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Abstract

The rich dynamics and phase structure of driven systems includes the recently-described phe-

nomenon of the “discrete time crystal” (DTC), a robust phase which spontaneously breaks the

discrete time translation symmetry of its driving Hamiltonian. Experiments in trapped ions and

diamond NV centers have recently shown evidence for this DTC order. Here we show NMR data

of DTC behavior in a third, strikingly different system: a highly ordered spatial crystal in three

dimensions. We devise a novel DTC echo experiment to probe the coherence of the driven system.

We examine potential decay mechanisms for the DTC oscillations, and demonstrate the important

effect of the internal Hamiltonian during nonzero duration pulses.
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I. INTRODUCTION

In 2012, Frank Wilczek proposed the existence of a system which spontaneously breaks

time translational symmetry, dubbed a ‘time crystal’ by analogy with a regular crystal,

whose structure spontaneously breaks translational symmetry in space1. While subsequent

no-go theorems excluded the possibility of finding equilibrium states with this property2,

driven systems remained viable candidates. Multiple theoretical studies showed that driven

systems could exhibit a rich phase structure, including a discrete time crystalline (DTC)

phase (also known as a Floquet time crystal, or a π-spin glass)3–5. For these driven systems,

the time translation symmetry is discretized to the period of the drive, and the discrete time

translation symmetry is broken by a state with oscillations at integer multiples of the drive

period6–8. However, this might be difficult to observe experimentally, since driven systems

tend to thermalize as they absorb energy from the drive, which could prevent the experi-

mental observation of DTC signatures9–13. To avoid this fate, many DTC models worked in

a regime that favored many body localization (MBL)5–7,14,15; other models predicted that

the DTC could be observed without MBL, in a prethermal regime8,16–21.

After Yao et al.22 proposed experimental realizations, evidence for DTC order was ob-

tained in two very nice experiments: one using trapped ions23 and the other using diamond

NV centers24. The experiment in trapped ions was closer to original theoretical models

for DTC order, and included elements more conducive to MBL, such as a 1-dimensional

spin chain with ∼10 spins, spin-spin interactions that fell off as ∼ r−1.51, and high-variance

on-site disorder23. The experiment in diamond NV centers24 was strikingly different from

theoretical models, especially in that it used a 3-dimensional system of spins at random loca-

tions, with spin-spin interactions that fell off as ∼ r−3; these characteristics are expected to

preclude MBL25–28. While disorder did exist in the system of diamond NV centers, followup

studies have proposed alternatives to MBL as mechanisms for the observed signatures of

DTC order28–30.

In this paper, we report the observation31 of signatures of a DTC in an ordered spatial

crystal even further from ideal MBL conditions than all prior DTC experiments. We also

study the lifetime of the DTC oscillations, demonstrating that a significant part of the

observed decay envelope is due to coherent evolution. Finally, we describe the way in which

the lifetime of the observed DTC oscillations strongly depends on the action of the internal
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Hamiltonian during an applied pulse; we demonstrate control of this decay mechanism,

which may be important for experiments which strive to observe the intrinsic lifetime of the

DTC.

II. PHYSICAL CHARACTERISTICS OF THE SYSTEM

In this section, we discuss the methods used in characterizing the system of 31P nuclear

spins in ammonium dihydrogen phosphate (ADP), and present the key features of the system

and its internal spin Hamiltonian. We begin with an overview of nuclear magnetic resonance

(NMR) methods and useful terminology, then discuss the application of these methods to

the particular system of 31P nuclear spins in an ADP crystal (Fig. 1).

A. NMR overview

Our experiments are carried out at room temperature in the presence of a strong

(H0 = 4T) external static magnetic field. Thus, we can use the strong field, high

temperature approximation to write the equilibrium density matrix for the nuclear spins;

to calculate the detected signal, it is sufficient to start with the “reduced” density matrix

ρlab0 = Iz′
T
, where we have taken H0 to be in the z′ direction34,35. These nuclear spins

precess around the strong external field at their Larmor frequencies ω0 = γH0, where γ is

the gyromagnetic ratio for the spin species; in NMR, the observable signal is the voltage

induced in a detection coil by the time-varying flux arising from the precessing nuclear spin

magnetization, 〈My′
T
(t)〉 = γ~ 〈Iy′

T
(t)〉 = γ~Tr[Iy′

T
ρlab(t)], where y′ is the axis of the coil.

The time evolution operator U lab(t; 0), which determines ρlab(t) = U lab(t; 0)ρlab0 U lab(t; 0)−1,

is itself determined by the relevant Hamiltonian34, which can in general be time-dependent.

In the lab frame (in the absence of applied pulses), the spin Hamiltonian is Hlab =

H0 +Hlab
int , where the scale of the term due to the static external field, H0 = −~ω0Iz′

T
, is 4

to 5 orders of magnitude larger than the scale of any terms in the internal spin Hamiltonian

Hlab
int . Thus we may write the secular internal Hamiltonian Hint in the frame that is rotating

about z′ at the Larmor frequency ω0, ignoring terms which are nonsecular in the rotating

frame (to a very good approximation). The rotating frame axes are (x, y, z), where z ‖ z′,

so ρ0 = ρlab0 .
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FIG. 1. (color online). (a) Atoms in the unit cell of ammonium dihydrogen phosphate (ADP),

which has chemical formula NH4H2PO4. ADP is an ionic, tetragonal crystal with space group

I42d. At room temperature, the NH4 groups experience rapid in-place rotation, such that the

time-averaged location of the four 1H is at the nitrogen site. The 1H in NH4 are shown in a

distributed manner to reflect this. We also place the remaining so-called “acid” protons (1H) in

their time-averaged positions, between the lattice sites of the nearest oxygens32,33. (b) The ADP

crystal sample studied here, shown in a 5mm diameter NMR sample tube, held in place by rolled

teflon tape (white).

To manipulate the nuclear spins, we apply strong radiofrequency (RF) pulses at the

Larmor frequency of the particular spin species to be manipulated (see Table I). For the

duration of an applied pulse, the rotating frame Hamiltonian becomes HP = Hint + HRF,

with the added external term HRF = −~ω1IφT
for a pulse of strength ω1 and phase φ. To

calibrate ω1 for a given pulse power, we use a nutation experiment34. The pulses are applied

for duration tp, such that for e.g. a pulse of angle π, we have ω1tp = π. Because ω1 is

typically large for applied pulses (for instance, ω1/2π ≈ 68 kHz in our experiment), Hint is

usually ignored for the duration of the pulse (the delta-function pulse approximation)34–38

— we will revisit this approximation below. In this paper, we will use the symbol φθ to
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represent a pulse of angle θ applied at phase φ, emphasizing the phase of the pulse.

The basic NMR experiment measures a free-induction decay (FID) by applying a θ =

π/2 pulse to spins starting with an equilibrium z-magnetization, to produce measurable

magnetization along ŷ: {Xπ/2 −FID}, where FID represents the acquisition of the signal as

a function of time after the first pulse34. A Fourier transform (FT) of the resulting time data

〈IyT (t)〉 yields a lineshape for the observed spins, which reflects the action of the full Hint.

To remove the effect of Zeeman terms in the internal Hamiltonian, a Hahn echo sequence

may instead be used, which includes a π pulse between the preparation pulse and the final

readout to “refocus” the Zeeman-dephased signal into an echo: {Xπ/2−τ−Yπ−τ−Echo}39.

The echo amplitude measured as a function of τ can be used to create a “pseudo-FID”; the

corresponding spectrum reflects the unrefocused parts of Hint. Each of these pulse sequences

will be used in characterizing the system below.

Besides these, we will use two further techniques common in NMR: cross-polarization

and spin decoupling. The first, cross-polarization (CP), takes advantage of the higher polar-

ization that exists in equilibrium spin ensembles with higher gyromagnetic ratios γS, using

it as a source to augment the lower polarization of the measured, target spins (with γI).

To accomplish this, RF fields HS
1 , H

I
1 are applied at the Larmor frequencies of the two

spins to be cross-polarized, such that the effective Zeeman energy levels are equalized in the

tilted, doubly-rotating frame (the “Hartmann-Hahn” matching condition40): γSH
S
1 = γIH

I
1 .

While this can be used to boost the polarization of the initial reduced density matrix up to

ρ′0 = (γS/γI)ρ0, an even more important benefit is that CP experiments on the target spins

I may be repeated on the much faster timescale of the source spins S (for repolarization

times T S
1 ≪ T I

1 )
41,42. The second technique, spin decoupling, allows us to selectively remove

the dipolar coupling between two spin species, by applying a strong continuous-wave (CW)

RF pulse at the Larmor frequency of one of the spins34. The details of these techniques in

our system will be discussed further below.

B. NMR of 31P in ADP

We study the ionic crystal ammonium dihydrogen phosphate [ADP, also called monoam-

monium phosphate (MAP)], with chemical formula NH4H2PO4. We grew an ADP crystal

by slow evaporation from aqueous solution [Fig. 1(b)]. Simulations of the NMR spectra
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(discussed below) are consistent with it being a single crystal of a known orientation. This

sample was being used as a testbed for controlling the 31P-1H spin Hamiltonian in other ma-

terials; however, since both a sample and a double-resonance NMR system were available,

we decided to try the DTC pulse sequence on ADP.

1. 31P spin Hamiltonian in ADP

ADP contains the nuclear spins summarized in Table I, but our analysis assumes that only

31P, 1H, and 14N are present (each at 100% natural abundance). In our NMR experiments,

we will detect the signal from the 31P spins. The Zeeman interaction of the 31P spins with

the applied magnetic field H0 = 4T dominates the spin Hamiltonian in the laboratory frame.

Jumping to the frame rotating at the Larmor frequency of the 31P nuclei (ω0 = γPH0 = 2π×

68.940MHz), the secular terms in the internal spin Hamiltonian Hint for
31P include Zeeman

interactions HZ, dipolar couplings among the same spin species (homonuclear, HP,P
zz ), and

dipolar couplings between different spin species (heteronuclear, HP,H
zz , HP,N

zz ):

Hint = HP
Z +HP,P

zz +HP,H
zz +HP,N

zz

=
∑

i

ΩiIzi +
∑

i,j>i

BP
ij(3IziIzj −

~Ii · ~Ij)

+
∑

i,j

BH
ij(2IziSzj ) +

∑

i,j

BN
ij(2IziRzj). (1)

Here, the coupling constants BP
ij , B

H
ij , and BN

ij are defined for the coupling of 31P to 31P,

1H, and 14N respectively. The coupling constant between a 31P spin i and a spin j (of spin

species α = {31P,1H,14N}) is

Bα
ij =

µ0

4π

γPγα~
2

|~rij |3
1− 3cos2(θij)

2
, (2)

where θij is the angle between the internuclear vector ~rij and the z-axis (defined by

the static external field), µ0 is the vacuum permeability, and γP and γα are the nuclear

gyromagnetic ratios for 31P and α. {Iφ, Sφ, Rφ} are the spin operators for {31P,1H,14N},

with φ = x, y, z34,43. Because the 31P sites in a single crystal are magnetically equivalent44,

any variations in the Zeeman interaction will be small and slowly varying across the sample,

arising from the sample’s magnetic susceptibility or variations in the static external field —
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TABLE I. Spins present in ADP, with their Larmor frequencies ω0/2π in the presence of a strong

H0 = 4T magnetic field. In our analysis, we ignore the presence of the rare 2H, 15N, and 17O

nuclear spins.

Nuclide Natural abundance Spin ω0/2π at 4 T (MHz)

1H 99.98% 1/2 170.304

31P 100% 1/2 68.940

14N 99.64% 1 12.307

2H 0.02% 1 26.143

15N 0.37% 1/2 -17.265

17O 0.04% 5/2 -23.093

in this sample, variations in the Zeeman interaction are less than 1 ppm relative to the static

field (see next section). For this reason, we may replace the Zeeman Hamiltonian term with
∑

i ΩiIzi → ΩT IzT for any cluster of spins small relative to the size of the sample, where

ΩT/2π may be up to a few hundred Hz at most, caused by a resonance offset as the strong

external field drifts slowly over the course of days or weeks. Because this Zeeman term has

negligible variations from one spin site to the next (unlike most prior DTC models), this

Hamiltonian retains unsuppressed “flip-flop” terms Ixi
Ixj

+ IyiIyj = (I+i
I−j

+ I−i
I+j

)/2 for

the homonuclear dipolar coupling, as well as long-range Ising-like couplings to 1H and 14N.

Another feature of our experiment is that the coupling to the 1H can be selectively “turned

off” with high-power CW decoupling at the 1H Larmor frequency35, which we will refer to

as “1H off.” We will refer to experiments that do not use CW decoupling as “1H on.”

A further type of order arises from the symmetries of the ADP crystal itself (see Appendix

A for details): the particular symmetry of the 31P and 14N sublattices leaves the set of

geometric factors BP
ij and BN

ij invariant from one 31P site to the next, for each i. The

coupling constants BH
ij do not obey the same symmetry except for certain “special” crystal

orientations relative to the external field; in general, there are two distinct sets of BH
ij for

a given i, which become the same at the crystal orientation that is consistent with our

measured NMR spectra (see below).
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FIG. 2. (color online). (a) Magnetization decay from a Hahn echo experiment with 1H off (circles),

where each data point is acquired with a Hahn echo sequence for a different value of τ . We compare

this to the simulated decay from an Ising-like approximation, both before (dashed line) and after

(solid line) scaling Bij by 3/2 to approximate the actual dipolar Hamiltonian. (b) 31P spectra as

acquired by an FID with 1H on (blue squares), and by a Hahn echo with 1H off [red circles, FT of

Hahn echo data in (a)], with the results of a numerical model at a single crystal orientation (lines).

(c) Comparison of the 31P spectrum from an FID (closed circles) to the lineshape from an altered

Hahn echo (open circles). The Hahn echo spectrum has been broadened using a Gaussian with

FWHM 280 Hz, to account for the 31P-14N coupling.

2. Simulating the observed spectra

To verify our understanding of the crystal structure and orientation, we compare sim-

ulations of the dipolar lineshapes to data from Hahn echo and FID experiments. First,
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we measure the 31P-31P dipolar lineshape (from HP,P
zz ) using a Hahn echo experiment with

1H off [Fig. 2(a), red circles]: the decoupling removes the effect of HP,H
zz , and we expect

the π-pulses of the Hahn echo to refocus (and thus remove the effects of) HP,N
zz and HP

Z .

To simulate this 31P-31P lineshape (see Appendix B for details), we start with the exactly-

solvable Ising-like approximation for the dipolar coupling between “unlike” spins I and S:

HIsing =
∑

i,j Bij(2IziSzj), which produces the dashed line in Fig. 2(a). The dashed line

fails to describe the data (Fig. 2(a), open circles), which conforms to our expectation that

the 31P-31P coupling is really between “like” spins. Unfortunately, an exact treatment of

the signal decay for “like” spins requires a full density matrix calculation; our dense lattice

of 31P spins is hard to model accurately in the typical limit of N < 10 spins45. Instead,

we try to approximate the “like” spin decay curve by a simple modification of the “unlike”

spin curve. To approximate the actual IziIzj coefficient in the full dipolar coupling for “like”

spins
∑

i,j>iBij(3IziIzj −
~Ii · ~Ij), we use the same analytic expression as in the “unlike” spin

case, but with the Bij frequencies scaled up by 3/245,46. This produces the solid line in

Fig. 2(a), which lies very close to the Hahn echo data from our experiments. This Ising-like

approximation produces a smaller oscillation in the time domain than the data exhibits [Fig.

2(a)], creating a shallower dip at the center of the resulting spectrum than seen in the data

[Fig. 2(b), red]; similar results were seen in earlier uses of this approximation45.

Next, we study the full effect of Hint (Eqn. 1) by acquiring an FID with 1H on [spectrum

in Fig. 2(b), blue circles]. We simulate this spectrum by combining the separately calculated

lineshapes from HP,P
zz , HP,H

zz , and HP,N
zz . Each dipolar interaction is calculated using HIsing

(where the scaling by 3/2 is only applied for the homonuclear HP,P
zz ), and they are combined

by multiplication in the time domain (see Appendix B). The final simulated spectrum is

shown in Fig. 2(b) (blue solid line), and is quite close to the measured spectrum.

Finally, we can study the Zeeman interaction, HZ, by comparing the spectra from both a

Hahn echo and an FID with 1H off. We expect the difference between the these two spectra

to arise only from HZ and HP,N
zz , both of which are refocused in a Hahn echo, but not in an

FID. In order to isolate the effect of HZ, we can “put back” the effect of HP,N
zz into the Hahn

echo spectrum using Gaussian line broadening, such that any remaining difference between

the spectra is primarily attributable to HZ. We broaden the Hahn echo spectrum using a

Gaussian with the same full width at half maximum (280 Hz) as the simulated spectrum

for HP,N
zz . The resulting “altered Hahn echo” spectrum [Fig. 2(c), red open circles] is very
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close to the FID spectrum [Fig. 2(c), black closed circles], putting a small upper bound on

the Zeeman spread in our system (estimated at 1 ppm relative to H0).

The orientation of the ADP crystal relative to the external field has a significant effect

on the shape of the 31P spectrum44. We explore many possible crystal orientations in the

simulations discussed in this section, where each simulation is calculated at a single crystal

orientation. We parameterize the crystal orientation by the polar and azimuthal angles

(θc, φc) of the strong static field relative to the crystal axes (a, b, c). We find the best

agreement with the measured spectra [Fig. 2(a-b)] for orientation angles (θc, φc) = (60◦, 0◦)

(we see identical results for (θc, φc) = (n60◦, m90◦), with n = {1, 2}, and m = {0, 1, 2, 3},

because of the crystal symmetry). Combined with the visual clarity of the crystal [Fig.

1(b)], the agreement of the simulated spectra with experiment shown in Fig. 2 indicate that

our sample is a single large crystal domain, and that we have a quantitative understanding

of its spin Hamiltonian. From the numerics for the crystal orientation best matching the

data, we can estimate the typical coupling strengths of the dipolar interactions as the RMS

angular frequencies WP,H, WP,P, and WP,N for the coupling of phosphorus to 1H, 31P, and

14N, respectively. We find WP,H/2π = 3500Hz, WP,P/2π = 508Hz, and WP,N/2π = 97Hz,

which added in quadrature give WP,HPN/2π = 3538Hz (see Appendix B).

III. EXPERIMENTAL SETUP AND DTC PULSE SEQUENCE

The equilibrium 31P spins begin in a weakly polarized state described, as discussed above,

by a reduced initial density matrix ρ0 = IzT . We improve the polarization and acceler-

ate the experiments by instead exploiting the more highly polarized 1H spin bath as a

source for CP. This provides a small improvement to the initial polarization of the 31P spins

[ρ′0 = (γH/γP )IzT , γH/γP ≈ 2.5], and a dramatic improvement to the repetition rate of the

experiments since the 1H lattice relaxation time TH
1 = 0.6 s is 200× faster than the 31P lat-

tice relaxation time TP
1 = 103 s. To do this, we first excite the 1H spins with an initial Xπ/2

pulse at the 1H frequency, followed by cross polarization with the 31P at the Hartmann-Hahn

matching condition40–42. This creates 31P y-polarization, which we convert to z-polarization

with an Xπ/2 pulse at the phosphorus frequency (Fig. 3). After each scan, we wait 3 s for

the 1H to return to equilibrium (for the T = 1 s experiment described below, a 2 s wait time

was used).
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FIG. 3. (color online). DTC pulse sequence. After 1H spins are rotated with an Xπ/2 pulse

(tall blue block), 31P magnetization is created along ŷ via cross polarization with the 1H spins,

and is then rotated into ẑ with a Xπ/2 pulse (tall orange block) to prepare the initial state of

the system. We then apply repeated Floquet cycles consisting of a delay τ followed by a pulse

Xθ (wide blue block). After N cycles, a π/2 pulse along x̂ is applied, and the magnetization is

immediately measured, producing a single data point in S(t). We increase N by 1 and repeat the

sequence, following a 3 second recycle delay. This sequence is applied for N = 1, 2, ..., 128. After

cross-polarization, continuous RF decoupling (red) can be applied (1H off) to remove the effect of

the 1H (a), or decoupling can be omitted (1H on), allowing the 1H to act on the 31P spins (b).

In order to look for evidence of discrete time translational symmetry breaking, we imple-

ment a “DTC pulse sequence,” consisting of a basic Floquet cycle which we repeatedly apply

(Fig. 3) following the preparation of the initial IzT state. Each Floquet cycle is composed

of a wait time τ , during which the internal Hamiltonian is allowed to act freely, followed

by a strong Xθ pulse of duration tp ≈ 7.5µs and angle θ = π + ǫ, with |ǫ/π| ≪ 1. This

basic Floquet block is repeated N times, represented as {τ −Xθ}
N . After N cycles, we con-

vert the 〈Iz〉 of the
31P spins into measurable transverse magnetization by applying a final,

+Xπ/2 readout pulse. We measure the signal immediately after the pulse, which becomes

the N th point in the data set (e.g., Fig. 4(a)). Note that this is a slow incremental readout

of the discrete time signal, since each repetition of the experiment allows us to choose only
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FIG. 4. (color online). (a) Applying repeated π pulses with 1H decoupling at θ ≈ π and small τ ,

we see oscillations in the time domain signal, corresponding to a single peak in the FT signal at

ν̃ = 1/2. Each data point is acquired in a separate experiment, using the DTC sequence for a given

N . N -odd are in green (starting negative) and N -even are in blue (starting positive), with black

lines between them to guide the eye. (b) Decreasing θ, we observe beating in the time domain signal,

corresponding to a splitting of the Fourier peak. (c) Near the same θ ≈ 0.962π but for increased

τ , the oscillations are restored, once again producing a single peak in the Fourier spectrum. (d)

Significantly increasing τ , we still see the same behavior. (e-h) We observe qualitatively similar

behavior in the absence of 1H decoupling. Note that for (h), NT becomes comparable to the 31P

lattice relaxation time, TP
1 = 103 s. In each case (a-h), T = τ + tp with tp = 7.5µs.

a particular value for N . Throughout this sequence we either allow the 1H to act on the

phosphorus [“1H on”, Fig. 3(b)], or apply CW decoupling to the 1H, removing their effect

on the 31P [“1H off”, Fig. 3(a)]. As we will discuss below, the RF power required for CW
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FIG. 5. (color online). Waterfall plots showing the spectra |S(ν̃)|2 at different θ with 1H off. Near
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the subharmonic response splits into two peaks, which diverge almost immediately as θ is adjusted

away from π. (b) For long drive periods T , the subharmonic peak lowers in amplitude as θ is

adjusted away from π, but remains rigidly locked at ν̃ = 1/2.

decoupling47 will eventually heat (and detune) the circuit, limiting our ability to explore out

to very long times with 1H off.

To vary the applied pulse angle in our implementation of the DTC sequence, we maintain

a constant tp and vary the strength of the pulse ω1. This gives us better resolution in the pulse

angle, while maintaining a constant cycle period T . The internal Hamiltonian continues to

act during a pulse, an important fact despite the short pulse duration — we return to this

in section VI.

The DTC pulse sequence for a given θ and τ produces a discrete time signal S(t) with

t = NT , where the period of the two-step drive is T = τ + tp, and the corresponding

frequency of the Floquet drive is νF = 1/T . We Fourier transform S(t) to get the complex

13



spectrum S(ν), then examine |S(ν̃)|2 as a function of the normalized frequency ν̃ = ν/νF .

For N = 1, 2, ..., 128, the normalized frequency ν̃ takes discrete values from 0 to 127/128, in

steps of dν̃ = 1/128.

IV. RESULTS: DTC OSCILLATIONS OVER A RANGE OF θ AND MANY

DECADES OF τ

First we discuss noteworthy features of the 1H-off data set. When we apply the DTC

pulse sequence for θ ≈ π (|ǫ/π| < 0.01) and at small time T = 20µs, S(t) follows what

intuition would dictate, trivially reversing its sign with each successive Floquet cycle. This

corresponds to a single Fourier peak at normalized frequency ν̃ = 1/2 [Fig. 4(a)]. When θ is

adjusted away from π, still at small T = 20µs, there is a pronounced additional modulation

of the signal, corresponding to a splitting of the Fourier peak — again an expected result

[Fig. 4(b)]. However, at the same approximate deviation |ǫ/π| = 0.04, if we increase τ such

that T = 400µs (giving the dipolar interaction a longer time to act), the single Fourier peak

at ν̃ = 1/2 is restored [Fig. 4(c)]. Figure 4(c) shows a predicted signature of the DTC22:

at long enough τ , the oscillations in S(t) are rigidly locked at ν̃ = 1/2, despite adjusting θ

away from π. Increasing T by more than an order of magnitude, we are still able to observe

the locked oscillations [Fig. 4(d)]. For brevity, we refer to S(t) signals such as those in Fig.

4(c) as “DTC oscillations.” When we conduct a comparable experiment but with 1H on, we

observe very similar behavior [Fig. 4(e-h)].

When we apply the DTC pulse sequence for many values of θ at T = 20µs, we observe

that the prominent feature at ν̃ = 1/2 splits into two separate frequencies, which grow apart

as θ deviates from π [Fig. 5(a)]. However, for a longer drive period T = 2.5ms, this fails

to happen. The response at ν̃ = 1/2 instead remains locked in place, while diminishing in

height as θ deviates from π [Fig. 5(b)].

To characterize the response to the DTC pulse sequence across the (θ, τ) plane, we exam-

ine the “crystalline fraction” as introduced by Choi et al.24: f = |S(ν̃=1/2)|2/
∑

ν̃ |S(ν̃)|
2.

For each value of τ , we vary θ around π (by varying ω1 at fixed tp) and plot the crystalline

fractions, using all 128 points of S(t), which fit well to Gaussians (Fig. 6,7). A set of crys-

talline fraction measurements at a single τ typically takes about one day to complete; over

the course of many such experiments, the tuning of the NMR tank circuit may drift, leading
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to slight changes in the actual θ compared to the intended θ. To correct for this, we recali-

brated ω1tp = θ (using a nutation experiment), then conducted two experiments at constant

θ and varying τ , allowing us to explore along τ relatively quickly after the calibration (Fig.

6 and 7, black squares). By running two such experiments, we are able to use the resulting

crystalline fractions as “guides” to line up the data across experiments, correcting for the

slow drift in pulse power and reducing systematic uncertainty in θ/π [Fig. 6,7].

Following the example of Choi et al.24 once again, we visualize the region of persistent

DTC oscillations by noting where the Gaussian fits to the crystalline fractions fall below

an arbitrary cutoff [Fig. 8(a,e)]. We show the corresponding (θ, τ) values for crystalline

fraction f = 0.1, along with those for f = 0.05 and f = 0.15, since the region exhibiting

persistent DTC oscillations does not show particularly sharp boundaries. The resulting

diagrams shown in Fig. 8(b-c, f-g) depict the boundaries within which we observe DTC

oscillations (the “DTC region”), and outside of which the deviation of the drive from θ = π

results in diminished or split Fourier peaks in the spectrum. At small τ , there exists a very

small region of DTC oscillations around θ = π. As τ is increased, the oscillations persist for

a wider and wider range of θ around π, as the DTC region “expands” in width. For both

1H on and 1H off, at long τ , the width of the DTC region becomes roughly independent

of τ over multiple orders of magnitude. We do not observe a predicted “pinch-off” of the

stable region at long τ , perhaps because our spin Hamiltonian does not have the disorder

assumed in that model28. For 1H off [Fig. 8(c)], we observe some structure in the the DTC

boundary around τ = 1ms. For 1H on [Fig. 8(g)], the width of the DTC region increases

slightly faster at short τ , and is relatively featureless at long τ compared to the 1H off case.

When the RF power from 1H decoupling causes circuit heating, there can be different

amounts of heating at different N values. This makes it very difficult to calibrate the results,

so we omit the data acquired in the presence of significant circuit heating (Fig. 6, T = 100

ms) from Fig. 8(c). When we repeat these experiments with 1H on (with no CW decoupling

and no circuit heating), we are able to explore even more decades in T [Fig. 7,8(g)], out

to T = 1 s, where the total experiment time approaches TP
1 . This is likely responsible for

the slight decrease in the crystalline fraction amplitude at T = 1 s, and the corresponding

decrease in the width of the DTC region at T = 1 s (note that the Gaussian fit in Fig. 7,

T = 1 s, is shorter than those at smaller T , rather than narrower).

To provide a unitless scale for these results, we compare the deviations of the RF pulse
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FIG. 6. (color online). 1H off: Crystalline fractions f across a broad range of drive periods T

(labeled, where the f data for the mth value of T are vertically offset by m− 1 for clarity). The

crystalline fractions are well fit by Gaussians. Over the duration of the many experiments, the

tuning of the NMR tank circuit can drift, leading to poorly calibrated θ (left). The black squares

represent well-calibrated benchmarks which we use to correct the data to match the actual θ values

(as described in the main text), resulting in the data on the right. Because of heating, the 100ms

data will not appear in Fig. 8. Error bars (not shown) are much smaller than the markers.

angle θ from π to an effective dipolar interaction angle Wτ . We show lines at |θ−π| = Wτ ,

for WP,P/2π = 508 Hz [Fig. 8(b-c,f-g)], WP,PN/2π = 517 Hz [Fig. 8(b-c)], and WP,HPN/2π =

3538Hz [Fig. 8(f-g)]. These lines are not considered to be explanations for the shape of the

DTC boundary, but it is interesting that they are so close to the boundary at small τ . To

better understand the non-monotonic, complicated structure in the boundary of the DTC
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FIG. 7. (color online). 1H on: In the absence of 1H decoupling, we are free to explore an even

greater expanse in T (labeled, where the f data for the mth value of T are vertically offset by

m− 1 for clarity) without the danger of the circuit heating effects seen in Fig. 6. As with 1H off,

we observe Gaussian shapes in the crystalline fraction with 1H on, and the width of the Gaussians

increases with the drive period. The black squares are used in the same correction procedure as

those shown in Fig. 6, to correct for miscalibrations of the actual θ from the expected θ (a very

minor effect here). Error bars (not shown) are much smaller than the markers.

region around τ = 1ms for 1H off [Fig. 8(c)], we reexamine the crystalline fraction with

an experiment at fixed θ = 1.067π and linear scales in τ for both 1H on and 1H off [Fig.

8(d,h), which show crystalline fractions rather than cutoff boundaries]. In Fig. 8(d), we see

the crytalline fraction is a non-monotonic function of τ for 1H off. By contrast, Fig. 8(h)

shows that the crystalline fraction for 1H on has a steeper slope at short τ , and is without
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FIG. 8. (color online). (a-d) Probing f with 1H off. (a) We establish a cutoff (dotted line) in the

Gaussian fits to the crystalline fraction at f = 0.1. Crystalline fractions from T = 20µs (triangles)

and 400µs (circles) are shown. The intersection of f with the cutoff defines a boundary point. (b)

Cutoff at f = 0.1 (red circles), corresponding to the boundaries within which we observe persistent

oscillations at ν̃ = 1/2 (the “DTC region”). We also show cutoffs at f = 0.05 and f = 0.15

(dotted lines). We compare this to an effective dipolar interaction angle by plotting |θ− π| = Wτ ,

with W = WP,P [(b-c), black dashed lines] and W = WP,PN [(b-c), grey dashed lines, very close

to WP,P]. (c) DTC region on a semi-log scale. For τ = 100ms, the results in Fig. 6 become

unreliable because of tank circuit heating from RF decoupling, so they are not plotted here. (d)

f versus τ for 1H off at θ = 1.067π [angle marked in (c)]. (e-h) Probing f with 1H on. In (f-

g) we also include |θ − π| = WP,HPNτ (blue dot-dashed lines). In (g), the data span the range

0.03 < WP,Pτ < 3200 radians. Error bars (not shown) are much smaller than the markers in (a-h).
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FIG. 9. (color online). Using Fourier transforms of only 50 late-time points in S(NT ), N = 51—

100, the crystalline fractions become flatter around θ = π, for both 1H off (left, red triangles)

and 1H on (right, blue circles). We fit these to symmetrical super-Gaussians (lines): F (θ) =

A exp[−(|θ − θ0|/σ)
p/2], where we fix θ0 using the Gaussians in Figs. 6-7.

structure at long τ .

The Gaussian shapes shown in Figs. 6-7 differ from the corresponding super-Gaussian

shapes reported by Choi et al. [their Fig. 3(a)]24. While this might seem to be an important

difference, it turns out to be an artifact of the FT window size used in each study. To see this,

we recalculate our crystalline fractions using a windowed FT of only the points N = 51—100

in S(t), which matches exactly the procedure of Choi et al24. Fig. 9 shows that the resulting

data are much flatter near θ = π, and are well described by Choi et al.’s super-Gaussian

model. At first glance, the impact of window-size choice on crystalline-fraction shape seems
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paradoxical, since our S(t) data are typically single-exponential [e.g., Fig. 4(d)]. However,

the crystalline fraction should not be confused with a time constant, as its value depends

on the choice of the FT window in a complicated way (for a more in-depth explanation, see

Appendix C). In light of this, we think it is best to use our full data sets when calculating

the crystalline fraction.

It is interesting to note the similarity between the results for 1H off and 1H on, as well

as the similarity to the results achieved using diamond NV centers, despite the different

spin Hamiltonians. Note also that the Wτ range shown is 0.03 < WP,Pτ < 3200 radians,

spanning effective dipolar interaction angles both far below and far above Wτ = 1 radian.

In most DTC models, thermalization should destroy the oscillating signal for long enough

τ , but we do not see this in our results.

V. REFOCUSING THE DECAY OF THE DTC OSCILLATIONS WITH THE DTC

ECHO SEQUENCE

The lifetime of the DTC oscillations (and the dependence of lifetime on the interaction

strength) is of central interest in the study of DTC physics. To explain the observed decay

in our experiments, we first consider a simple model of non-interacting spins, which undergo

a two-step process starting with magnetization along ẑ. First, an Xπ+ǫ pulse rotates the

magnetization vector to −ẑ cos(ǫ)− ŷ sin(ǫ). Second, during the time τ , we suppose that the

transverse magnetization is lost due to dephasing caused by local field variations, leaving

only the component of the magnetization along ẑ. After repeating this process over N cycles,

the original signal will have decayed exponentially as cosN (ǫ). Indeed, the signal we observe

in our experiments seems to stay at or below the bound imposed by this predicted decay

envelope. If the dephasing in our model is due to external field variations of unknown origin,

then this decay will be irreversible. On the other hand, if the observed decay is actually

due to unitary evolution under a complicated Hamiltonian, then it might, in principle, be

reversible. To test whether this decay was reversible or not, we devised a pulse sequence

designed to undo the forward evolution from the dominant Hamiltonian terms, looking for

instances where the signal rose above the envelope imposed by the cosN(ǫ) decay model.

If we assume the effect of Hint during τ is dominated by the 31P-31P dipolar coupling

HP,P
zz , then we can borrow techniques from the “magic-echo” experiment, which is designed
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FIG. 10. (color online). (a) DTC echo sequence, designed to approximatly reverse the effect of the

original DTC sequence. The “approximate reversal” block consists of a rotation Xθ (wide orange

block), followed by a duration 2τ during which a strong pulse of phase y is applied to the 31P. We

apply “wrapper” pulses Xπ/2 and Xπ/2 (tall blue and orange blocks, respectively) to rotate −HP,P
yy

into −HP,P
zz . Since the last two pulses of the sequence negate one another, neither is applied in

practice. 1H decoupling is used throughout. (b-c) DTC echoes for T = 200 µs and θ = 1.08π (b)

and 1.16π (c). For N cycles of the “forward” block, we see the signal decay in red triangles. After

N = 6, the reversal sequence is applied for N ′ cycles (green open triangles), where we expect an

echo to appear at N ′ = N = 6 (filled point and arrow). (d-e) DTC echoes for N = {2, 6, 10} (open

blue circles, green triangles, yellow diamonds), where we show the absolute values of each signal

for easier inspection. Expected echo locations are marked with filled points and arrows. In (b-e),

blue dots show the DTC signal decay for θ ≈ π.

to refocus the homonuclear dipolar interaction48. To adapt these techniques for designing a

“DTC echo” sequence, we use two approximations. First, we assume that all of the short

duration (< 10µs) applied Xθ pulses are of infinite strength and zero duration, such that

the net rotation angle is θ and the internal Hamiltonian has no time to act (i.e. the delta-

function pulse approximation). Second, during a much longer pulse (≫ 10µs) of phase φ,
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we assume that the homonuclear dipolar coupling reduces exactly to the component of the

dipolar coupling which is secular in the frame of the pulse: HP,P
zz → −(1/2)HP,P

φφ , where

we have defined HP,P
φφ =

∑

i,j>iB
P
ij(3Iφi

Iφj
− ~Ii · ~Ij)

34. Using these approximations,

we construct a unitary reversal of the original DTC Floquet cycle by time-reversing both

the Xθ pulse and the free evolution, in reverse order. To reverse the effect of the Xθ

pulse, we simply apply a pulse of equal angle but opposite phase, Xθ. To reverse the effect

of the homonuclear dipolar term in the internal Hamiltonian, HP,P
zz , we make use of the

abovementioned approximation, and apply a long YΦ pulse, where Φ = ω12τ , to produce an

effective evolution of (−1/2)HP,P
yy (2τ) = −HP,P

yy τ . In order to properly negate the forward

evolution HP,P
zz τ from the original sequence, we include “wrapper pulses” ±Xπ/2 around

−HP,P
yy τ , which “rotate” it into −HP,P

zz τ . The resulting DTC echo sequence is:

{τ −Xθ}
N − (Xπ/2 − {Xθ − YΦ}

N ′

−Xπ/2). (3)

This is shown schematically in Fig. 10(a). Starting with N Floquet cycles of the original

DTC pulse sequence, we follow with N ′ repetitions of the approximate reversal sequence,

looking for an echo peak when N ′ = N . In the language of the more conventional Hahn spin

echo sequence, the first part (N blocks) of this sequence generates the “FID” analogue, while

the second part (rotated N ′ blocks) generates the echo signal “after the π pulse”34,39. Note

that this DTC echo sequence would not be able to refocus the decay of the DTC oscillations

if it were instead dominated by a spread in static Zeeman terms ΩiIzi, because the strong

YΦ pulse quickly averages these Zeeman terms to zero during the N ′ blocks of the DTC echo

sequence.

Using the original DTC pulse sequence for θ = 1.08π [Fig. 10(b)] and θ = 1.16π [Fig.

10(c)], we see S(t) decay near or below the cosN (ǫ) decay rate. Using the DTC echo sequence

for N = 6 Floquet cycles of the original DTC sequence, we observe clear echoes rising above

the cosN(ǫ) decay envelope [Fig. 10(b-c)]; these echoes are even more prominent when we

plot |S(t)| for the DTC echo sequence with N = 2, 6, 10 [Fig. 10(d-e)]. This demonstrates

that the decay mechanism of the DTC oscillations involves deterministic coherence flow to

unobservable parts of the density matrix, which our DTC echo sequence then resurrects as

signal.
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FIG. 11. (color online). S(t) for θ = π, at T = 200 µs, identical to the blue dots in Fig. 10(b-e).

This decay cannot be explained by dipolar interactions in an ideal delta-function pulse model.

VI. CAUSES OF THE DECAY IN THE DTC OSCILLATIONS OBSERVED AT

θ = π

For our spin Hamiltonian, we do not expect to see any decay in the DTC oscillations at

θ = π, if we apply perfect, delta-function pulses. However, Fig. 11 shows that the oscillations

clearly decay even at θ = π, which causes us to revisit the effects of the actual pulses used

in the DTC sequence. Another clue about the mechanism responsible for this decay is that

it seems to impose a limit on the echoes produced in the θ > π case (Fig. 10), where the

echoes never rise above the data acquired at θ = π (Fig. 10, blue dots), and also appear

to occur slightly earlier than expected as if there is an additional decay envelope imposed

on their evolution. In this section we discuss possible causes for this decay envelope, first

by examining possible experimental causes, then by revisiting the approximation of zero-

duration, delta-function π pulses.

A. Quantifying the effect of experimental pulse imperfections

In this section, we consider two common pulse imperfections, phase transients and H1

inhomogeneity, and quantify their effects on the decay envelope at θ = π. First we consider

phase transients, which are small out-of-phase components of the applied RF at the begin-

ning and end of the pulses. Using a small pickup coil connected to the NMR spectrometer

acquisition channel, we measure the applied magnetic field from a pulse, and compare the

out-of-phase component to the in-phase π pulse. As evident in Fig. 12(a), the measured

phase transients are very small relative to the in-phase component of the applied Xπ pulse.
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FIG. 12. (color online). (a) Envelope of a π pulse applied at frequency ω0, as measured by a

pickup coil placed near the resonator. The phase transients (small out-of-phase signal, dark green)

are much smaller than the in-phase (red) pulse amplitude. (b) Cumulative integral of the out-of-

phase pulse amplitude, scaled by setting the integral of the in-phase signal to 180◦. Each transient

produces less than a degree of rotation. (c) Incorporating the effect of phase transients into the

cosN (ǫ) decay model (black, identically 1 for θ = π) leads to a modified decay model (dashed line).

The modified model decays too slowly to account for the decay envelope of the measured |S(t)| at

θ = π, shown here for T = 200 µs (blue circles).

The cumulative effect of these transients results in a net out-of-phase (along ŷ) rotation of

less than 1◦ [Fig. 12(b)]. To incorporate this into the “product-of-cosines” decay model, we

model a pulse with phase transients by including small out-of-phase components of opposite

sign before and after the intended pulse: Xθ → {Y1◦ −Xθ −Y−1◦}
45. Then we again assume

that after each such pulse, only the magnetization along ẑ remains. This modifies the orig-

inal product-of-cosines model to cosN(ǫ) → [cos2(1◦) cos(ǫ) − sin2(1◦)]N , whose magnitude

we show in Fig. 12(c). Comparing to the DTC oscillations at θ = π, we see that the effect

of the phase transients is far too small to account for the observed decay envelope.

Second, we consider the effect of H1 inhomogeneity across the sample, due to the coil

geometry. If H1 varies across the sample, then an applied pulse of intended angle θ will

actually produce rotations of slightly different angles in different parts of the sample. To

investigate this, we carry out a nutation experiment, which examines the signal after a pulse

Xω1t, where ω1 is constant and the pulse time t is stepped from small to large values. Fitting
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the signal as a function of pulse time t reveals the frequency of oscillation, ω1. The envelope

of this long nutation curve will decay for two reasons: the H1 inhomogeneity across the

sample, and the reduced homonuclear dipolar coupling (−1/2)HP,P
xx during the long pulse.

In order to arrive at a decay model which incorporates the H1 inhomogeneity, we do three

things. First, we quantify the decay caused by (−1/2)HP,P
xx , and “remove” this effect from

the nutation curve, leaving only the decay due to the H1 spread across the sample. Second,

we use this altered nutation data to infer a probability distribution of H1 strength across the

sample. Third, we use this inferred distribution to create a modified “product of cosines”

decay envelope which takes into account the spread in the applied angle. The details of each

step follow.

We quantify the decay caused by (−1/2)HP,P
xx using both a rotary echo experiment and

a Hahn echo experiment. In a rotary echo experiment49, a data point at time t is acquired

by examining the signal after applying the pulse sequence {Xω1t/2 −Xω1t/2} at constant ω1

(note that we require 2µs gaps between consecutive pulses to change phase, which we do

not show in the pulse sequence notation here or below). This approximately negates the

spread from the applied field inhomogeneity, leaving only the decay due to the component of

dipolar coupling that is secular in the presence of the strong ±x̂ pulse: −(1/2)HP,P
xx . Since

this reduced dipolar coupling has a prefactor of 1/2, we expect a rotary echo experiment to

produce similar results to those of a Hahn echo experiment with time effectively doubled.

In Fig. 13(a), we see that the rotary echo data closely approximates the simulated Hahn

echo data (SP(t), as described in Appendix B) when the Hahn echo data is scaled by 2

in time. Note that the rotary echo data also lasts much longer than the nutation data,

indicating that the decay from H1 inhomogeneity is not negligible. In order to isolate the

decay caused specifically by the H1 field inhomogeneity across the sample, we divide the

nutation data by the simulated, scaled Hahn echo data, effectively removing the component

of the decay caused by −(1/2)HP,P
xx . We use the Hahn echo data rather than the rotary echo

data since it lasts slightly longer than the rotary echo data; thus we ascribe more of the

overall nutation curve decay to the H1 inhomogeneity (representing a “worst-case” scenario

for H1 inhomogeneity across the sample). While this procedure produces noise near the tail

of the decay, the fits discussed below are largely unaffected because the noise is random [Fig.

13(a)].

Next, we try to infer an H1 probability distribution p(γH1/2π) which could cause the re-
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maining decay in the altered nutation experiment. Based upon previous work45, we assume

that a sum of two Gaussians is a reasonable approximation to the shape of the H1 distri-

bution. This allows us to write an analytical time-domain decay function, which we fit to

the nutation data (as altered above), with good results [Fig. 13(a), insets]. The parameters

from the fit determine the shape of p(γH1/2π) [Fig. 13(b)], which itself provides a measure

of the pulse imperfection (a spread in actually-applied pulse angles).

Finally, we incorporate the spread in ǫ into a modification of the original “product of

cosines” decay model: cosN(ǫ) →
∑

i pi cos
N(ǫi) for a range of angles ǫi = |θi − π| with

probabilities pi. The corrected decay model still decays much more slowly than the DTC

oscillation at θ = π, even when we include the effect of the phase transients as described

[Fig. 13(c)]. Thus, this “worst-case-scenario” effect from the H1 inhomogeneity across the

sample is insufficient to account for the observed decay of the DTC oscillations at θ = π.

B. Studying the effect of the internal Hamiltonian during a nonzero-duration pulse

Since these experimental causes have been shown to be too small to account for the

observed decay at θ = π, we return to the approximation that the applied pulses are zero

duration (delta-function) pulses. To study the effect of the internal Hamiltonian during

a θ = π pulse of nonzero duration, we implement modified versions of the DTC sequence

with different sets of pulse phases, since this allows us to selectively manipulate the effective

internal Hamiltonian during the pulse. Defining {α, β} ≡ {τ − απ − τ − βπ}
N , we compare

the sequences {X,X}, {Y, Y }, and {X, Y }, which should produce identical results for zero-

duration π pulses. However, Fig. 14(a) shows that the signal from {X, Y } lasts far longer

than the signal from either {X,X} or {Y, Y } for short τ , demonstrating that the non-zero

pulse duration plays an important role in the observed decay.

These results may be qualitatively explained for pulses of non-zero duration, when we

use the identity HP,P
xx +HP,P

yy +HP,P
zz = 0 (used, e.g., in the WAHUHA sequence to average

the total dipolar evolution to zero50,51). The sequence {X, Y } has average Hamiltonian

H(0) = 2HP,P
zz τ − (HP,P

xx +HP,P
yy )tp/2 = (2τ + tp/2)H

P,P
zz , and will thus leave the original state

unaffected to zeroth order in the Magnus expansion. This is in contrast to {X,X}, which

has average Hamiltonian H(0) = 2HP,P
zz τ −HP,P

xx tp.

The approximate average Hamiltonian analysis explaining this result breaks down when
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FIG. 13. (color online). (a) Nutation of 31P (black dots), after removing the effect of the homonu-

clear dipolar coupling. We do this by dividing the measured nutation data (not shown) by the

simulated Hahn echo, scaled by a factor of 2 in time (red solid line). A rotary echo experiment

approximately undoes the effect of the H1 inhomogeneity, and results in data (small blue dots)

which match closely to the scaled Hahn echo simulation. We fit (gray) the modified nutation data

to a model of a plausible field profile in the coil, with good results (a, inset). (b) TheH1 field profile

corresponding to the fit parameters (from the fit to the scaled nutation data) for a two-Gaussian

model; this represents a histogram of applied frequencies γH1/2π during an applied pulse. (c)

The histogram of applied frequencies γH1/2π can be used to deduce a spread in the applied pulse

angle θ, which we use to modify the original product-of-cosines decay model (black, identically 1

for perfect π pulses) to the corrected decay model (gray dashed line). Including the effects of both

H1 inhomogeneity and phase transients (red dot-dashed line) only slightly modifies the modeled

decay envelope. The magnitude of S(t) at θ ≈ π and T = 200µs (blue circles) decays much faster

than the product-of-cosines model, even after including the effect of these pulse imperfections.

τ is long51,52, where the advantage of {X, Y } over {X,X} is lost [Fig. 14(b)]. Although we

cannot rely on the convergence of the Magnus expansion at long τ , we can still try to extend

the decay envelope by moving even farther from the original DTC sequence and applying

pulse sequences which use a burst of π pulses instead of one53. In Fig. 14(b), we show the
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results of {τ−Xπ−Yπ−Xπ−Yπ}
N , which again shows an extended lifetime, even at long τ .

The signal resulting from this sequence lasts longer than the original DTC sequence even in

absolute time, despite the increased number of necessarily imperfect pulses [Fig. 14(b-d)].

The analysis in this section pertains to θ = π. When θ is adjusted away from π, the effect

of the interactions during the pulse should grow, as terms that were strictly zero at θ = π

begin to turn on45,46. Thus, we expect the dipolar interactions during the pulse to produce

a decay envelope at θ 6= π which will limit the echoes shown in section V. Creating echoes

that are able to rise above this envelope will be difficult, since it is harder to undo the many

different terms which arise for θ 6= π, but it may be possible.

VII. CONCLUSION

We became especially interested in descriptions of DTC phenomena when reports ap-

peared in the literature of period-doubling in driven systems, since comparable behavior

emerged for long cycle times in our prior studies of periodically driven NMR systems45,46.

From these studies, we developed a model that took into account the interactions during π

pulses45,46, which we put to good use in the small cycle time limit53,54. However, most of our

originally puzzling data45 lay beyond the reach of our model, since it relied on the Magnus

expansion, which diverges for long cycle times51,52. Thus, we wondered if the growing theo-

retical framework around DTC order could shed light on our still unexplained results, and

we began to conduct similar experiments to the ones which had been published for systems

of trapped ions23 and diamond NV centers24.

Both this system and the system of diamond NV centers are very different from the system

of trapped ions, being large systems with long-ranged dipolar couplings in 3 dimensions. The

ADP crystal studied here is itself strikingly different from the system of NV centers, being

a dense, organized crystal with no significant sources of disorder. Nevertheless, despite

the many differences in the spin Hamiltonian for our system, our results are strikingly

similar to the results achieved in both of these prior DTC experiments. Furthermore, our

experiment allows us to explore a very large region in the (θ, τ) parameter space, where

we observe robust DTC oscillations across a remarkably broad range in τ ; in particular,

0.03 < WP,Pτ < 3200 radians.

The clean spatial crystal studied here should be even less conducive to MBL than the
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FIG. 14. (color online). (a) Significant differences in the decay rate between sequences that are

identical in the delta-function π-pulse approximation. At τ = 20µs, the pulse sequences {X,X}

(black open squares) and {Y, Y } (red open circles) produce very different lifetimes than {X,Y }

(green open triangles). The effect of the internal Hamiltonian during the pulse time tp creates

differences between these sequences, which gives the latter sequence a much longer lifetime (see

text). Because the signal is only observed every two cycles, the oscillations in the signal are not

seen here. (b) Results of the pulse sequence {τ −Xπ − Yπ −Xπ − Yπ}
N (closed blue diamonds),

which again exhibits an extended lifetime compared to the original DTC sequence, even at long

τ . (c-d) The difference in lifetimes as a function of absolute time is significant, but displaying the

pulse sequences as functions of the number of applied π pulses or Floquet cycles shows even more

dramatic differences.
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systems in prior experiments27,28; if MBL plays a role in our experiments, that would seem

to require MBL to occur in highly unanticipated regimes. A prethermal DTC state could

explain the observations of persistent DTC oscillations like the ones observed here. How-

ever, for our system 〈HP,P
zz (t = 0)〉 = 0, which suggests that the initial state is at an infinite

temperature relative to the effective Floquet Hamiltonian. This seems to rule out a prether-

mal explanation for our observations, since that normally requires the system to start below

some finite critical temperature17.

The decay envelope of the observable DTC oscillations in our system was bounded by a

simple “product of cosines” dephasing model for certain values of θ and τ ; however, using

the DTC echo as a new probe of the state shows us that the density matrix produced by

the DTC sequence retains a coherent memory of its initial state.

Turning to the decay envelope of the DTC oscillations at θ = π, we see clear evidence of

the effect of Hint during nonzero duration pulses. We suggest that more in-depth studies of

the DTC lifetime should account for the action of terms in the internal Hamiltonian during

a pulse, since these small terms can have significant effects over the course of many repeated

pulses.

Driven, out of equilibrium many-body systems are thought to be interesting hunting

grounds for new physics and phases of matter. Solid-state NMR can aid in this search, by

exploiting the large separation between T1 and T2, the ability to edit the effective Hamilto-

nian using pulses, and other tricks in the NMR toolbox.

Note added: after this paper was submitted, the authors of an interesting related ex-

periment contacted us, alerting us to their liquid state NMR search for temporal order of

periodically-driven spins in star-shaped clusters55. They study a unique spin Hamiltonian,

and they explore a range of cluster sizes (with N = 1, 4, 10, and 37 spins).
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Appendix A: Symmetries of certain sublattices in ADP crystal

Ammonium dihydrogen phosphate is a tetragonal crystal with unit cell dimensions a =

b = 7.4997 Å, c = 7.5494 Å. Here we show that the secular dipolar coupling for the 31P and

14N sublattices of the I42d ADP crystal are invariant under shifts to any other site of the

sublattice. We do so explicity by writing the coordinates of the 31P sublattice relative to

the unit cell32,33:

(a, b, c) = {(0, 0, 0), (1
2
, 1
2
, 1
2
), (1

2
, 0, 1

4
), (0, 1

2
, 3
4
)}, (A1)

with 14N sites (a, b, c + 1
2
). Simply, we translate each coordinate to the origin, and

examine the symmetry. These positions go into themselves by translations (1
2
, 1
2
, 1
2
), but

translations by (−1
2
, 0,−1

4
) or (0,−1

2
,−3

4
) produce a set of coordinates (a′, b′, c′) = (a, b,−c),

inverted in c. However, the crystal is symmetric under rotations about c by 180◦ (= 360◦/2,

2 symmetry) such that (a′, b′, c′) → −(a, b, c), e.g. a complete inversion. Thus, for any

coordinate vectors ~rA and ~rB of any 31P or 14N nucleus, the internuclear vector transforms as

~r = ( ~rA− ~rB) → −~r. Relative to the z-axis as defined by the external B-field (not necessarily

along c), we then have cos(θ) = ~r · ~B/(|~r|| ~B|) → − cos(θ), so that cos2(θ) is invariant. Since

all distances are preserved, the invariance of Bij(r, θ) follows. These arguments may be

immediately extended to the ammonium 1H, whose average positions reside on the nitrogen

sites.

For the acid 1H, these symmetry arguments only hold for particular orientations of the

crystal relative to the static field. To see this, note that the average positions of these eight

1H are

(0, 0, 0), (1
2
, 1
2
, 1
2
)

+ {(x, 1
4
, 1
8
), (−x, 3

4
, 1
8
), (1

4
,−x, 7

8
), (3

4
, x, 7

8
)}, (A2)

with x = 0.147. Upon translation by (−1
2
, 0,−1

4
) or (0,−1

2
,−3

4
), rather than being invariant

after inversions in c, the lower-symmetry locations of the acid 1H are invariant only after

a 180◦ rotation about either a or b. This results in the transformed unit cell coordinates

(a′, b′, c′) = (a,−b,−c) or (−a, b,−c), neither of which preserves ~r · ~B for internuclear vectors
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~r in general. Nonetheless, the {(0, 0, 0), (1
2
, 1
2
, 1
2
)} and {(1

2
, 0, 1

4
), (0, 1

2
, 3
4
)} 31P sublattices

independently maintain identical sets of coupling constants to the acid 1H, which become

the same under certain orientations of the crystal relative to the external field. Specifically,

if the strong external field lies purely in the x-z or y-z planes (e.g. either Bx = 0 or By = 0

relative to the crystal axes), the 31P couplings to the acid 1H will be identical for each

31P nucleus. Since the azimuthal angle of H0 with respect to the crystal axes (a, b, c) is

φ ≈ m90◦, m = 0, 1, 2, 3 in our experiment (see main text), we see this symmetry in the

numerics for the orientation angle which best approximates the data (Fig 2)56.

Appendix B: Numerics of the 31P spin Hamiltonian in ADP crystal

We simulate a lattice of spins with published atomic positions, with two modifications

appropriate for the motionally-narrowed NMR spectrum: (1) we locate the acid 1H in time-

averaged positions halfway between the nearest PO4 oxygens, and (2) we locate ammonium

1H in time-averaged positions at the nitrogen lattice sites32,33. These modifications account

for motions that are very rapid compared to NMR timescales. We begin by treating each

31P location in the unit cell in turn as the origin of a large cluster of spins on the lattice,

only including spins within a radius of R ≈ 20.25Å around the origin (corresponding to 325

31P, 322 14N, and 1932 1H). We then calculate the lineshapes from HP,P
zz , HP,H

zz , and HP,N
zz

separately; in order to calculate the lineshape resulting from e.g. HP,H
zz , we only calculate the

coupling constants BH
1j between the central 31P spin and all 1H spins in the cluster, and use

these BH
1j values for our simulation. We do this for a given sample orientation, parameterized

by the respective azimuthal and polar angles (θc, φc) of the static field H0 relative to the

crystal axes, (x, y, z) = (a, b, c). For each pair of spins, we first approximate the coupling

as
∑

B1j(2Iz1Izj), since this is an analytically solvable model57,58. For an initial density

matrix proportional to IyT , the signal measured for a single spin-1/2 coupled to spin-“s”

evolves as S(t) = 〈Iy1(t)〉 / 〈Iy1(0)〉 =
∏

j

∑

k pk cos[mk(2B1j)t/~], where mk are the possible

mz quantum numbers for a spin-s particle, and pk are the corresponding probabilities (e.g.

mk = {+1, 0,−1} and pk = {1
3
, 1
3
, 1
3
} for spin-1).

We define SP, SH, and SN to be the signals calculated from a spin Hamiltonian containing

only HP,P
zz ,HP,H

zz , or HP,N
zz , respectively, then calculate the magnetization decay using the

appropriate spin values in the formula above. For the 31P-31P coupling, we have (recalling
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that 31P has a spin-1/2 nucleus)

SP(t) =
∏

j

cos(
3

2
BP

1jt/~), (B1)

where we include a factor of 3/2 in the coupling constant to account for the difference between

the 3IziIzj in the full dipolar coupling for “like spins” and the 2IziIzj in our Ising-like model

for “unlike spins.” For couplings of 31P to the spin-1/2 1H, we have

SH(t) =
∏

j

cos(BH
1jt/~). (B2)

Finally, for couplings to the spin-1 14N nuclei, we have

SN(t) =
∏

j

1

3
{2 cos[(2BN

1j)t/~] + 1}. (B3)

To arrive at these S(t), we have chosen one of the 4 unique lattice positions of 31P in the

unit cell to serve as the origin. We repeat this procedure with the lattice centered at each

of the 4 unique 31P position in the crystal structure, and average the 4 results to arrive at

a total time domain signal. To calculate the combined effect of multiple interactions (e.g.,

include 31P-31P, 31P-1H, and 31P-14N interactions), we multiply the corresponding time data

[e.g. SP,HPN(t) = SP,H(t) × SP,P(t) × SP,N(t)]. We do a complex Fourier transform of S(t)

to produce a spectrum S(ν) (e.g., Fig. 15), from which we derive a mean square coupling

strength W 2/2π = 〈ν2〉 =
∑

ν ν
2Re[S(ν)]/

∑

ν Re[S(ν)].

Lastly, we can compare these W to the RMS B1j values themselves, after proper weight-

ing. For 31P-31P, we have WP,P ≈ 3
2
BP

RMS/~, where we include 3/2 for the reasons dis-

cussed above. For 31P-1H, we simply have WP,H ≈ BH
RMS/~. For 31P-14N, we have WP,H ≈

2
√

2/3BN
RMS/~, where we have again used the spin statistics for the spin-1 14N: (~WP,N)2 ≈

∑

k pk(mk2B
N
RMS)

2, with pk = {1
3
, 1
3
, 1
3
} and mk = {+1, 0,−1}.

Appendix C: Dependence of the crystalline fraction on the window size used by

the Fourier transform

When we used fewer points in our FT window, e.g. N = 51—100 of S(t), the crys-

talline fraction f(θ) acquired flatter regions around θ = π, fitting better to super-Gaussians

than Gaussians. A simple model shows that this arises from the definition of the crys-

talline fraction. We model a signal which oscillates under an exponential decay S(N) =
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FIG. 15. Computed 31P spectra S(ν), with marked RMS frequencies W/2π. (a) The pure 31P-

1H dipolar spectrum SP,H(ν) (solid line), with marked RMS frequency (dashed line) WP,H/2π =

3500Hz. (b) The pure 31P-14N dipolar spectrum SP,N(ν) in red (dark gray solid line) and the pure

31P-31P dipolar spectrum SP,P(ν) in green (light gray solid line), with marked RMS frequencies

(dashed lines) WP,N/2π = 97Hz and WP,P/2π = 508Hz. Not shown here are SP,PN(ν) [similar to

Fig. 2(c), red circles] with RMS frequency WP,PN = 517Hz, and SP,HPN(ν) [see Fig. 2(b), blue

squares] with RMS frequency WP,HPN/2π = 3538Hz.

(−1)N exp(−N/N∗), where the decay constant N∗ depends on θ. In this model, we use

N∗(θ) = 125
0.042

(θ/π − 1)2 + 0.042
(C1)

as shown in [Fig. 16(a)]; the Lorentzian dependence of N∗ on θ is a reasonable description of

much of our data. Using this N∗(θ), Fig. 16(b) shows the calculated crystal fraction f using

three different Fourier transform window sizes: N = 1—128, N = 1—50, and N = 1—20.

The change in the window size is sufficient to produce flatter tops; the crystal fraction data

shown in Figs. 6-9 should be read with this in mind.
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