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NaOsO3 undergoes a metal-insulator transition (MIT) at 410 K, concomitant with the onset of
antiferromagnetic order. The excitation spectra have been investigated through the MIT by resonant
inelastic x-ray scattering (RIXS) at the Os L3 edge. Low resolution (∆E ∼ 300 meV) measurements
over a wide range of energies reveal that local electronic excitations do not change appreciably
through the MIT. This is consistent with a picture in which structural distortions do not drive the
MIT. In contrast, high resolution (∆E ∼ 56 meV) measurements show that the well-defined, low
energy magnons in the insulating state weaken and dampen upon approaching the metallic state.
Concomitantly, a broad continuum of excitations develops which is well described by the magnetic
fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the
magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results
provide unprecedented insight into the nature of the MIT in NaOsO3. In particular, the presence
of weak correlations in the paramagnetic phase implies a degree of departure from the ideal Slater
limit.

PACS numbers: 71.30.+h, 75.25.-j

Competing interactions are a fundamental driving
force governing the electronic and magnetic properties
of transition metal oxides (TMOs). The metal-insulator
transition (MIT) is a prime example of a phenomenon
which is driven by this competition, and consequently
remains a source of significant experimental and theoret-
ical interest.1–5 In 3d TMOs, the presence of a MIT is
governed primarily by an effective interaction strength
U/t, where U represents inter-electronic Coulomb repul-
sion, and t is inter-site hopping. This corresponds to the
well-studied Mott-Hubbard paradigm, where MITs can
be driven by bandwidth or band-filling control.

Yet in 5d TMOs, the more delocalized valence orbitals,
along with strong spin-orbit coupling (SOC), gives rise
to new phenomenology. For example, SOC in 5d5 iri-
dates affects the ground state to such an extent that
even a moderate U is sufficient to open up a Mott-like
insulating gap.6,7 Furthermore, a number of MITs have
been observed which are intimately entwined with the
onset of long-ranged, commensurate antiferromagnetic
order. Notably these MITs do not appear to be asso-
ciated with any spontaneous structural symmetry break-
ing, placing them outside of the aforementioned Mott-

Hubbard paradigm. Examples include some of the 5d5

pyrochlore iridates R2Ir2O7 (R = Ln3+),8,9 plus the 5d3

osmates Cd2Os2O7,
10–13 and NaOsO3. Various mecha-

nisms have been proposed to describe these MITs, no-
tably the Lifshitz and Slater mechanisms.

A Lifshitz transition involves a change of topology of
the Fermi surface at TMI, and is an example of a quan-
tum phase transition (QPT) at T = 0. At finite temper-
atures, the theoretically expected singularities in ther-
modynamic parameters – such as the thermal expansion
coefficient – become washed out, and the QPT is in fact a
crossover between the ‘ordered’ and ‘disordered’ phases.
Meanwhile in a Slater insulator, the onset of antiferro-
magnetic order itself drives the onset of an insulating
gap below the Néel temperature. In the most general
sense, insulating behavior arises from an ordered mag-
netic exchange field governed by mean-field type interac-
tions. True Slater insulating behavior – as defined in the
original theoretical works – is limited to systems with
a half-filled t2g manifold.14,15 A number of works have
proposed that NaOsO3 is a rare example of a Slater in-
sulator in three dimensions (Fig. 1a).16–20 Together with
significant spin-phonon coupling,21 one observes an un-
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FIG. 1. Summary of magnetic and electronic behavior in
NaOsO3 as a function of temperature. (a): Charge gap ex-
tracted from resistivity data (dotted line),16 optical gap (pur-
ple squares),20, and integrated intensity of (0, 1, 1) magnetic
Bragg peak obtained from powder neutron diffraction (green
triangles).17 The MIT and onset of antiferromagnetic order
appear to be intimately linked. (b): Resistivity ρ versus
T 2 (purple squares), and inverse susceptibility χ−1 versus T
(green diamonds). Overlaid are fits to the theoretical expres-
sions for the resistivity of a Fermi liquid (solid line), and a
Curie-Weiss paramagnet (dashed line). Data and fitted pa-
rameters taken from Ref. 16.

precedented connection between the magnetic, electronic,
structural, and phonon degrees of freedom in NaOsO3.

There are, however, a number of outstanding questions
with regards to the true nature of the MIT in NaOsO3.
Optical conductivity measurements reveal a continuous
opening of the electronic gap with decreasing tempera-
ture {∆g(0) = 102(3) meV}, and an MIT in which elec-
tronic correlations play a limited role. This is consistent
with a Slater picture in which interactions are mean-field
like.20 Meanwhile previous RIXS measurements showed
well-defined and strongly gapped (∼ 50 meV) dispersive
spin-wave excitations at 300 K.22 This was found to be
consistent with an anisotropic nearest-neighbour Heisen-
berg picture for the magnetic Hamiltonian, and is sugges-
tive of localized magnetic moments. Furthermore recent
density functional theory (DFT) calculations23 suggest
that the Fermi surface may be reconstructed at the MIT
by magnetic fluctuations of itinerant Os moments; in a
so-called spin-driven Lifshitz MIT. The question remains
whether either the spin or electronic excitations remain
coherent through the MIT, and if there is any evidence of
coupling to any of the other relevant degrees of freedom
present in the system.

In this manuscript, we establish that there is a con-
tinuous progression from itinerant to localized behavior
through the MIT in NaOsO3. This is revealed by a signif-
icant renormalization of the magnetic quasi-particle spec-
tral weight over large ranges of momentum and energy
transfer. In particular, the presence of correlations in
the metallic state immediately leads to a deviation from

mean-field behavior, and hence, true Slater phenomenol-
ogy.
Our experiments relied on exploiting the unique ability

of RIXS to provide momentum-resolved sensitivity to the
excitations of the orbital, electronic and magnetic degrees
of freedom. By providing data on an experimental test
case, in which an effective interaction strength can be
tuned simply by varying the temperature, our work in
turn helps extend the utility of RIXS, which has hitherto
been best understood in the localized limit.24–26

I. EXPERIMENTAL SETUP AND SAMPLE
GEOMETRY

RIXS measurements were performed at the Os L3

edge (E = 10.871 keV) on the ID20 spectrometer at the
ESRF, Grenoble. Preliminary measurements were per-
formed at 9-ID-B, Advanced Photon Source. For high
resolution measurements a Si (6, 6, 4) channel-cut sec-
ondary monochromator was used to select the incident
energy. A Si (6, 6, 4) diced spherical analyser (2 m Row-
land circle radius, 60 mm diameter) was used to reflect
the scattered photons towards a Maxipix CCD detector
(pixel size 55 µm) and discriminate the scattered pho-
ton energy. The total energy resolution was determined
to be ∆E = 56 meV, based on diffuse scattering from
a polypropylene-based adhesive tape (Fig. A1). For low
resolution measurements, a similar setup was used, but
with a Si (3, 1, 1) channel-cut secondary monochromator
instead. The total energy resolution in this case was ∆E
≈ 300 meV.
A single crystal of NaOsO3 (approximate dimensions

0.3×0.3×0.3 mm3) was oriented such that the (1, 0, 1)
direction was normal to the sample surface (Fig. 2). The
sample was mounted with silver paint and placed in a
custom-made heater setup filled with helium exchange
gas. Temperature stability was better than ±0.5 K. The
scattering plane and incident photon polarization were
both horizontal (π–incident polarization) with the inci-
dent beam focussed to a size of 20×10 µm2 (H×V) at the
sample position.

II. TEMPERATURE DEPENDENCE OF
ORBITAL EXCITATIONS

We start with the orbital excitations as a function of
temperature. A low resolution setup (∆E = 300 meV)
was used in order to examine the orbital excitations out
to large energy loss (∼ 8 eV). Selected spectra are dis-
played in Fig. 3a. Just as in Ref. 22, four peaks are
evident in the RIXS spectra. The peak centered at zero
energy loss comprises the elastic line and other low en-
ergy features such as phonons, magnons etc. The three
remaining peaks refer to excitations either: within the t2g
manifold (α), from t32g → t22geg states (β), or t32g → t2ge

2
g

and ligand-to-metal charge transfer excitations (γ). This
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FIG. 2. (a): Schematic of experimental geometry. Magnetic
moments lie along the c-axis, the b-axis lies approximately
within the scattering plane. (b): View for θ = 0 parallel to
the direction of the incident beam. (c): Top-down view. In
the experimental geometry θ ≈ 60◦. (d): Conventional or-
thorhombic unit cell for the Pnma space group (gray dashed)
overlaid with the Brillouin zone (solid purple). Highlighted
are the high symmetry points of the Brillouin zone, which are
listed in the neighbouring table.

assignment follows the previous RIXS measurements on
NaOsO3 and Cd2Os2O7,

22,27 as well as quantum chem-
istry calculations.28

At first inspection, the intensity and positions of peaks
α–γ appear to be essentially temperature independent.
Moreover, the individual features are much broader than
the instrumental resolution, indicative of a system with
significant non-local character. High resolution (∆E =
55 meV) measurements over a limited range show similar
behavior (Fig. 3b); peak α remains broad and relatively
featureless. A degree of fine structure can be ascertained
around 1 eV – especially at higher temperature – but
unfortunately the statistical quality of the data is insuf-
ficient to draw firm conclusions. The noticeable low en-
ergy (< 0.5 eV) behavior will be addressed later in this
manuscript. Contrast the RIXS spectra presented here
with the isoelectronic Ca3LiOsO6 and Ba2YOsO6.

29 In
these materials, OsO6 octahedra are separated from each
other by Li (Y). The excitations are thus more localized
in real space, with a correspondingly longer lifetime and
narrower bandwidth.

Calculation of microscopic parameters

It is possible to go further and obtain quantitative con-
clusions from the data using a ligand field model. The
magnitudes of Hund’s coupling JH and the one-electron
spin-orbit coupling parameter ζ can be estimated from
the energies of the electronic transitions in the RIXS
spectra. The starting point is a single Os5+ cation octa-

hedrally coordinated to six O2− ions, assuming no distor-
tion away from ideal octahedral symmetry. For NaOsO3

this is not strictly true, however the distortion is suffi-
ciently small (Dτ/Dq ≈ −0.01, Ds,Dt → 0 within un-
certainty) that this approximation holds within experi-
mental resolution.17,30 Assuming a spherically symmet-
ric Coulomb interaction, and t2g electronic wavefunctions
obtained from crystal field theory which have pure d-
character (i.e. no hybridisation), then the Hund’s cou-
pling JH can be expressed in terms of the Racah param-
eters: JH = 3B + C.31

Within a simple LS-coupling model, which neglects
the effects of weak octahedral distortion, peak α is com-
prised of two overlapping excitations centred at 3JH and
5JH (Fig. 4a). Hence we attempted to quantify the mi-
croscopic parameters to first order by fitting the low res-
olution (∆E = 300 meV) RIXS data to a sum of five
Gaussians. We find that JH = 0.24(1) eV is temperature
independent within experimental uncertainty (Fig. 3c).
Fitting high resolution (∆E = 55 meV) data with the
same model gives a similar result: JH = 0.26(2) eV.
Both values for JH compare well with estimates obtained
from other 5d3 materials.27,29

Discussion

The assumption that the orbital excitations can be de-
scribed in terms of four Gaussians is incomplete. Assum-
ing ideal octahedral symmetry, LS-coupling, and zero
spin-orbit coupling, then peak α is indeed comprised of
two overlapping excitations at 3JH and 5JH . However
peak β is in fact made up of ten overlapping multiplets
(2A1,

2A2, 2
2T1, 2

2T2, 2
2E, 4T1,

4T2), with their relative
energies dictated primarily by B and C.32 Yet this is still
an oversimplification of the physical picture in NaOsO3.
For the realistic case of non-zero spin-orbit coupling, and
weak trigonal distortion, then peakα(β) should comprise
8(24) overlapping excitations, each with a finite width
(Figure 4). Clearly it is not possible to resolve – and fit
– the individual excitations with RIXS, which explains
our choice of a simple model to parametrize the data.
This in turn explains the observed weak temperature

dependence of peak β (Fig. 3d). In a simple crystal field
theory, 10Dq ∝ a−5, where a is the metal-ligand bond
distance. The Os-O bond distance remains practically
constant as a function of temperature,17 therefore 10Dq
should also remain constant. Meanwhile B and C are
atomic parameters within a ligand field theory. Their
magnitude is dictated by the identity and oxidation state
of the cation, and the degree of covalence within the
metal-ligand bond. These factors should nominally have
minimal dependence on temperature. The intensity and
width of the excitations on the other hand are dictated
by the RIXS cross-section, which depends on a wide va-
riety of factors.33 An increase of intensity for the spin-
allowed transitions for instance (dashed lines in Fig. 5a)
would give rise to an apparent downward shift in the en-
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FIG. 3. (a): Orbital excitations as a function of temperature, obtained using a low resolution setup (∆E = 300 meV). The
excitations are practically temperature independent. Solid lines are best fit to LS-coupling model described in the main text.
Shaded peaks show the relative contributions at 10 K. (b): High-resolution RIXS spectra (∆E = 56 meV) obtained as a
function of temperature close to Γ (5.05, 3.05, 4.05). Solid line is best fit to LS-coupling model. (c): Value of Hund’s coupling
JH calculated from fitted peak positions of intra-t2g excitations at 3JH and 5JH (peak A). Filled (open) symbols: low (high)
resolution data. Solid line shows best fit to combined data, with JH = 0.25(1) eV. (d): Fitted energy of peak β as function of
temperature. Solid line is linear fit to the data. Dashed lines reflect the significant uncertainty in this parameter.

ergy of peak β in our simple model. Finally, because
spin-orbit coupling (ζ ∼ 0.3 eV) is of similar magnitude
to the inter-electronic interactions (B,C) in this mate-
rial, one should ideally treat them concurrently within
an intermediate coupling approach. Attempts to do this
quantitatively for NaOsO3 did not to a reliable solution,
primarily due to the intrinsically broad excitations. For
reference, Figure 5b shows a schematic of the respective
energy levels expected in a d3 material for sensible values
of JH and ζ.

To summarize, orbital excitations from the ground
state do not appear to vary significantly through the
MIT. This corroborates the observation that the MIT
is not driven by local structural distortion, which would
manifest in significant variations in the crystal field
parameters Dq, Dτ and Dσ.21 Because these excitations
are intrinsically broad, it proved difficult to extract
numerical estimates of the Hund’s coupling JH , and
spin-orbit coupling ζ, in the same manner as presented
within Ref. 29. Nevertheless, by applying a simple LS-
coupling model with ideal octahedral symmetry, we can
estimate JH = 0.25(1) eV, in good agreement with other
studies on 5d3 materials. We note that it may be possible
to observe electronic excitations from the ground state
via an alternative technique, such as ultraviolet-visible
(UV-vis) absorption spectroscopy. This would provide
much better energy resolution, at the expense of only
being able to measure at the crystallographic zone center.

III. LOW-ENERGY EXCITATIONS USING A
HIGH-RESOLUTION SETUP

We now move to the low-energy excitations below
0.5 eV; the main focus of this paper. High resolution
(∆E = 56 meV) RIXS spectra were collected at three dif-
ferent momentum transfers as a function of temperature:
Γ (4.95, 2.95, 3.95), Γ–Y (5, 2.75, 4), and Y (5, 2.5, 4).
This reflects a progression from the Brillouin zone centre
to the zone boundary (Fig. 2d). The point near Γ was
chosen in order to avoid the weak magnetic Bragg peak at
(5, 3, 4). Four RIXS spectra were collected for each tem-
perature and momentum transfer (30s/pt). These spec-
tra were each normalized to the intensity of the intra-t2g
excitations at 1 eV energy loss, cross-correlated to ac-
count for any temporal shift in the elastic line position,
then averaged. Measurements were repeated at Γ over
a limited temperature and energy range; as the elastic
line was observed to vary significantly with temperature,
partially obscuring the low energy features. We show
later that the inelastic features of the two datasets are
consistent.34

Representative RIXS spectra are plotted in Figs. 6–8a
and Fig. 6b, for temperatures below and above the MIT.
They are also shown with the elastic line and d-d con-
tributions subtracted (Figs. 6c, 7–8b), in order to better
isolate changes to the spectra below 1 eV. The spectra at
300 K are in agreement with that given in Ref. 22, with
a sharp dispersive peak evident at 60–100 meV energy
loss attributable to a single magnon excitation. With
increasing temperature this peak progressively weakens
and broadens. Strikingly, concurrent with the diminish-
ing of the single magnon peak, there is a continuous in-
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FIG. 4. (a): Terms of a t32 configuration in a first (strong
field) approximation, including the effect of Coulomb repul-
sion. Spin-orbit coupling and distortions away from an ideal
octahedral geometry are neglected. The Hund’s coupling JH

is equivalent to 3B + C, where B and C are Racah parame-
ters. The terms 2E and 2T1 are accidentally degenerate. (b):
Electronic fine structure levels obtained when spin-orbit cou-
pling is added as a weak perturbation. Levels are calculated
by decomposition of the direct product Γ × D(3/2), and are
Kramers degenerate. The separation between levels originat-
ing from 2E and 2T1 is exaggerated for clarity. (c): Addition
of a weak trigonal perturbative field to the case presented
in (b). Irreducible representations Γ5,Γ6 are coupled. Note
that the 4A2 ground state is only split (zero field splitting) by
a combination of spin-orbit coupling and trigonal distortion,
and even then third-order perturbations are required.
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FIG. 5. Tanabe-Sugano diagrams for octahedral d3 complexes
calculated within either (a): the LS-coupling limit, or (b): an
intermediate coupling model appropriate for NaOsO3. Trig-
onal distortion has been neglected for simplicity. Pink line
indicates approximate energy levels for NaOsO3. Dashed
lines in (a) indicate spin-allowed (∆S = 0) optical transi-
tions. Both diagrams were calculated using B = 0.035 eV,
C = 4B, JH = 3B + C = 0.245 eV.

crease in intensity between 0.1 and 0.6 eV, whilst there
is no significant change in the intra-t2g excitations.
In order to quantify these observations further, the

data were fitted with Gaussians to represent the elas-
tic line, magnon peak, broad component centred around
300 meV, and the intra-t2g excitations. The fits in the
low energy portion of the RIXS spectra were corrected
to take the Bose factor into account. Prior to fitting, the
model lineshape was convoluted with the experimental
resolution function (Fig. A1). This minimal model for
the lineshape was used in order to reduce the number
of free parameters in the fit, whilst allowing the relevant
features of the data to be captured. The results of these
fits are given in the remaining panels of Figs. 6–8. Fig. 8f
shows that our simple model gives a good description of
the experimental data, with 0.8 ≤ χ2/ν ≤ 1.3 for all
datasets.
Clearly there is a significant variation of the RIXS

spectra through the MIT, as NaOsO3 progresses from
the localized to the itinerant limit. The nature of the
low-energy excitations at 300 K – deep in the antiferro-
magnetic insulating phase – has already been described
in Ref. 22. Later in this manuscript (Section VI), we
perform a more detailed discussion of the temperature
dependence of the RIXS spectra. In the meantime, we ex-
amine the high temperature behavior; which permits an
overview of the interactions towards the itinerant limit,
and motivates the analysis of the temperature depen-
dence.

IV. HIGH-TEMPERATURE BEHAVIOR (450 K)

Bulk measurements are typically the first techniques
used to understand the electronic and magnetic behav-
ior of a particular system as a function of temperature.
NaOsO3 is no exception. Shi et al. found that the high
temperature resistivity ρ appears consistent with the the-
oretical prediction for a Fermi liquid: ρ = ρ0 + AT 2,
where ρ0 is the contribution from impurity scattering.16

Meanwhile the magnetic susceptibility above TN ex-
hibits Curie-Weiss behavior, with the Weiss tempera-
ture ΘW = −1949K indicative of strong antiferromag-
netic interactions. Both parameters are plotted in Fig. 1
as a function of temperature. These observations sug-
gest that the metallic paramagnetic phase in NaOsO3 is
rather conventional in nature.
Various works argue that highly damped spin wave-

like excitations, diffusive modes, or both, contribute to
the broad magnetic excitations observed in many anti-
ferromagnets above TN.

35–37 The simplest picture is that
coherent spin waves, present at low temperature, become
progressively more damped as NaOsO3 enters the param-
agnetic phase. Damping occurs primarily due to magnon-
magnon scattering, however Landau damping may play
a role for itinerant systems. Above TN, these excitations
are overdamped. This picture is sometimes known as a
ballistic model, referencing principles from kinetic theory.
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FIG. 6. Analysis of RIXS spectra collected at Γ. (a,b): Representative RIXS spectra collected in two separate runs, each of
which is normalized to the d-d excitations at 1 eV energy loss. The data from the second run (b) was collected over a limited
range, and exhibits a significantly reduced elastic line intensity compared to the first run (a). Inset in (b) shows the temperature
dependence of the elastic line for both runs. (c): Spectra from first run, with elastic line and d-d contributions subtracted.
Added are the best fit to the data (black solid line), and relative components of the magnon peak (purple) and high-energy
continuum (green). Dashed line superimposed on 450 K plot is best fit to 300 K data for comparison. Yellow bar indicates full
width at half maximum (FWHM) of resolution function. (d–f): Fitted peak intensity (d), energy (e) and intrinsic FWHM (f)
of the two components as a function of temperature. Open symbols: first run. Filled symbols: second run. (g): Summary of
magnon peak FWHM as a function of momentum transfer and temperature. Solid lines in (d)–(g) are guides to the eye.

FIG. 7. Analysis of RIXS spectra collected at Γ–Y . (a): Representative low-energy RIXS spectra, each of which is normalized
to the d-d excitations at 1 eV energy loss (dashed line). (b): Spectra with elastic line and d-d contributions subtracted off.
Added are the best fit to the data (black solid line), and relative components of the magnon peak (purple) and high-energy
continuum (green). Dashed line superimposed on 450 K plot is best fit to 300 K data for comparison. Yellow bar indicates
FWHM of resolution function. (c–e): Fitted peak intensity (c), intrinsic FWHM (d), and energy (e) of the two components as
a function of temperature. Solid lines are guides to the eye. (f): Energy of magnon peak as function of momentum transfer and
temperature. The symbols are the same as part (a). Solid line is best fit to dispersion at 300 K as determined within Ref. 22.
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FIG. 8. Analysis of RIXS spectra collected at Y . (a): Representative low-energy RIXS spectra, each of which is normalised to
the d-d excitations at 1 eV energy loss (dashed line). (b): Spectra with elastic line and d-d contributions subtracted off. Added
are the best fit to the data (black solid line), and relative components of the magnon peak (purple) and high-energy continuum
(green). Dashed line superimposed on 450 K plot is best fit to 300 K data for comparison. (c–e): Fitted peak intensity (c),
intrinsic FWHM (d), and energy (e) of the two components as a function of temperature. Solid lines are guides to the eye. (f):
Values of reduced chi-squared χ2/ν as a function of temperature and momentum transfer. Squares: Γ, triangles: Γ-Y , circles:
Y . Dashed lines mark the boundaries of the 95% confidence limit.

We attempted to fit the data at 450 K (Fig. 9a) using
such a model, with the imaginary part of the dynamic
susceptibility given by:

χ′′(Q, E) ∝ E

[∆2 + c2(Q−QAFM)2 − E2]2 + α2E2
,

(1)
where ∆ is the spin gap, c is the spin wave velocity, and
α is a damping rate.38. As a first approximation, we as-
sumed that the spin wave velocity and spin gap remain
constant with temperature. Note however that both of
these parameters are likely to decrease in magnitude with
increasing temperature, as a consequence of renormaliza-
tion by quantum fluctuations, magnon-magnon interac-
tions, and other effects.39 We were unable to obtain a
satisfactory description of the data with this model, es-
pecially at high energies. This is unsurprising for the
following reason. In our simple picture, α should become
larger as the temperature increases. The maximum of
the spin wave peak shifts to lower energies as a result,
concurrent with the build-up of spectral weight on the
high energy side. Yet the experimental data, if anything,
shows the opposite trend. We therefore considered alter-
native models for the excitations in NaOsO3.
Specifically, we used self-consistent renormalization

(SCR) theory appropriate for a weakly antiferromagnetic
Fermi liquid (WAFL).40 The key assumption in the bal-
listic model is that the paramagnetic state is fully dis-
ordered. Yet even though long-ranged order disappears
at TN, there may be persistent short-ranged antiferro-
magnetic correlations, which are characterized by some
correlation length ξ. These localized clusters of antifer-
romagnetic order are able to diffuse through the crystal
lattice, giving rise to incoherent spin excitations.
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FIG. 9. Paramagnetic spin fluctuations (SF) in NaOsO3 at
450 K. (a): Experimental data collected at various crystal mo-
menta. For clarity the elastic line and high-energy intra-t2g
excitations have been subtracted. (b): Comparison of WAFL
model with experimental data. Filled area indicates param-
agnetic SF calculated using Equation 2, with γ = 0.02 meV−1

and ξ/a0 ∼ 1. Dashed line is a momentum-independent high-
energy contribution.

For simplicity we assume that the correlations are spa-
tially isotropic, which is reasonable given the similar
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magnitude of J1 and J2. Moreover we consider a pseudo-
cubic unit cell, with a lattice constant a0 = 3.80 Å given
by the Os-Os distance. This effectively corresponds to
the Pm3̄m unit cell of an undistorted perovskite. Fol-
lowing the approach of Inosov and Tucker,38,41 the imag-
inary part of the dynamic susceptibility χ

′′

(Q, E) is given
by:

χ
′′

(Q, E) =
χ0ΓE

E2 + Γ2 [1 + ξ2(Q−QAFM)2]
2 . (2)

In this expression the spin relaxation rate Γ is defined
through Γ ≡ a20/γξ

2, where γ denotes the damping coeffi-
cient arising from spin decay into particle-hole excitations
(related to the electronic band structure), and ξ is the
spin-spin correlation length. Furthermore χ0 is the stag-
gered susceptibility at QAFM.42 All of these parameters
are in principle dependent upon temperature. The in-
terplay between the correlation length and damping gov-
erns the characteristic energy of the damped excitations.
For completeness the anti-Stokes (energy gain) process
has also been included; this is a factor of exp (−~ω/kT )
weaker than the equivalent Stokes (energy loss) process.
Note however that the experimental RIXS cross-section
includes a number of additional contributions, which in-
clude momentum-dependent absorption and polarization
effects. In our analysis we replace the equality in Eqn. 2
by a proportionality in order to reflect this phenomeno-
logically.

It proved possible to qualitatively describe the main
features of the experimental data using this minimal
model. Yet quantitative agreement required the use of
a scaling parameter that varied by a factor of two across
the Brillouin zone. This seemed too large to have a
reasonable physical origin. Inclusion of an additional
scattering component improved the quantitative fit to
the data, and negated the use of arbitrary scale fac-
tors (Fig. 9b). This component was constrained to be
momentum-independent, in order to facilitate conver-
gence. We obtained the best global fit to the data using
γ ∼ 0.02 meV−1 and ξ/a0 ∼ 1 .43 The magnitude of γ is
similar to that found in overdoped Ba(Fe1-xCox)2As2.

38

Moreover, the fact that ξ is on the order of the Os-Os
separation implies that the spin fluctuations at 450 K
are short-ranged, and that the system is close to the hy-
drodynamic limit.

Thus we conclude that the low-energy excitations at
high temperature are consistent with paramagnetic spin
fluctuations in a weakly antiferromagnetic Fermi liquid.
Such behavior is characteristic of a system close to the
itinerant limit, and similarities can be made with mag-
netic fluctuations in overdoped pnictides. The nature of
the additional scattering component centred at 0.3 eV
is unclear from the experimental data at 450 K. This is
because RIXS is sensitive to both electronic and mag-
netic interactions, and it is difficult to distinguish them
a priori without further information. Possible origins are
discussed in the following section.

V. NATURE OF HIGH-ENERGY CONTINUUM

We considered two likely mechanisms for the forma-
tion of this continuum: two-magnon excitations (Section
VA), and electronic interband particle-hole excitations
(Section VB). These shall be addressed in turn.

A. Two magnon scattering

Consider the simple case of an isotropic 2D Heisenberg
antiferromagnet on a square lattice. For a given wavevec-
tor, the two magnon continuum extends from the energy
of the single magnon, up to twice the zone boundary
energy. Notably the spectral weight is concentrated at
low energy around the antiferromagnetic Bragg positions
at (π, π), since the single magnon intensity diverges at
(π, π). Inclusion of anisotropy in the Hamiltonian breaks
the rotational degeneracy in the ground state; the sin-
gle magnon dispersion develops a gap, and the intensity
no longer diverges at (π, π). The two-magnon contin-
uum correspondingly no longer has its lower limit at the
one-magnon energy, but also develops a gap. Moreover
there is a partial redistribution of spectral weight from
the magnetic Brillouin zone centre to the rest of the zone.
In three dimensions the situation is the same, however the
scattering phase space is that much greater. This means
that spectral weight tends to be concentrated at the zone
boundaries, and hence is considerably less than disper-
sive than the 1D and 2D cases. The two-magnon contin-
uum is a purely quantum effect, and the corresponding
dynamic structure factor is typically much smaller than
that of the single magnon.44

In a semiclassical picture, single magnons are polarized
perpendicular to the magnetic moment direction. Mean-
while the two-magnon excitations are polarized longitu-
dinally to the moment direction. This manifests as dif-
ferences in the dynamical correlation function Sαα(Q, ω),
which is defined as

Sαα(Q, ω) =
1

2π~N

∑

jj′

eiQ(Rj−Rj′)

×
∫ ∞

−∞

〈Sα
j′ (0)S

α
j (t)〉 e−iωt dt, (3)

where α indexes the Cartesian direction (x, y, z) of the
spin component, N is the total number of spins, and
the sum runs over all sites j and j′ in the lattice. Sin-
gle magnons have nonzero Sxx(Q, ω) and Syy(Q, ω),
whereas the two magnon contribution has non-zero
Szz(Q, ω). It is well known that the partial differen-
tial neutron scattering cross-section is proportional to
Sαα(Q, ω).45 Various theoretical works have shown that
the RIXS magnetic cross-section resembles S(Q, ω), at
least in the case of the single-band Hubbard model at
various filling levels.24,25 This, at least partly, justifies
the use of the following approach to estimate the one-
and two-magnon scattering cross-sections as a function
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of energy and momentum transfer. The authors note,
however, that the agreement between the RIXS cross-
section and S(Q, ω) may not be as complete in the itin-
erant limit. Calculation of the RIXS cross-section is nu-
merically involved and remains a subject for future study.

Calculation of single- and two-magnon scattering
cross-sections

The single- and two-magnon scattering cross-sections
were evaluated numerically for NaOsO3 using a weighted
Monte Carlo method. This approach is similar to
that used for the one-dimensional KCuF3,

46 as well as
for the two-dimensional compounds, Cs2CuF4,

47 and
Cu(DCOO)2 · 4H2O.48 We outline the approach used
here; further details can be found in Appendix C.

Just as in Ref. 22, the following minimal Hamiltonian
was used to model the single magnon mode:

H = J1
∑

nn

Si · Sj + J2
∑

nnn

Si · Sj + Γ
∑

nn,nnn

Sz
i S

z
j . (4)

In Equation 4, the first sum is over nearest neighbours
(in the a-c plane), the second sum is over next-nearest
neighbours (in the b-direction), and the final term rep-
resents an effective anisotropy along the c-axis. This
latter term parametrizes the contributions from single-
ion anisotropy or exchange anisotropy (both symmetric
and antisymmetric). A full analysis should include all
of these individual terms, however it was not possible to
disentangle the relative contributions within the exper-
imental energy resolution. The nearest-neighbour and
next-nearest neighbour distances vary only slightly; the
difference between them is due to the weak orthorhom-
bic distortion. Thus Equation 4 is in effect an anisotropic
nearest-neighbour Hamiltonian. From now on we work in
a reference frame where the mean spin direction for each
site appears along the z-axis for all sites. For NaOsO3

this coincides with the laboratory reference frame.
The transverse spin-spin correlations Sxx (Q, ω) =

Syy (Q, ω) are given by:

Sxx(Q, ω) ∝ S −∆Sz

2
[n(ωQ) + 1] (uQ − vQ)2

× δ(~ω − ~ωQ) , (5)

where n(ωQ) is the Bose factor, uQ and vQ are Bogoli-
ubov operators, and ∆Sz = S−〈Sz〉 is the spin reduction
due to zero-point fluctuations.49 In the linear spin wave
approximation, the spin reduction can be calculated as:

∆Sz = (2/N)
∑

q

[

u2
qn(ωq) + v2q(n(ωq) + 1)

]

, (6)

where N is the total number of spins, and q extends
over the entire Brillouin zone. This expression reduces to
∆S = (2/N)

∑

q

∣

∣v2q
∣

∣ in the limit T → 0. For NaOsO3,

we find that ∆Sz = 0.045 at T = 0, increasing to
∆Sz = 0.081 at 450 K. This indicates that quantum fluc-
tuations do not significantly renormalize the spin wave
interactions. Such a result is unsurprising given the sig-
nificant spin wave anisotropy, and three-dimensional na-
ture of this nominally S = 3/2 system.
Meanwhile the two-magnon cross-section has contribu-

tions from three discrete processes: two-magnon creation,
two-magnon annihilation, and mixed magnon creation-
annihilation. At low temperatures only the two magnon
creation term is important; in our case all three are re-
quired to give a full description of the data. The proce-
dure used to calculate the two-magnon cross-section is as
follows:

• Choose two random Q vectors within the three-
dimensional Brillouin zone, henceforth defined as
Q1 and Q2. These correspond to two separate
magnon events.

• Evaluate the weight of this process WQ1,Q2
using

Equation C7.

• Compute the ratio w = WQ1,Q2
/Wmax

Q1,Q2
, where

Wmax
Q1,Q2

is the weight of the most likely event.

• Generate a uniformly distributed random number r
between 0 and 1, and compare this to w. If w < r,
then the event (Q1,Q2) is accepted. Otherwise it
is rejected.

• In the case that the event is accepted, then cal-
culate the total energy ~ωtot = ~ωQ1

+ ~ωQ2
and

total wavevector Qtot = Q1 +Q2. If Qtot lies out-
side the first Brillouin zone, then it is folded back
via subtraction of a reciprocal lattice vector G.

This process is repeated until a large number of events are
accepted. For NaOsO3, 1×109 iterations were performed
in order to generate Sxx(yy)(Q, ω), and the inelastic con-
tribution to Szz(Q, ω) as a function of momentum trans-
fer and energy. These functions were then normalised
by (S −∆Sz)(2∆Sz + 1) and ∆Sz(1−∆Sz) + 〈uv〉2 re-
spectively, in order to obtain a direct comparison with
experiment.
The experimental geometry governs the relative con-

tributions of Sxx(Q, ω), Syy(Q, ω), and Szz(Q, ω) to the
scattering cross-section. It is reiterated that this may
not be equal to the RIXS cross-section, as orbital effects
for example are neglected. Haverkort24 proposed a sim-
ple selection rule for the measurement of single spin-flip
excitations (magnons) with RIXS: Magnons can be ob-
served with cross-polarised light for spins in the plane
of the polarizations. We have almost entirely π-incident
polarization (undulator source), which means that the
incoming X-rays are polarized parallel to the scattering
plane. The cross-polarized channel lies perpendicular to
the scattering plane, given the notation σ in line with
current convention. Consequently we observe those spin
components which lie within the plane defined by the
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FIG. 10. (a): Transverse [Sxx(Q, ω)] and longitudinal
[Szz(Q, ω)] spin-spin correlation functions, calculated as a
function of energy and momentum transfer. The simulation
ran over 1×109 Monte Carlo steps, with each displayed single
and two-magnon event broadened by a two-dimensional Gaus-
sian with FWHMs 0.5 meV and 0.01 reciprocal lattice units
(r. l. u.) for clarity. No spin wave damping has been assumed.
All Bose factors have been calculated assuming T = 300 K.
Lines at high symmetry points are artefacts of the plotting
routine. (b, c): Comparison of the S(Q, ω) calculations (solid
line) with uniformly scaled experimental RIXS data at Γ (b)
and Y (c). Filled squares refer to data obtained at 300 K,
open diamonds to data obtained at 450 K. The RIXS data has
had the elastic and d − d contributions subtracted, in order
to highlight the remaining features. The calculated S(Q, ω)
has been convoluted with a Pearson VII function of FWHM
56 meV and profile parameter µ = 2, in order to represent
the effect of the instrumental resolution. Note that this does
not include the effect of the finite momentum resolution of
the spectrometer.

π and σ′ polarization vectors, with the prime denoting
the polarization of the scattered beam (Fig. 2a). This
contrasts with the selection rule for magnetic neutron
scattering, in which only magnetic fluctuations perpen-
dicular to the wave vector transfer Q are observed. For
the present scattering geometry, the intensity is hence
approximately given by the relation:

I ∝ Syy(Q, ω) cos θ +
√
2 sin θ [Sxx(Q, ω) + Szz(Q, ω)] ,

(7)

where the angle θ is defined by the rotation of the sam-
ple within the scattering plane. A small momentum-
dependent tilt out of the scattering plane by < 4◦ has
been neglected; this contributes only weakly to the inten-
sity and does not significantly affect the results presented
here.

Results

The results of this simulation are plotted in Fig. 10a,
assuming no spin wave damping. A clear dispersive mode

can be observed between 60 and 130 meV, along with a
broad continuum of states which extends up to 260 meV.
These correspond to the single and two-magnon excita-
tions respectively. Anisotropy not only induces a gap in
the single magnon dispersion, but also acts to separate
the single and two-magnon excitations. From Fig. 10a,
it appears that the two magnon continuum is most con-
centrated at the zone boundaries, as expected. Clearly
the simulations qualitatively reproduce the expected be-
havior for both the single magnon and two magnon
continuum. Quantitative comparisons are provided in
Figs. 10b,c at Γ and Y respectively. The relative inten-
sities of the single magnon peak at 300 K, and different
momentum transfers, are well described by the Monte
Carlo simulation.

On the other hand, the high energy spectral weight
cannot be fully modelled in terms of this simple model
for the two-magnon continuum. Furthermore, the quanti-
tative agreement at 450 K is not as good, even when tak-
ing the difference in the Bose factor into account. There
are, however, two factors which have not been consid-
ered thus far. The first is that the calculations assume
a purely localized model (Heisenberg), and do not in-
clude the effect of magnon damping. Landau damping
is likely to occur for magnons with energies larger than
the electronic charge gap (Eg ∼ 80 meV at 300 K). This
hypothesis is partly justified by the observation that the
Monte Carlo simulations seem to slightly underestimate
the experimental peak width of the zone boundary (Y )
single magnon peak at 100 meV. Such an effect would
also likely apply to the two-magnon excitations.

The second factor is that the experimental RIXS spec-
tra are the average over all outgoing polarization chan-
nels. This means that they not only include contribu-
tions from the cross-polarised π–σ′ channel, but also from
the π–π′ channel. The π–π′ channel contains all non-
magnetic scattering components, including electronic ex-
citations. If the charge gap is small, then one may
observe charge scattering from a broad continuum of
(weakly momentum-dependent) interband particle-hole
excitations. Such an effect has been previously observed
via RIXS in Na2IrO3, and may partly be the origin for
the high-energy scattering beyond 0.3 eV.50–52 Note that
any excitonic behavior (if present) is likely to be hidden
by the single-magnon peak at a similar energy.

B. Inter-band transitions

In order to test the validity of this prediction, we
performed calculations of potential dipole-allowed inter-
band transitions for NaOsO3. The starting point was the
band structure calculated by Bongjae Kim and colleagues
at TN (Fig. 3c in Ref. 23). To simplify matters we only
consider the two bands closest to the Fermi energy, which
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FIG. 11. Calculation of dipole-allowed interband transitions
for NaOsO3. (a): Results of Monte Carlo simulation (5× 108

events) shown for a portion of the Brillouin zone. (b): Theo-
retical band structure of NaOsO3 at TN, as calculated within
Ref. 23. Symbols indicate values at high symmetry points
extracted from manuscript, with error bars reflecting the un-
certainty in this procedure. Solid lines are results of fits to
this band structure within the parabolic approximation. The
main features of the band structure are reproduced. Fitting
parameters

[

m∗
x,m

∗
y,m

∗
z, E0

]

for conduction band: [0.8(2),
2.4(3), 0.4(2), −0.07(3) eV]; for valence band: [0.6(2), 0.1(3),
0.0(2), −0.24(3) eV]. All effective masses are given in units
of me. (c): Cuts of data presented in (a), taken at various
reciprocal lattice points as indicated. The effect of the instru-
mental energy resolution has been included.

were fitted within the parabolic band approximation:

E(k) = E0 +
~

2

[

(kx − kx,0)
2

m∗
x

+
(ky − ky,0)

2

m∗
y

+
(kz − kz,0)

2

m∗
z

]

(8)

where m∗
x,y,z refers to the effective mass in the respective

Cartesian direction, and E0 is the energy at the band
minimum located at (kx,0, ky,0, kz,0). This was assumed
to be at Y . The band energies at high symmetry points
(as calculated by Kim) were used to constrain the fits.
The results of this fit are displayed in Fig. 11b, with all
the main features of the two electronic bands reasonably
reproduced.
Fig. 11a shows the results of a Monte Carlo simulation

performed over 5× 108 events. The general method was
similar to that used to calculate the one- and two-magnon
cross-section. A broad, weakly momentum dependent,
continuum can be observed around 0.3 eV energy loss,
which is of a similar scale to the high energy peak ob-
served in the RIXS data (Fig. 11c). This fits with the
hypothesis that there may indeed be an intrinsic elec-
tronic component present within the RIXS data.
However, this conclusion suffers from a number of lim-

itations. Fundamentally, RIXS at the L3 edge is not a

direct probe of the band structure, even in weakly corre-
lated systems. We note that K-edge (indirect) RIXS can
measure the band structure through the joint density of
states (JDOS), with a more detailed discussion given in
Refs. 53 and 54. Unfortunately the Os K-edge lies at
73.9 keV, which is well above the present capabilities of
any currently available RIXS instrumentation. Secondly
we only considered transitions between the two bands
closest to the Fermi level; there are likely to be additional
contributions to the observed scattering from neighbour-
ing bands.55 Moreover the calculated band structure has
not been verified experimentally – for example via photo-
electron emission spectroscopy (PES)– and contains a de-
gree of fine structure which has been averaged out within
the present analysis.
The calculated amplitude of the interband transitions

appears to decrease by a factor of two at the zone bound-
ary (Y ), compared to the zone centre (Γ). This is not ob-
served in the RIXS data (compare with Figs. 6c and 8c),
however note that the finite momentum resolution of the
spectrometer has not been taken into account when per-
forming the interband calculations. There are also likely
Q-dependent geometrical, absorption, and orbital effects,
which enter the RIXS cross-section that are not consid-
ered here. Finally the energy scale of the continuum is
considerably larger than kTN. We hence expect the scat-
tering intensity to vary little with temperature, provided
that the temperature change is not too large. This is at
apparent odds with the experimentally observed behav-
ior.
To summarise, the high energy continuum likely con-

tains two components: two-magnon scattering, and in-
terband particle-hole excitations. We posit that it is
dominated by the latter, even at 300 K, since two-
magnon scattering alone cannot describe the high energy
(> 0.4 eV) portion of the continuum. These interband
transitions appear to be weakly dependent upon temper-
ature and momentum transfer, which makes sense given
that NaOsO3 undergoes a continuous MIT. They can-
not, however, explain the large renormalization of RIXS
intensity with temperature.

VI. MAGNETIC EXCITATIONS AT
INTERMEDIATE TEMPERATURES

Thus far the focus has been upon measurements per-
formed close to the localized and itinerant limits (at
300 K and 450 K respectively). The question is, what
happens to the magnetic excitations at intermediate tem-
peratures? From Figs. 6–8, it appears that the low-
energy excitations continuously evolve through the MIT.
The experimental RIXS spectra were analysed using the
simple fitting model presented in Section III. We note at
this point that this model (and the one given in Ref. 22)
assumes that the magnons are underdamped, whereas it
has already been shown that the behaviour at 450 K ap-
pears consistent with overdamped spin excitations (Sec-
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tion IV). However the ballistic and diffusive regimes are
not mutually exclusive; there is likely to be a crossover
between the two (with potential phase coexistence) in the
vicinity of the MIT. For simplicity we do not consider
this in our analysis. Our discussion shall focus upon the
temperature dependence of the magnon peak.

As expected, the single magnon peak appears to
weaken progressively with temperature for all momen-
tum transfers (Figs. 6d, 7–8c). This abates at TN, with
some residual intensity remaining all the way to 450 K.
The temperature dependence is consistent with a power
law, again as expected for a magnetic excitation. Due
to limited data, it is not possible to obtain a reliable
value for the critical exponent. We note the following.
In Ref. 17, the authors proposed that β ≈ 0.3(1), based
on fits of the magnetic scattering (from neutron powder
diffraction) over an extended temperature range. This
value is consistent with three-dimensional magnetic or-
dering. Yet close to TN – where the power law approxi-
mation is more reliable – a distinct linear regime can be
observed within the sizeable experimental uncertainty. In
an ideal Slater picture, one treats the magnetic interac-
tions within a mean field. Therefore the critical expo-
nents would be expected to follow a Ginzburg-Landau
model, in which β = 1/2. In resonant (in)elastic x-ray
scattering, the magnetic scattering cross-section below
TN is proportional to M−2β, where M is the magneti-
zation. Hence the magnetic scattering intensity should
decrease linearly with temperature. Our data is broadly
consistent with either scenario. More precise measure-
ments are required to ascertain the true dimensionality
of magnetic interactions in the vicinity of the MIT.

A weak variation in the energy of the magnon peak
with temperature can be observed. At Γ, the magnon ap-
pears to soften by 26(9) meV between 300 K and 400 K
(Fig. 6e). A similar value is obtained at Γ-Y between
300 K and 375 K [28(4) meV, Fig. 7e]. However, the
magnon at the zone boundary remains unperturbed in
the same temperature range (Fig. 8e). These observa-
tions are summarized in Fig. 7f, which also shows that
the spin wave dispersion at 450 K is remarkably similar to
that collected at 300 K (within experimental resolution).

We make the following remarks. Firstly the magni-
tude of the anisotropy presented in Ref. 22 is likely to
be an overestimate. This is a direct result of the fi-
nite momentum resolution of the RIXS spectrometer,
which most prominently affects the magnetic excitations
at the Brillouin zone centre, where the dispersion is
steepest.56 We estimate the in-plane momentum resolu-

tion ∆Q ≈ 0.17Å
−1

(at FWHM). Combined with the
finite energy resolution, this means that any tempera-
ture dependence of the spin gap is likely to be washed
out and very difficult to observe. We discuss this point
further in Appendix A. Secondly a reduction of the spin
gap with increasing temperature, or renormalization of
the exchange parameters due to magnon-magnon inter-
actions, would lead to a uniform softening throughout the
Brillouin zone.57 This is not observed within experimen-

tal uncertainty. Furthermore, the bulk of the observed
softening is restricted to one temperature step. Hence we
cannot state definitively whether our observations corre-
spond to a real physical effect.
Finally the width of the magnon peak increases as

a function of temperature for all momentum transfers.
This is unsurprising given that there a number of mecha-
nisms for magnon damping to occur. These can broadly
speaking be split into those which apply in the local-
ized and itinerant limits. The dominant mechanism
for magnon damping in localized (Heisenberg) magnets
is four-magnon (two-magnon in, two-magnon out) scat-
tering, and approximately scales as qT 4.58–60 Magnon-
phonon coupling has also theoretically been shown to be
a source of damping in the localized limit.61

In itinerant magnets, there is a fundamental cou-
pling between the spin, electronic, and lattice degrees
of freedom. Spin wave excitations are damped within
the Stoner continuum due to scattering from intraband
particle-hole excitations (Landau damping). Within a
weak coupling theory,62 collective antiferromagnetic spin
wave excitations are expected to merge into a Stoner con-
tinuum above a critical energy

∆s ≈ πkBTN

[

8α2t/7ζ(3)
]1/2

(9)

where TN = 410 K is the Néel temperature, t = 1−T/TN,
α = νeνh/

√
4νeνh ≈ 1 is a dimensionless parameter relat-

ing the electron and hole band velocities, and ζ(3) is the
Riemann zeta function of the third kind. Note the mean-
field temperature dependence. As T → TN, the energy
scale for ∆s decreases, meaning that the collective exci-
tations become damped over a larger proportion of the
Brillouin zone. This argument is expected to remain valid
for weak electronic correlations U . Meanwhile itinerant
electrons concurrently give rise to overdamped collective
modes, which are the aforementioned spin fluctuations.40

Scattering from these can also act as a further mechanism
for magnon decay.63

In Ref. 22, it was proposed that the well-defined,
resolution limited spin wave excitations at 300 K were
evidence of localized (Heisenberg) behavior. Yet with
the aid of our new fitting model, we observe experi-
mentally that the magnons have an intrinsic FWHM
of 30 meV, increasing to 60 meV at larger momentum
transfers. Some of this damping may arise from the
four-magnon, or magnon-phonon scattering processes
mentioned earlier. There is, however, the omnipresent
continuous MIT at 410 K. Previous bulk measurements
have shown that the charge gap ∆g ∼ 80 meV at
300 K,16 with the optical gap of a similar magnitude.20

Returning to Eqn. 9, and taking α=1, then we find that
∆s [T = 300 K] ≈ 60 meV. This would apply that the
collective spin excitations should be (weakly) Landau
damped at all wavevectors. At higher temperatures,
∆s decreases concomitantly with the charge and optical
gaps. This leads to a greater tendency towards Landau
damping. As mentioned earlier, emergent SF due to itin-
erant electrons can give rise to additional magnon decay
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channels. We tentatively suggest that both mechanisms
may be enhanced by the presence of magnon-phonon
coupling.

To summarise, we find that the temperature depen-
dence of the single-magnon peak is consistent with that
expected for a magnetic excitation. Damping increases as
the system progresses towards the metallic state, due to
Landau damping and scattering from itinerant spin fluc-
tuations. The role of magnon-phonon coupling on the
RIXS spectra is still unclear. We posit that it may result
in a downward shift of the magnon dispersion of around
5 meV at the zone boundary; a similar magnitude to that
observed for the phonon shift.

VII. DISCUSSION AND SUMMARY

In summary, we find that at 300 K, NaOsO3 lies
close to, but not within, the Heisenberg limit. The
magnetic scattering is dominated by single-magnon pro-
cesses, albeit with some contribution from two-magnon
and inter-band particle-hole excitations. Spin-phonon
coupling may play a role in perturbing the magnon dis-
persion at the zone boundary, however it is difficult to
be certain given the experimental resolution. The pre-
viously reported magnitude for the effective anisotropy
Γ = 1.4(1) meV – containing contributions from single-
ion and exchange terms – is likely to be an overestimate
of the true value due to resolution effects. Given that
anisotropy (single-ion or exchange) is governed primarily
by spin-orbit coupling (SOC), a lower value of Γ would
imply that SOC plays less of a role in the formation of
the magnetic ground state and excitations than previ-
ously believed.
With increasing temperature, one observes a continu-

ous progression towards the itinerant limit through the
MIT. At 450 K, significant paramagnetic spin fluctua-
tions – consistent with a weakly antiferromagnetic Fermi
liquid model – are present, along with an approximately
momentum-independent additional component. Similar-
ities can be drawn with properties seen in the doped
cuprates and iron pnictides as a function of tempera-
ture and carrier doping.64–72 Future measurements using
a different experimental geometry (grazing emission for
instance), or polarization analysis of the scattered beam,
may help to disentangle the spin and electronic contribu-
tions to the RIXS spectra.
Our observations directly map themselves onto the

discussion of the proposed Slater MIT in this material.
Recall that insulating behavior in Slater-type materials
arises from an ordered magnetic exchange field, which
is governed by mean-field type interactions. Previous
RIXS measurements on other 5d3 materials have shown
that the orbital excitations can only be described by
an intermediate-coupling model in which SOC plays a
key role.29 Our results for NaOsO3 (Section II) are com-
patible with this picture. Furthermore, the use of the

WAFL model to describe the paramagnetic spin fluctu-
ations naturally requires the presence of correlations in
the high temperature phase; which implies a departure
from mean-field behavior required for a pure Slater MIT.
Therefore we conclude that NaOsO3 lies proximate to,
but not within, the Slater limit.
Finally we show that RIXS opens a new window on

the progression of quasi-particle spectra through metal-
insulator transitions. Unlike the cuprates and pnictides,
there is a continuous evolution between the localized and
itinerant limits in the same sample of NaOsO3. This
means that any differences in the RIXS spectra between
the two limits are intrinsic, and not a consequence of
disorder, variation in measurement conditions, or other
perturbative effects. Our results show that functional
forms applicable to inelastic neutron scattering from itin-
erant magnets are also semi-quantitatively valid in RIXS.
Whilst further theoretical work is required to confirm
this, it confirms the correspondence between S(Q, ω) and
the RIXS cross-section in the itinerant limit.
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Work at UCL was supported by the EPSRC (grants
EP/N027671/1, EP/N034872/1). This research used re-
sources at the High Flux Isotope Reactor and Spalla-
tion Neutron Source, DOE Office of Science User Facil-
ities operated by the Oak Ridge National Laboratory.
K.Y. thanks financial support from JSPS KAKENHI
(15K14133 and 16H04501).

Appendix A: Spectrometer resolution function

The effect of the finite energy resolution of a RIXS
instrument operating in the hard x-ray regime is well
known. The intrinsic width (in energy) of an arbi-
trary excitation is proportional to the inverse lifetime
of the core-hole in the final state. This contrasts with
x-ray absorption spectroscopy (XAS), in which the spec-
tra are broadened by the core-hole in the intermediate
state. What we observe experimentally is a convolution
of this excitation with the spectrometer resolution func-
tion. The dominant contributions to the resolution func-
tion include the monochromator configuration, vertical
divergence of the incident beam, choice of analyser crys-
tal and the available collection area for scattered photons.
A number of tables exist which allow the calculation of
the expected energy resolution for a given experimental
configuration.73

In Fig. A1, we show the energy component of the in-
strumental resolution function. The total energy resolu-
tion was determined to be ∆E = 56 meV, based on dif-
fuse scattering from polypropylene-based adhesive tape.
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FIG. A1. Spectrometer resolution function for NaOsO3 ob-
tained from diffuse scattering off transparent adhesive tape.
Solid line is best fit to sum of two Voigt functions with the
same Lorentzian and Gaussian widths. The asymmetry arises
due to the fact that 2θA is significantly away from 90◦ at the
Os L3 edge. Inset is the same as the main panel, only on
logarithmic axes to highlight the peak tails. This profile was
used to fit all of the experimental data.

This is marginally worse than both the resolution ob-
tained in Ref. 22 (∆E = 45 meV), and the theoretical
value for our given setup (∆Ecalc = 42 meV). The dif-
ference is likely to be related to a slight difference in
instrumental configuration.

However there has been little consideration of the fi-
nite momentum resolution of the spectrometer in the lit-
erature. This is in contrast with inelastic neutron scat-
tering, where this is routinely performed. This may be
partly due to historical reasons with the development of
RIXS. A large portion of RIXS performed thus far has
been at the 3d transition metal L-edges, which lie in the
soft x-ray region. Spectrometers operating in this win-
dow are based on diffraction gratings, and typically have

in-plane momentum resolutions ∆Q|| ∼ 10−2 Å
−1

. This
is sufficiently small – especially compared to the energy
resolution – that the effect of the finite momentum reso-
lution of the spectrometer is negligible for all intents and
purposes.

Meanwhile hard x-ray RIXS instruments utilize crystal
optics and much higher energy incident radiation. Whilst
it has the advantage that multiple Brillouin zones can be
accessed and sampled, it comes with the drawback of mo-
mentum resolution around an order of magnitude worse
than in the soft x-ray regime. The dominant contribu-
tion to ∆Q|| tends to be the radius of the crystal anal-
yser ran. Reducing ran improves ∆Q|| at the expense
of lower count rates. Note that the momentum resolu-
tion ellipsoid is – like a neutron triple-axis instrument –
three-dimensional and anisotropic. Therefore the precise
momentum resolution at a given point in reciprocal space
depends on the experimental geometry.

Å

(a)
(b)

(c)

FIG. A2. Effect of finite momentum resolution ∆Q on the
magnon dispersion. (a): Calculated magnon gap at Γ assum-
ing the Hamiltonian given by Eqn. 4, and J1 = J2 = 14 meV.
Open circles reflect values of ∆Q and Γ which are consistent
with the experimentally observed gap of 55(7) meV. Solid line

shows Γ = 0.5(3) meV for ∆Q = 0.17 Å
−1

. (b,c): Compari-
son of experimental data with simulated dispersions broad-

ened by ∆Q = 0, 0.1, 0.2 Å
−1

(dotted black, solid black,
dashed green lines respectively). For (b), Γ = 0, while
Γ = 1.4 meV for (c).

Non-zero momentum resolution will lead to the smear-
ing of the magnon dispersion. This will have the greatest
effect where the spin-wave velocity is steepest; typically
around the crystallographic and magnetic Brillouin cen-
tres. In the most extreme case, it will lead to an ap-
parent gap being observed, even when considering a the-
oretical model without anisotropy. More generally, the
magnitude of any anisotropy present in the system will
be overestimated, if the effect of momentum resolution is
not considered.

Previous fitting of the magnetic excitations in NaOsO3

assumed perfect momentum resolution, and led to an es-
timate for Γ = 1.4(1) meV. The effect of finite momen-
tum resolution on our model for the magnon dispersion
is shown in Fig. A2. Whilst we have not calculated it
explicitly at the Os L3 edge, we expect the momentum
resolution of the spectrometer to be of the same order
as that determined for the Ir L3 edge.56,74 Using the ex-
perimental value of the spin wave gap, and taking ∆Q =

0.17 Å
−1

, then we find that Γ = 0.5(3) meV (Fig. A2c).
Notably our simulations reveal that the experimental
data can be reasonably described by an isotropic Hamil-

tonian (Γ = 0) if ∆Q = 0.2 Å
−1

(Fig. A2b). Since
anisotropy is partly governed by the spin-orbit interac-
tion, then this implies that its effect upon the magnetic
ground state and excitations in NaOsO3 is lower than
previously believed.
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Appendix B: Choice of incident energy

In Fig. B1, we compare the x-ray absorption (XAS)
and RIXS signals at 300 K as a function of incident en-
ergy. The maximum in the RIXS signal (for fixed energy
loss of 1 eV) occurs around 3 eV below the maximum of
the white line; this mirrors the elastic resonant magnetic
scattering signal.17 Because the main focus of our study
was the low-energy spin excitations, we fixed the incident
energy to 10.877 keV.
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FIG. B1. Comparison of x-ray absorption (XAS) and RIXS
signals at 300 K as a function of incident photon energy. All
datasets have been scaled vertically to fit on the same axes.
Solid line: XAS collected in total fluorescence yield (TFY)
mode. Open squares: RIXS intensity using a low-resolution
setup (∆E = 300 meV). Filled diamonds: RIXS intensity
using a high-resolution setup (∆E = 55 meV). Both sets of
RIXS data were collected for a fixed energy loss of 1 eV; this
corresponds to the maximum of peak α.

Appendix C: Details of one- and two-magnon
scattering cross-sections

Here we provide further details about the calculations
performed in Section VA.

1. One-magnon scattering cross-section

Within linear spin wave theory (LSWT), it is assumed
that spin waves occur as a result of fluctuations of the
magnetic moment transverse to the ordered spin direc-
tion. The spin raising and lowering operators are rewrit-
ten in terms of boson annihilation (creation) operators

a
(†)
i and b

(†)
i , using a Holstein-Primakoff transformation:

S+
i =

√

2S
(

1− a†
i
a
i

2S

)

ai S+
j = b†j

√

2S
(

1− b†
i
b
i

2S

)

S−
i = a†i

√

2S
(

1− a†
i
a
i

2S

)

S−
j =

√

2S

(

1− b†
j
b
j

2S

)

bj

Sz
i = S − a†iai Sz

j = −S + b†ibi,

(C1)

where ai and bi operate on different magnetic sublattices.
In the Holstein-Primakoff approximation, the square root
within the spin operators is formally expanded as a Tay-

lor series into powers of (a†iai/2S) and (b†ibi/2S).

Neglecting magnon-magnon interactions, and taking
only the leading order terms of the expansion, one ob-
tains the approximate form of the spin operators within
LSWT:

S+
i ≃

√
2S ai S+

j ≃
√
2S b†j

S−
i ≃

√
2S a†i S−

j ≃
√
2S bj

Sz
i = S − a†iai Sz

j = −S + b†jbj .

(C2)

Substituting these expressions for the spin operators
into the magnetic Hamiltonian (Equation 4), and then
diagonalizing through a Bogoliubov transformation, one
can determine the magnon dispersion relation and inten-
sities.

The magnon dispersion relation ω(Q) is given by:

ωQ = 2S
√

A2
Q −B2

Q

AQ = 2J1 + J2 + 3Γ

BQ = J1 cosπ(h+l) + J1 cosπ(h−l) + J2 cosπk. (C3)

For a d3 system like NaOsO3, one would expect
S = 3/2. In common with the analysis of the dispersion
at 300 K presented in Ref. 22, we set J1 = J2 = 14 meV
and Γ = 1.4 meV.

The scattering intensity of the single magnon mode
depends on the Bogoliubov operators uQ and vQ. These
were used to diagonalize the Hamiltonian, and are defined
as uQ = cosh θQ and vQ = sinh θQ, with tanh 2θQ =
BQ/AQ. The corresponding transverse spin-spin corre-
lations Sxx (Q, ω) = Syy (Q, ω) are given by:

Sxx(Q, ω) ∝ S −∆Sz

2
[n(ωQ) + 1] (uQ − vQ)2

× δ(~ω − ~ωQ) , (C4)

where n(ωQ) is the Bose factor, and ∆Sz = S − 〈Sz〉 is
the spin reduction due to zero-point fluctuations. Con-
sequently to order ∆Sz the single magnon partial differ-
ential cross-section is given by:
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(

d2σ

dΩdE′

)(xx)

∝ S −∆Sz

2
(uQ − vQ)2 {[n(ωQ) + 1] δ(~ω − ~ωQ) + n(ωQ) δ(~ω + ~ωQ)} . (C5)

The total intensity of the transverse correlations inte-
grated over energy and the entire Brillouin zone is given
by Sxx(Q, ω) +Syy(Q, ω) = (S−∆Sz)(2∆Sz +1). This
fact shall be used later to correctly normalize the relative
contributions to the inelastic spectra.

2. Two magnon cross-section

The longitudinal component of the scattering cross-
section Szz(Q, ω) has two contributions: an elastic part
(~ω = 0), and an inelastic part (~ω 6= 0). These shall be
outlined in turn.

a. Elastic component

The elastic contribution gives the intensity of the
magnetic Bragg reflection associated with the time-
independent (i.e. non-fluctuating) part of the spin oper-
ator Sz. This component of Szz(Q, ω) shall be neglected
for now since we are interested in the inelastic processes,
but is included for completeness:

(

d2σ

dΩdE′

)(zz)

~ω=0

= δ(~ω)
(2π)

3

Vm
(S −∆Sz)2

×
∑

τ

δ(Q− (τ − τAFM)) , (C6)

where Vm is the volume of the magnetic unit cell, the
sum over τ extends over all structural Bragg reflections
and τAFM is the wavevector of any magnetic Bragg reflec-
tion. Note that the magnetic propagation vector q = 0
for NaOsO3. When integrated over energy and a single
Brillouin zone, Szz (Q, ω)el = (S −∆S)2.

b. Inelastic contribution

The inelastic contribution Szz (Q, ω)
~ω 6=0 arises due to

two-magnon scattering. There are three different types
of two-magnon processes: two-magnon creation, two-
magnon annihilation (both ∆S = 2), and mixed magnon
creation-annihilation (∆S = 0). The partial differential
two-magnon cross section is equal to the sum of these
discrete processes, which are given below. At low tem-
peratures only the two magnon creation term (Eqn. C9)
contributes significantly to the scattering cross-section,
since n(ωq) ≈ 0. At elevated temperatures however the
other components also become important. The above
expressions are valid if magnon-magnon interactions are
neglected. When integrated over energy and a single
Brillouin zone, Szz(Q, ω)~ω 6=0 = ∆Sz(1−∆Sz) + 〈uv〉2,
where 〈uv〉2 =

∑

q uqvq/N .

(

d2σ

dΩdE′

)(zz)

~ω 6=0

=

(

d2σ

dΩdE′

)(zz)

(aa)

+

(

d2σ

dΩdE′

)(zz)

(cc)

+

(

d2σ

dΩdE′

)(zz)

(ca)

(C7)

(

d2σ

dΩdE′

)(zz)

(aa)

∝ 2

N

∑

q

1

2
(uqvq+Q − uq+Qvq)

2 × n(ωq) [n(ωq+Q) + 1] δ(~ω + ~ωq + ~ωq+Q) (C8)

(

d2σ

dΩdE′

)(zz)

(cc)

∝ 2

N

∑

q

1

2
(uqvq+Q − uq+Qvq)

2 × [n(ωq) + 1] [n(ωq+Q) + 1] δ(~ω − ~ωq − ~ωq+Q) (C9)

(

d2σ

dΩdE′

)(zz)

(ca)

∝ 2

N

∑

q

(uquq+Q − vqvq+Q)2 × n(ωq) [n(ωq+Q) + 1] δ(~ω + ~ωq − ~ωq+Q) . (C10)
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