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Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended
Hubbard model are used to study the stability and dynamics of d-wave pairing when a near neighbor
Coulomb repulsion V is present in addition to the on-site Coulomb repulsion U . We find that d-wave
pairing and the superconducting transition temperature Tc are only weakly suppressed as long as V
does not exceed U/2. This stability is traced to the strongly retarded nature of pairing that allows
the d-wave pairs to minimize the repulsive effect of V . When V approaches U/2, large momentum
charge fluctuations are found to become important and to give rise to a more rapid suppression of
d-wave pairing and Tc than for smaller V .

In conventional superconductors, the retardation of
the electron-phonon pairing interaction is essential to
overcome the Coulomb repulsion between electrons and
to give a net attractive interaction1. In strongly
correlated superconductors, such as the cuprates, heavy
fermion or iron-based materials, in contrast, it is a sign-
change in the pair wave function that allows the Cooper
pairs to minimize the repulsive effect of the strong local
Coulomb repulsion2. For example, the dx2−y2 -wave pair
state in the cuprates completely avoids the local Coulomb
repulsion because of the sign change under 90 degree
rotation and the related lack of a local amplitude.

However, in realistic systems, the Coulomb repulsion
is hardly screened to a completely local interaction,
but has a short-ranged non-local contribution. For the
cuprates, Sénéchal et al.3 and Reymbaut et al.4 estimated
a near neighbor Coulomb repulsion of ∼ 400 meV. If
the Cooper pairs are made up of electrons sitting on
neighboring sites, such as in the dx2−y2-wave state, this
non-local repulsion is expected to have detrimental effects
on the pairing. This raises the important question of
how much the superconducting transition temperature
Tc will be reduced by a non-local Coulomb repulsion
and whether retardation effects, similar to the case of
electron-phonon mediated pairing, can play a role in
stabilizing superconductivity in the presence of a non-
local repulsion.

Here we examine these questions in a 2D extended
Hubbard model. Its Hamiltonian

H =− t
∑
〈ij〉,σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓

+ V
∑
〈ij〉,σσ′

niσnjσ′ (1)

has the usual near neighbor hopping t, on-site Coulomb
repulsion U and an additional near neighbor Coulomb
repulsion V . The question of whether the standard
Hubbard model for V = 0 has a superconducting
ground state or not remains open, and various numerical
techniques have been used to address this question.

While quantum cluster approximations5,6 generally find
a superconducting instabilty at finite temperatures5,7–9,
other techniques such as density matrix renormalization
group10 or determinantal quantum Monte Carlo11

find inhomogeneous states with striped charge and/or
magnetic order (for recent results see Refs.12,13 and
references therein).

Nevertheless, various studies have explored the effect
of a finite V interaction on a possible superconducting
instability. Weak coupling studies14,15 for U � W
of the model in Eq. (1), where W = 8 is the
bandwidth, have found that d-wave pairing and Tc
are generally suppressed by V , but superconductivity
survives provided that V is not larger than ∼ U2/W .
Variational Monte Carlo calculations with an additional
near neighbor exchange interaction J have found16 that
the on-site U effectively enhances the d-wave pairing
interaction J , while suppressing the opposing effects of V ,
so that for U = 10, d-wave pairing is preserved up to V =
4J . Density matrix renormalization group studies of a
striped t−J−V model, the strong coupling U �W limit
of Eq. (1), have demonstrated that a non-local V can even
lead to an enhancement of superconducting pair-field
correlations by inducing transverse stripe fluctuations17.
In recent work using cellular dynamical mean field theory
(CDMFT)3, Sénéchal et al. found that d-wave pairing at
zero temperature is preserved at strong coupling even
for V � J as long as V . U/2. An extension of
this work to finite temperatures4 found that at weak
doping a finite V can even lead to an increase in Tc,
while at large doping V reduces Tc. Based on a detailed
analysis of the frequency dependence of the gap function,
the authors argued that V gives rise to a low frequency
pairing contribution through an increase in the effective
exchange interaction J = 4t2/(U − V ), while at high
frequencies, V suppresses pairing. These studies thus
concluded that retardation plays an important role.

Here we use a similar cluster dynamical mean
field treatment to examine the V -dependence of Tc
and the dynamics of the pairing interaction in this
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model. While the previous CDMFT calculations were
carried out inside the d-wave superconducting phase of
model (1), our work directly examines the dynamics
of the pairing interaction in the normal state, and
thus provides new and complementary insight. In
particular, we use the dynamical cluster approximation
(DCA)18,19 with a continuous time auxilary field (CT-
AUX) quantum Monte Carlo (QMC) cluster solver20 to
perform numerical calculations of the model in Eq. (1).

The DCA maps the bulk lattice problem onto a
finite size cluster of size Nc and uses coarse-graining to
retain the remaining degrees of freedom as a mean-field
that is coupled to the cluster degrees of freedom18,19.
The intra-cluster contribution of the interaction V is
treated exactly with QMC, while the inter-cluster terms
may be treated with an additional bosonic dynamic
mean-field8,21 similar to the extended dynamical mean-
field theory22. Here, instead, we use a Hartree
approximation3, which reduces to a shift in the chemical
potential in the absence of charge order4. Due to the
neglect of dynamic inter-cluster effects of the interaction
V , we do not coarse-grain V despite its non-locality.

For the small 2×2 cluster we use, the sign problem of
the underlying CT-AUX QMC solver20,23 is manageable
up to V ∼ U/2 down to temperatures T ∼ Tc. This
cluster is too small to allow for the long-range (striped)
magnetic and charge states that have been found in
recent numerical calculations of the V = 0 model12. It
does, however, allow us to study the effects of V on
superconducting order for a large region in parameter
space. We also note that the pairing dynamics, the
issue of primary focus of this work, is expected to be
well described already at the level of the 2×2 cluster,
since temporal fluctuations are fully retained through
the inclusion of the dynamic mean field. Larger clusters
were recently considered in a DCA study of the half-filled
model, which does not have a sign problem24. We use
t = 1 as the unit of energy and set U = 7.

In order to calculate Tc, we solve the Bethe-Salpeter
equation (BSE) in the normal state25

− T

Nc

∑
K′,ωn′

Γpp(K, ωn,K
′, ωn′)χ̄pp0 (K′, ωn′)φα(K′, ωn′) =

= λα(T )φα(K, ωn) . (2)

Here Γpp(K, ωn,K
′, ωn′) is the irreducible particle-

particle vertex of the effective cluster problem with the
cluster momenta K and Matsubara frequencies ωn =
(2n + 1)πT . The coarse-grained bare particle-particle
susceptibility

χ̄pp0 (K, ωn) =
Nc
N

∑
k′

G(K + k′, ωn)G(−K− k′,−ωn)

(3)

is calculated from the single-particle Green’s function
G(k, ωn) = [iωn + µ − εk − Σ(K, ωn)]−1 with µ
the chemical potential, εk = −2t(cos kx + cos ky)

the dispersion and Σ(K, ωn) the cluster self-energy.
Information about the bulk lattice is retained through
the k′ sum26, which runs over the N/Nc momenta within
a square patch with kx/y ∈ [−π/2, π/2[. At T = Tc
the leading eigenvalue of Eq. (2) becomes 1 and the
symmetry of the superconducting state is given by the
momentum and frequency dependence of φ(K, ωn). For
all values of V we consider, we find that the eigenvector
corresponding to the leading eigenvalue λd has dx2−y2 -
wave cosKx − cosKy structure.

Fig. 1 (a) shows the temperature dependence of the
leading d-wave eigenvalue λd(T ) of the BSE (2) for
different magnitudes of the nearest-neighbor repulsion V
for a filling of 〈n〉 = 0.9. As expected, the finite V leads
to a reduction of λd(T ) showing that d-wave pairing is
weakened in the presence of a nearest-neighbor repulsion.
Panel (b) in Fig. 1 shows that similar behavior is observed
for all the fillings we have studied. However, one sees that
the suppression of λd with V becomes more rapid as the
system is doped away from half-filling.

From the data in Fig. 1a and λd(Tc) = 1, one can
extract the V -dependence of Tc shown in Fig. 1c for
a filling of 〈n〉 = 0.9. For V = 3, where the QMC
sign problem inhibits calculations down to Tc, we use a
polynomial fit of λd(T ) to extract Tc from extrapolating
to λd(Tc) = 1. As one sees from Fig. 1 (c), the d-wave Tc
is almost unchanged for V = 1 and only slightly reduced
by about 15% for V = 2. The reduction becomes stronger
for V = 3 when V approaches U/2. This robustness
of the d-wave pairing against a finite nearest-neighbor
repulsion is consistent with previous studies3,4,14.

In order to understand this resilience of d-wave pairing
with respect to the nearest neighbor Coulomb repulsion,
we examine the dynamics of the pairing interaction
Γpp(K, ωn,K

′, ωn′) and the leading d-wave eigenvector
φd(K, ωn). Fig. 2 shows a plot of the frequency
dependence of the d-wave projected pairing interaction

Γd(ωm = ωn−ωn′) =

∑
K,K′

gd(K)Γpp(K, iωn,K
′, ωn′)gd(K

′)∑
K

g2d(K)

(4)
for 〈n〉 = 0.9. Here gd(K) = cosKx − cosKy and
we have set ωn′ = πT and T = 0.1. For V =
0, Γd(ωm) is negative (attractive) for all frequencies
and falls to zero at large ωn. For finite V , Γd(ωm)
remains attractive at low frequencies, but then turns
positive (repulsive) at higher frequencies. This reflects
the fact that at high frequencies Γpp(K, ωn,K

′, ωn′) ∼
V (K−K′), where V (Q) is the Fourier-transform of the
nearest neighbor interaction V . For the 2×2 cluster
we have used here, one obtains

∑
K,K′ gd(K)V (K −

K′)gd(K
′)/

∑
K g2d(K) = 4V consistent with the results

in Fig. 2. The dynamics of Γd(ωm) is reminiscent of
the dynamics of the conventional electron-phonon pairing
interaction27, which is attractive at low frequencies due
to the effective electron-phonon attraction, and repulsive
at high frequencies due to the Coulomb repulsion.
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FIG. 1: (Color online) (a) Temperature dependence of the
leading (dx2−y2 -wave) eigenvalue λd(T ) of the Bethe-Salpeter
equation in the particle-particle channel, Eq. (2) for the
extended Hubbard model in Eq. (1) with U = 7 and 〈n〉 =
0.9 for different magnitudes of the near neighbor Coulomb
repulsion V . (b) d-wave eigenvalue λd at fixed temperature
T = 0.1 as a function of V for different fillings 〈n〉. (c)
d-wave superconducting transition temperature Tc extracted
from λd(Tc) = 1 as a function of V . d-wave pairing is only
weakly suppressed by the interaction V as long as V . U/2.

One also sees that Γd(ωm) becomes less attractive at
low frequencies with increasing V . This reduction
even exceeds the frequency independent 4V repulsive
contribution, indicating that there is another repulsive
and dynamic contribution that further weakens the
d-wave pairing interaction. We come back to this
point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected
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FIG. 2: (Color online) The d-wave projected irreducible
particle-particle vertex Γd(ωm) for different values of V for
〈n〉 = 0.9. For finite V , Γd is attractive at low frequency but
then turns repulsive at higher frequency where it approaches
4V .

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

iωn

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Φ
d(
iω

n
)

V=0.0

V=1.0

V=2.0

V=3.0

FIG. 3: (Color online) The frequency dependence of the
leading d-wave eigenvector φd(K, ωn) of the Bethe-Salpeter
equation (2) for K = (π, 0) and T/t = 0.1 for different
values of V and 〈n〉 = 0.9. The sign change in φd(K, ωn)
as a function of frequency for finite V minimizes the repulsive
effect of V .

in the frequency dependence of the d-wave eigenvector
φd(K, ωn). This quantity is plotted in Fig. 3 for
K = (π, 0) and T = 0.1 for different values of V
and 〈n〉 = 0.9. For V = 0, φd((π, 0), ωn) falls to
zero on a characteristic frequency scale. As previously
found in Refs.25,28, this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is
several times J = 4t2/U . For finite V , the eigenvector
changes sign and becomes negative at higher frequencies.
This sign change mirrors the sign change in Γd(ωn).
Just as φd(K, ωn) changes sign in K-space reflecting
the repulsive nature of the pairing interaction at large
momentum transfer2,25, φd(K, ωn) also changes sign in
frequency to adapt to the repulsive tail of the pairing
interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation
is important in preserving the attractive nature of the
pairing interaction in the presence of V .
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FIG. 4: (Color online) Frequency dependence of the spin and
charge susceptibilities, χs(iωm = 0) in (a) and χc(iωm = 0)
in (b), respectively, for Q = (π, π) and T = 0.1 as a function
of V for different values of the filling 〈n〉. (c) Local magnetic

moment µ =
√
〈(ni↑ − ni↓)2〉 for T = 0.1 as a function of

V for different 〈n〉. With increasing V , charge fluctuations
become stronger while spin fluctuations are weakened through
a reduction of the local magnetic moment.

We have also calculated the zero frequency cluster spin
(s) and charge (c) susceptibilities

χs/c(Q, ωm = 0) =
1

2Nc

∑
ij

eiQ·(Ri−Rj)

×
∫ β

0

dτ〈[ni↑(τ)∓ ni↓(τ)][nj↑(0)∓ nj↓(0)]〉 . (5)

The V -dependence of χs(Q, 0) and χc(Q, 0) is shown in
Figs. 4 (a) and (b), respectively, for Q = (π, π) and

different 〈n〉. As V increases, χs(Q, 0) decreases, while
χc(Q, 0) increases. The rise in the charge susceptibility
reflects the increasing tendency of the system to form a
(π, π) charge density wave ordered state14. While this
rise is consistently observed for all the fillings we have
studied, it does become more pronounced as the system
is doped away from half-filling.

The V -dependence of the spin susceptibility is more
difficult to understand. Based on a strong-coupling
picture, Reymbout et al.4 have argued that a finite V
increases the exchange coupling J = 4t2/(U − V ) and
thus the magnetic pairing mechanism. Our results for
χs((π, π), 0), however, are not in line with this picture,
since one would expect χs((π, π), 0) to increase with J
and thus V . Rather, the decrease we observe can be
understood from the increase in the charge fluctuations.
As shown in Fig. 4 (c), these give rise to a decrease in

the local magnetic moment µi =
√
〈(ni↑ − ni↓)2〉, which

leads to a suppression of the spin fluctuations.

The destructive effects of the increasing charge
fluctuations are thus two-fold: As shown previously,
d-wave pairing in the Hubbard model is mediated by
a repulsive (positive) pairing interaction in momentum
space that increases with momentum transfer and
which reflects the momentum structure and dynamics
of the spin susceptibility25,28. Since charge fluctuations
contribute negatively to Γpp(K, ωn,K

′, ωn′)25, large
momentum charge fluctuations weaken the d-wave
pairing interaction. In addition, through their
suppression of the local magnetic moment, they further
weaken the large momentum spin-fluctuations as seen in
Fig. 4 (a). Moreover, the fact that the charge fluctuations
increase in strength with V more rapidly when the doping
increases, as seen in Fig. 4b, explains that the destructive
effect of V on the d-wave pairing strength becomes more
pronounced as the doping increases, as seen in Fig. 1 (b).

To summarize, we have used dynamic cluster quantum
Monte Carlo calculations of an extended Hubbard model
to study d-wave superconductivity when a near neighbor
Coulomb repulsion V is present in addition to the on-site
Coulomb repulsion U . Consistent with previous studies,
we find that d-wave pairing and Tc are only weakly
suppressed by V and remain stable as long as V does not
exceed U/2. The d-wave pairing interaction is attractive
at low frequencies and repulsive at high frequencies due
to the repulsive effect of V on d-wave pairing. Reflecting
this sign change, the d-wave eigenfunction of the particle-
particle Bethe-Salpeter equation, φd(K, ωn), also changes
sign as a function of frequency, similar to the case
of electron-phonon mediated pairing, thus reducing the
repulsive effect of the Coulomb interaction V . This
demonstrates that retardation plays an important role in
stabilizing d-wave pairing in the presence of V . A further
analysis of the spin and charge susceptibilities shows
that (π, π) charge-fluctuations become strong when V
approaches U/2. This leads to a more rapid suppression
of d-wave pairing and Tc through both a reduction of the
(π, π) spin fluctuations and a direct negative contribution
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to the d-wave pairing interaction.
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