow through a grid. Theoretical predictions for these two parameters are discussed, and it is argued that both depend on the dissipative effects of mutual friction, which are in turn dependent on the dimensionless parameter c_2 that relates the mean square curvature of the vortices to their mean square separation. This parameter can in principle be obtained from simulations, but it is argued that simulations that are sufficiently realistic are for the most part not yet practicable. To this extent our understanding of dissipation in quantum turbulence in 4He above 1K remains incomplete.

We have also drawn attention to the need to investigate more carefully than hitherto the extent to which turbulence in the superfluid component can be treated classically on length scales larger than, but comparable with, the spacing between the vortex lines.

ACKNOWLEDGMENTS

J.G. and W.G. acknowledge the support from the National Science Foundation under Grant No. DMR-1507386. The experimental part of the work was conducted at the National High Magnetic Field Laboratory, which is supported by NSF Grant No. DMR-1644779 and the state of Florida. M.T. was supported by JSPS KAKENHI Grant No. 17K05548 and MEXT KAKENHI "Fluctuation and Structure" Grant No.16H00807. S.Y. was supported by Grant-in-Aid for JSPS Fellow Grant No. JP16J10973.