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Mott glass from localization and confinement

Yang-Zhi Chou,∗ Rahul M. Nandkishore, and Leo Radzihovsky
Department of Physics and Center for Theory of Quantum Matter,
University of Colorado Boulder, Boulder, Colorado 80309, USA

We study a system of fermions in one spatial dimension with linearly confining interactions and
short-range disorder. We focus on the zero temperature properties of this system, which we charac-
terize using bosonization and the Gaussian variational method. We compute the static compress-
ibility and ac conductivity, and thereby demonstrate that the system is incompressible, but exhibits
gapless optical conductivity. This corresponds to a “Mott glass” state, distinct from an Anderson
and a fully gapped Mott insulator, arising due to the interplay of disorder and charge confinement.
We argue that this Mott glass phenomenology should persist to non-zero temperatures.

I. INTRODUCTION

Rich phenomena arising from interplay of disorder and
interactions in quantum many-body systems have been
at the center of considerable excitement over the past
decade, particularly with the advent of many-body local-
ization (MBL)1–4, a phenomenon whereby disordered in-
teracting systems can exhibit ergodicity breaking and fail
to equilibrate even at infinite times. While most theory
in this field has been formulated for systems with short-
range interactions, and long-range interactions are typi-
cally expected to suppress localization5–7, a recent work8

introduced a model of one-dimensional (1D) linearly in-
teracting fermions – the celebrated Schwinger model9–12

– with the additional ingredient of quenched disorder, ar-
gued to exhibit many-body localization despite its long-
range interactions.

Here we study the ground state and low-energy prop-
erties of the disordered Schwinger model. While 1D
non-interacting fermions in a random potentials local-
ize, forming a gapless compressible Anderson insulator,
a clean 1D system with Coulomb interaction exhibits
charge confinement, with a fully gapped ground state.
What are the ground state and low-energy properties
when both of these ingredients are present, namely that
of disordered linearly interacting fermions in one dimen-
sion?

Using bosonization and Gaussian Variational Method
(GVM)13,14, here we explore the zero-temperature prop-
erties of this model and demonstrate that it realizes a dis-
tinct phase of matter, a “Mott glass”15,16, that is charac-
terized by a hard gap in compressibility, but not in optical
conductivity, i.e., it exhibits a vanishing compressibility
and a finite ac conductivity down to zero frequency. The
hard gap in compressibility arises due to confinement of
charged excitations, while the absence of a hard gap in
optical conductivity is due to the existence of random
localized dipole excitations down to zero energy. Un-
like previous explorations of such phenomena15–18, Mott
glass in the disordered Schwinger model is driven by the
interplay of disorder and confinement from long-range in-
teractions, and does not require a commensurate periodic
potential15. The model evades the compelling arguments
against the Mott glass phase advanced in Ref. 19 by way

of its long-range interactions (a loophole that was antic-
ipated in Ref. 19).
While linearly confining interactions do not naturally

arise in the solid state, the Schwinger model has been
proposed20–23 and realized24 in synthetic quantum sys-
tems. Furthermore, it has been extensively explored via
numerical simulations20,25–32. The ideas advanced herein
therefore admit near term tests both in numerics and in
experiments with synthetic quantum matter.
The article is organized as follows. In Sec. II, we intro-

duce the disordered Schwinger model and formulate its
bosonized form. We then briefly review the GVM anal-
ysis in Sec. III. Readers familiar with these details may
skip directly to Sec. IV, where the optical conductivity
and static compressibility are calculated using the GVM,
and Mott glass physics is demonstrated. We discuss the
implications of our results and conclude in Sec. V.

II. MODEL

We study a disordered Schwinger model9,10 that de-
scribes electrons interacting via a dynamical gauge field
in one spatial and one temporal dimension (1+1D). The
gauge field induces a linearly-confining electron poten-
tial, corresponding to the Fourier transform of 1/k2,
screened by a positive uniform ionic background (jellium
model) and with the uniform translational zero mode
k = 0 suppressed by the boundary conditions. Integrat-
ing out the dynamical gauge field in the disorder-free
Schwinger model leads to a strongly-interacting Hamil-
tonian H0 +Hint, where

H0 =v

∫

x

[

R† (−i∂xR)− L† (−i∂xL)
]

, (1)

Hint =− e2
∫

x,x′

ρ0(x) |x− x′| ρ0(x′), (2)

ρ0 = R†R + L†L is the long-wavelength component of
the density at average incommensurate filling, written in
terms of the right (R) and left (L) moving chiral fermion,
and above we defined

∫

x ≡
∫

dx. Utilizing standard

bosonization33,34, the disorder-free Schwinger model is
equivalently formulated in terms of an imaginary time
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path-integral with Euclidean action for a phonon-like
field θ given by

S0 =

∫

τ,x

[

1

2πvK

(

(∂τθ)
2 + v2 (∂xθ)

2
)

+
2e2

π2
θ2
]

, (3)

with the charge gap due to confinement characterized by
a plasma frequency ωp = 2e

√

vK/π and a Luttinger pa-
rameter K, which accounts for short-range interactions.
The key additional ingredient that we include8 is the

random impurities, modeled by a short-range correlated
disorder potential. The latter can be expressed in terms
of the long-wavelength forward-scattering (Himp,f ) and
the short-scale backscattering (Himp,b) parts

35, given by

Himp,f =

∫

x

η(x)ρ0(x), (4)

Himp,b =

∫

x

[

ξ(x)L†R+ ξ∗(x)R†L
]

. (5)

FIG. 1: An ensemble of random boson potential in the dis-
ordered boson problems, with curves (offset for clarity) cor-
responding to different spatial points. (a) The Giamarchi-
Schulz model exhibits a spatially random potential, that is
periodic in the phonon displacement θ, and is therefore char-
acterized by an infinite number of minima. (b) In contrast,
because of the fermionic long-range interactions a weakly dis-
ordered Schwinger model generically exhibits a unique mini-
mum selected by the overall quadratic phonon potential. (Oc-
casionally, the phonon potential develops doubly degenerate
minima.) The red crosses indicate the local minima removed
by the long-range fermionic interaction and the associated
bosonic quadratic (in θ) potential. The resulting ground state
properties are qualitatively distinct from those of the conven-
tional Bose glass, as we discuss in the main text.

The corresponding random potentials, η(x) (forward-
scattering scalar potential) and ξ(x) (back-scattering
potential that is a random mass in the electronic
representation25,36) are respectively real and complex
zero-mean Gaussian random fields, characterized by

η(x) η(x′) =∆fδ(x− x′), ξ(x) ξ∗(x′) = ∆δ(x− x′),
(6)

η(x) ξ(x′) =ξ(x) ξ(x′) = 0, (7)

where O denotes disorder average of O.
The forward-scattering component of disorder

bosonizes to
∫

τ,x
η(x) 1

π∂xθ in Euclidean action, and

(since it is linear in θ) can be safely eliminated from
the action by a shift in θ linear in x (see discussions in
Appendix. A), and for our purposes can thus be safely
neglected as in the conventional localization problem35.
In contrast, the back-scattering disorder plays a crucial
role and leads to localization. Integrating over disorder
using a replica “trick”37 (in equilibrium equivalent to the
Keldysh path integral), generates a short-range disorder
component of the replicated action,

Sdis = −∆̃
∑

a,b

∫

x,τ,τ ′

cos [2θa(τ, x) − 2θb(τ
′, x)] , (8)

where ∆̃ = ∆/(2π2α2), a and b are replica indices, and α
is the microscopic ultra-violet length scale, set for exam-
ple by the disorder correlation length or the underlying
lattice constant.
Because long-range Coulomb interaction strongly sup-

presses charge fluctuations (see Fig. 1), gapping out θ,
in contrast to randomly pinned acoustic systems38 and
short-range interacting disordered electrons (as studied
by e.g., Giamarchi-Schulz35) the back-scattering disor-
der in the Schwinger model is strongly relevant for all
values of parameters,

d∆̃

dl
= 3∆̃. (9)

Our interest is in the ground state and low-energy
excitations of the disordered Schwinger model, where
fermions are confined by the linear potential, and bosonic
excitations are localized by disorder8. The strong rele-
vance of disorder thus requires a nonperturbative treat-
ment in ∆, to which we turn next.

III. GAUSSIAN VARIATIONAL METHOD

We now analyze the low-energy properties of the model
defined by S = S0 + Sdis [Eqs. (3) and (8)], utilizing
a nonperturbative but generally uncontrolled Gaussian
Variational Method13,14 (GVM). The basic idea is to ap-
proximate the Schwinger nonlinear action by the “best”
harmonic action, with optimized variational parameters
determined by the minimum of the variational ground
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state energy. The resulting quadratic variational action
then allows a computation of physical observables, with
our focus here on the optical conductivity and static com-
pressibility, that characterize the disordered Schwinger
ground state and its low-energy excitations.
The GVM is known to capture the basic low-

temperature properties of Bose glass in the Giamarchi-
Schulz model14. Because the Schwinger model is gapped
by long-range interactions, cutting off long-scales (that
are otherwise challenging to handle) by the inverse of the
plasma frequency, 1/

√
ωp, we in fact expect the GVM to

be both qualitatively and quantitatively accurate for the
problem at hand, at least for weak disorder.
To this end, we consider a general imaginary time

action S which can be separated into two parts, S =
Svar + δS, where Svar is a variational quadratic action.
δS = S − Svar is a perturbation around Svar. The parti-
tion function is formally expressed as

Z =

∫

Dθ e−Svar[θ]−δS[θ] = Z0

〈

e−δS[θ]
〉

var
, (10)

where 〈O〉var denotes the expectation value of O with
respect to Svar. Accordingly, the free energy is given by

F =− T lnZvar − T ln
[〈

e−δS〉
var

]

(11)

≤− T lnZvar − T 〈δS〉var ≡ Fvar, (12)

where Fvar is a variational free energy functional to lead-
ing order in δS, that by convexity of the exponential
function is a strict upper bound for the actual free energy
F 39,40. Although this can be extended to an improved
variational free energy upper bound as a cumulant ex-
pansion in δS, here we limit our analysis to above lowest
order, as it is sufficient for our purposes here. The opti-
mal Svar upper bound is set by minimizing the variational
free energy Fvar.
For the disordered Schwinger model, we consider the

replicated disorder-averaged action, S = Svar+Sdis. The
inter- and intra- replica correlation functions need to be
treated as independent functions. Even though only the
intra-replica response function is directly related to phys-
ical observables, correlation functions are determined by
an inverse of the replica matrix kernel and thus depend on
all of its components. The general variational quadratic
action is given by:

Svar =
1

2βL

∑

a

∑

ωn,k

G−1
aa (ωn, k)θa(−ωn,−k)θa(ωn, k)

+
1

2βL

∑

a,b,(a 6=b)

∑

ωn,k

G−1
ab (ωn, k)θa(−ωn,−k)θb(ωn, k),

(13)

where a, b denote replica indices, β is the inverse temper-
ature, and L is the system size. The intra-replica (Gaa)
and inter-replica (Ga 6=b) Green functions are independent
variational parameters.

With this set up, the variational free energy Fvar =
F0 + F1 + Fdis is then formally given by,

F0 =− 1

2β

∑

a

∑

ωn,k

ln [G(ωn, k)]aa , (14)

F1 =
1

2vπKβ

∑

a

∑

ωn,k

(

ω2
n + v2k2 +

4e2vK

π

)

Gaa(ωn, k),

(15)

Fdis =− ∆̃

∫

τ,x





∑

a,b

e−2〈(θa(τ,x)−θb(0,x))
2〉

0



 . (16)

where F0 is the free energy corresponding to the har-
monic variational action Svar, F1 and Fdis come from
−T 〈(S0 − Svar)〉var and −T 〈Sdis〉var contributions, re-
spectively, and we have dropped an unimportant additive
constant. The bosonic correlator in Eq. (16) is straight-
forwardly computed to be given by
〈

(θa(τ, x) − θb(0, x))
2
〉

var

=
1

βL

∑

ωn,k

[Gaa(ωn, k) +Gbb(ωn, k)− 2 cos (ωnτ)Gab(ωn, k)] .

(17)

We then carry out a functional derivative of Fvar with
respect to the variational parameters, Gab(ωn, k). The
saddle point equation is thereby given by

G−1
ab =

[

1

vπK

(

ω2
n + v2k2

)

+
4e2

π2

]

δab

+ 4∆̃
∑

cd

∫

τ

{

[δabδac + δabδad − 2δacδbd cos (ωnτ)]

× e
− 2

βL

∑

νn,k

[Gcc(νn,q)+Gdd(νn,q)−2 cos(νnτ)Gcd(νn,q)]
}

.

(18)

and determines the optimum value of the variational pa-
rameters. The explicit derivation is standard but lengthy,
with details found in the literature14–16 and specific to
the disordered Schwinger model in Appendix. B.
Before turning to the computation of the Green func-

tion and the associated physical predictions, we high-
light key technical components of the analysis. In the
replica formalism, the inter-replica correlations are time-
independent14. Consequently, G−1

a 6=b(ωn, k) is only non-
zero at ωn = 0. Another important detail is that the
optimum variational solution is given by a replica sym-
metry broken structure, with G−1

ab for a 6= b given by a
hierarchical structure13,14. For 1D disordered fermions, it
has been demonstrated that a one-step replica symmetry
broken solution1 is sufficient, and the marginal stability
condition is adopted14.

1 This means that there are only two distinct components of the

intra-replica Green functions.
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For the disordered Schwinger model, the variational
ansatz is the same as that previously used in Refs. 15
and 16 for their putative, substrate-driven Mott glass19,
except that here the boson mass is (not a variational pa-
rameter but is) physical, determined by the plasma fre-
quency associated by the confining Coulomb interaction.
We separate the intra-replica Green functions into the
finite-frequency (ωn 6= 0) and zero-frequency (ωn = 0)
components. The former is given by a diagonal matrix
in the replica space. The later is derived by inverting
a hierarchical matrix in the replica space13. The Green
function is therefore non-analytic at zero frequency. For
finite frequencies, the intra-replica correlation function is
given by

Gaa(ωn 6= 0, k) =
1

1
πvK (ω2

n + v2k2) + 4e2

π2 + Σ+ I(ωn)
,

(19)

where Σ + I(ωn) is the bosonic self energy, with Σ its
zero-frequency component, and I(ωn) determines the fre-
quency dependence of the self energy, and is crucial for
response functions like optical conductivity. I(ωn) has
the following important asymptotic behaviors,

I(ωn) ∼



















2√
3

√

1
vπK

(

Σ + 4e2

π2

)

|ωn|, for ωn → 0,

2
(

Σ+ 4e2

π2

)



1−

√

vπK
(

Σ+ 4e2

π2

)

|ωn|



 , for ωn → ∞.

(20)

We obtain the full frequency dependence of I(ωn) by solv-
ing Eq. (B24) derived from GVM14.

For ωn = 0, the intra-replica Green function takes a
different form from Eq. (19) and is given by

Gaa(ωn = 0, k) =
1/uc

v
πK k2 + 4e2

π2

+
1− 1/uc

v
πK k2 +Σ + 4e2

π2

,

(21)

where uc ∈ [0, 1] [determined by Eq. (B23)] is a parame-
ter of the one-step replica symmetry broken ansatz.

We thus find that the variational solution of the dis-
ordered Schwinger model displays a form (finite boson
mass) similar to that of the putative Mott glass state,
proposed in Refs. 15 and 16. However, here the ever-
present charge confinement ensures that the boson mass
is always nonzero, and thus the disordered Schwinger
model does not exhibit a transition to an Anderson insu-
lator (vanishing mass) or a fully gapped insulator (Σ = 0)
in the thermodynamic limit. As we will see in the next
section, for all ranges of parameters at zero temperature
it displays the phenomenology of and therefore realizes
the Mott glass phase proposed in Ref. 15, but without
requiring a commensurate lattice potential, and evading
arguments in Ref. 19.

IV. RESPONSE FUNCTIONS

The universal behavior of physical observables can
be used to define and distinguish qualitatively distinct
phases. For example, combining the results of optical
conductivity and static compressibility, one can distin-
guish metals, gapped insulators, and Anderson insula-
tors. Here we study the optical conductivity and the
compressibility of the disordered Schwinger model, and
demonstrate below that indeed they exhibit qualitative
behavior consistent with the Mott glass phase envisioned
in Refs. 15 and 16. We will then also discuss the implica-
tions for the low-temperature states based on the Mott
glass phenomenology.

A. Optical Conductivity

To compute linear optical conductivity, we use Kubo
formula and analytic continuation to real frequency of
the intra-replica correlation functions. The optical con-
ductivity is thus given by

σ(ω) =
1

π2

i

ω + iδ

[

ω2
n 〈θθ〉 (ωn, k = 0)

]

iωn→ω+iδ
, (22)

with δ → 0+. The associated θ phonon correlator
above is straightforwardly computed using the optimized
quadratic variational action based on GVM. Using this
correlator and Eqs. (19) and (22), the optical conductiv-

R
e[
σ
(ω
)]

ω

Re[σ(ω)]~ ~

Im[σ(ω)]~ ~

~

~
~

~

σ
(ω
)~

~

ω

FIG. 2: Dimensionless optical conductivity in the ground
state of disordered Schwinger model given by Eq. (23).
The dimensionless quantities are defined by σ̃(ω̃) =

π2σ(ω)/
√

vπK

Σ′ and ω̃ = ω
√

1

vπKΣ′ . Σ′ = Σ + 4e
2

π2 . The blue

(red) dots denote the real (imaginary) part of the σ̃(ω̃). The
real part of the optical conductivity does not contain a hard
gap but displays a power law Re [σ̃(ω̃)] ∝ ω̃2 behavior in the
low frequency limit, as illustrated in the inset. The optical
conductivity is consistent with that of a localized insulator.
Inset: The low frequency real part of the conductivity, dis-
plays ω2 behavior.
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ity is then given by

σ(ω) =
1

π2

i

ω + iδ

[

−ω2

−1
vπKω2 + 4e2

π2 +Σ+ I(−iω)

]

(23)

=
−iω

π2

−ω2

vπK +Σ′ +Re[I(−iω)]− iIm[I(−iω)]
(−ω2

vπK +Σ′ +Re[I(−iω)]
)2

+ (Im[I(−iω)])
2
,

(24)

where Σ′ = Σ + 4e2

π2 . The finite frequency dependence
of σ(ω) is determined by I(−iω). The full frequency
profile of the optical conductivity is plotted in Fig. 2. We
focus on low and high frequency asymptotic dependences
characterizing the Mott glass phase, that can be worked
out via Eqs. (20) and (24).
In the low frequency limit, the real and imaginary part

of conductivity give

Re[σ(ω)] ≈ 1

π2

√

1
vπK

(

Σ+ 4e2

π2

)3/2

2√
3
ω2, (25)

Im[σ(ω)] ≈−1

π2

ω

Σ+ 4e2

π2

. (26)

The low temperature conductivity behavior is consistent
with the previous GVM analysis for Bose glass mod-
els in one dimension14–16 and coincides with the states
deep in many-body localized phase41 (for a different rea-
son, presumably). It is consistent with the gapless com-
pressible Anderson insulator, with the optical conduc-
tivity characterized by a low-frequency power law down
to zero frequency42. In one dimension, it is given by
ω2 upto logarithmic corrections42,43. Indeed the GVM
gives ω2 behavior, but cannot resolve logarithmic correc-
tion in the low frequency limit. We emphasize that the
low frequency ω2 dependence is determined by I(−iω)
in Eq. (24). In contrast, a fully gapped Mott or band
insulator below a gap is characterized by I(−iω) = 0,
displaying a hard gap in the optical conductivity.
In the high frequency limit (still in a localized regime),

the real and imaginary part of conductivity give

Re[σ(ω)] ≈2
√
π(vK)5/2

ω4

(

Σ +
4e2

π2

)3/2

, (27)

Im[σ(ω)] ≈vK

π

1

ω
. (28)

In the Giamarchi-Schulz model, this tail in the real
part of conductivity reproduces the perturbative re-
sult2, Re[σ(ω)] ∼ ω−4+2K33, by considering finite tem-
perature and weak disorder in GVM14. In the disor-
dered Schwinger model, the strongly relevant renormal-
ization group flow of the backscattering disorder [given

2 For sufficiently high frequencies, electrons oscillate within a

length scale smaller than the localization length, justifying a per-

turbative approach.

by Eq. (9)] is independent of the Luttinger parameter,
thereby effectively corresponding to K = 0. We there-
fore predict the ω−4 high frequency tail in the non-zero
(low) temperature limit.

B. Compressibility

A complementary characterization of the state is via
the static compressibility, that is nonzero for a compress-
ible Anderson insulator, and zero for an incompressible
gapped Mott insulator.
Within GVM, the compressibility of the disordered

Schwinger model is straightforwardly computed from the
static density-density correlation function,

D(k) =
k2

π2
〈θ(ω = 0,−k) θ(ω = 0, k)〉 (29)

=k2

[

1/uc

v
πK k2 + 4e2

π2

+
1− 1/uc

v
πK k2 +Σ+ 4e2

π2

]

, (30)

where we have used the zero-frequency Green function
given by Eq. (21) from GVM. As advertised in the In-
troduction, we thus find that the static compressibility
of the disordered Schwinger model, χs ∝ lim

k→0
D(k) = 0,

vanishes, displaying a charge gap associated with confine-
ment. Namely, χs would remain be finite in the absence
of 4e2/π2 in Eq. (29). This result appears to be in tension
with our results for optical conductivity (which contains
no hard gap). In the next subsection we will discuss the
differences between the two response functions, arguing
that this is a consistent characterization of the Mott glass
phase, intermediate between and sharply distinct from a
fully compressible Anderson and a fully incompressible
Mott insulator.

C. Mott Glass Phenomenology

The ground state of the disordered Schwinger model
simultaneously exhibits localization and confinement.
Above we have demonstrated above, its low-frequency
optical conductivity displays ω2 behavior, a hallmark of
a localized insulator in one dimension42,43. On the other
hand, we found that its static compressibility vanishes,
characteristic of a fully gapped incompressible insula-
tor. This unconventional ground state is thus a Mott
glass15–17, characterized by gapped single particle and
gapless particle-hole excitations. In the presence of dis-
order, the particle-hole excitations appear at arbitrary
low energies but remain localized in space.8,16. These
localized excitons dominate the optical conductivity at
low frequencies, while the static compressibility vanishes
due to the absence of low energy charged (single particle)
excitations.
This intermediate Mott glass phenomenology naturally

characterizes the ground state of disordered fermions
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with confinement of charges driven by long-range inter-
action. We conjecture that Mott glass may also extend
to non-zero temperature states (putatively MBL8) as we
now discuss.

Firstly, confinement is a property of the entire spec-
trum, not just the ground state. We therefore expect that
the static density-density correlation function D(k → 0)
[given by Eq. (29)] is vanishingly small even at the non-
zero energy-density many-body states. Although it is dif-
ficult to infer much about the finite energy density MBL
states based on the GVM results, it is generally believed
that the optical conductivity in MBL gives ωα where α
is a continuously varying exponent between 1 and 241.
For states deep inside the MBL phase, ω2 behavior is ex-
pected. Given the arguments of Ref. 8, indicating that
the disordered Schwinger model is many-body localized
at non-zero energy density (at least insofar as states can
be many-body localized in the continuum44–46), we con-
jecture that Mott glass phenomenology of a disordered
Schwinger model also extends to non-zero temperature.

Finally, it is interesting to consider the effect of a uni-
form background electric field, E0, that can be included
by adding ∼

∫

x,τ eE0xρ0(x) to the action. Bosonizing

ρ0(x) = 1
π∂xθ and integrating by parts, it is clear that

an electric field appears as−
∫

x,τ eE0θ, and can be shifted

away (along with the forward scattering), leaving the
disorder-averaged action S0+Sdis unchanged. Therefore,
in contrast to the conventional Schwinger model studied
by Coleman10, consistent with Imry-Wortis47 arguments,
in a disordered Schwinger model we do not expect a uni-
form electric field to induce a phase transition.

V. DISCUSSION AND CONCLUSION

We have studied a disordered Schwinger model, de-
scribing one-dimensional, long-range interacting rela-
tivistic fermions in the presence of a random potential.
We find that the model exhibits a localized state, despite
its long-range interactions. We study its properties and
compute its optical conductivity and static compressibil-
ity within the Gaussian Replica Variation analysis. We
find that the system shows an incompressible localized
glass state, with low-frequency conductivity scaling with
ω2. We thus show that such a system indeed displays
properties akin to a putative Mott glass state, previously
proposed in a different context in the literature15,16.

By way of long-range confining interactions the present
system sidesteps forceful arguments against the existence
of Mott glass, advanced in Ref. 19. Our results indi-
cate that the Mott glass phenomenology (gapped single-
particle and gapless localized particle-hole excitations)
is a natural consequence of the simultaneous presence of
localization and confinement. Whether this phenomenol-
ogy persists in more complicated disordered confined
systems (perhaps in higher dimensions) is an intriguing
question for future work.

We furthermore conjecture that Mott glass remains
stable at non-zero temperatures, up to small corrections
associated with fragility of MBL in the continuum44–46.
While the linearly confining potential does not nat-

urally arise in conventional solid state materials, the
Schwinger model may be realized and studied in the syn-
thetic quantum many-body systems20–24,32. Numerical
simulations20,25–31 also provide a route to explore this
interesting model and to test our predictions for its phe-
nomenology.
The Mott glass phenomenology that we discussed is ro-

bust to addition of short range interactions. These simply
modify the Luttinger parameter which does not qualita-
tively affect our results. Our predictions are also stable
against modification of the linear potential to a more
general form V (r) ∼ ra, at least at zero temperature, as
long as it remains confining i.e.. a > 0. Then the system
is incompressible due to confinement and the zero tem-
perature phase is still localized in one dimension. The
behavior at non-zero temperature remains open.
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Appendix A: Spatially-dependent Scalar Potential

In this appendix, we demonstrate how forward scat-
tering potential in S0 + Sη can be eliminated by a sim-
ple time-independent shift of the phonon field θ(x, τ) →
θ(x, τ) + ζ(x). Under this transformation the action be-
comes S ′

S ′ =S0 +

∫

dτdx
2v2

2vπK
(∂xθ) (∂xζ)

+

∫

dτdx
2M2

2π
θζ +

∫

dτdx η(x)
1

π
∂xθ, (A1)

where we have dropped unimportant, θ-independent con-
stant. We then require a vanishing of the terms linear in
θ, ensured by by a choice of the shift ζ(x) field satisfying
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a saddle point equation

∂2
xζ −

KM2

v
ζ = −K

v
∂xη(x). (A2)

Under the physical condition of ζ(±∞) = 0, the solution
is then simply given by

ζ(x) =

∫

dx′ e
−M

√
K/v|x−x′|

2M
√

K/v

[

−K

v
∂x′η(x′)

]

. (A3)

Appendix B: Variational Free Energy and Saddle

Point Equations

In this appendix, for completeness we sketch the solu-
tion of Eq. (18), following the analysis in Ref. 14.
To begin, we define the self-energy χab via

G−1
ab (ωn, k) =

[

ω2
n + v2k2

vπK
+

M2

π

]

δab − χab(ωn, k),

(B1)

where M2 = 4e2/π. It is also useful to define a quantity
G−1

C =
∑

b G
−1
ab , which satisfies the saddle point equa-

tion,

G−1
C (ωn, k) =

1

vπK

(

ω2
n + v2k2

)

+
M2

π

+ 8∆̃

∫

dτ

{

[1− cos (ωnτ)]

×



e−2Baa(τ) +
∑

b,(b6=a)

e−2Bab(τ)





}

,

(B2)

χa 6=b(ωn, k) =8∆̃

∫

dτ cos (ωnτ) e
−2Bab(τ), (B3)

where

Baa(τ) =
2

βL

∑

ωn,k

[Gaa(ωn, k)− cos(ωnτ)Gaa(ωn, k)] ,

(B4)

Ba 6=b(τ) =
2

βL

∑

ωn,k

[Gaa(ωn, k)− cos(ωnτ)Gab(ωn, k)]

(B5)

=
2

βL

∑

ωn,k

[Gaa(ωn, k)− δωn,0Gab(0, k)] . (B6)

Above we have used the symmetry Gab = Gba and con-
stancy of the diagonal elements. We also note that, Ba 6=b

is independent of τ14.
In order to compute the saddle point equations

in the required zero-replica limit, we adopt Parisi’s
parametrization13 as follows:

Aaa → Ã, Aa 6=b → A(u), (B7)

where Ã is the intra-replica element and u ∈ [0, 1] is
a continuous parameter that encodes the inter-replica
structure in A(u). Specifically, we consider one-step
replica symmetry broken ansatz which corresponds to
A(u < uc) = A0 and A(u ≥ uc) = A(uc). uc, describing
the break point of u is also a variational parameter in
GVM. We also adopt the algebraic rules of the hierarchi-
cal matrices in Ref. 13.
The saddle point equations [Eqs. (B2) and (B3)] in the

zero-replica limit become to

G−1
C (ωn, k) =

1

vπK

(

ω2
n + v2k2

)

+
M2

π

+ 8∆̃

∫

dτ [1− cos (ωnτ)]

×
[

e−2B̃(τ) −
∫ 1

0

du e−2B(u)

]

,

(B8)

χ(ωn;u) =8∆̃

∫

dτ cos (ωnτ) e
−2B(u)

=8∆̃βδωn,0e
−2B(u) ≡ δωn,0χ(u) (B9)

where

B̃(τ) =
2

βL

∑

νn,q

[

G̃(νn, q)− cos (νnτ) G̃(νn, q)
]

, (B10)

B(u) =
2

βL

∑

νn,q

[

G̃(νn, q)− δνn,0G(νn, q;u)
]

. (B11)

We note that the summation over inter-replica elements
turns into an integration over u with an overall minus sign
due to zero-replica limit. The inter-replica correlations
vanish for non-zero Matsubara frequencies14. There-
fore, we can simply invert the Green function G−1

C (ωn 6=
0, k) = [GC(ωn 6= 0, k)]−1. We express B̃(τ) and B(u) as
follows:

B̃(τ) =
2

βL

∑

νn,q

[1− cos (νnτ)]GC(νn, q), (B12)

B(u) =
2

βL

∑

νn 6=0,q

GC(νn, q)

+
2

βL

∑

q

[

G̃(νn = 0, q)−G(νn = 0, q;u)
]

.

(B13)

For one-step replica symmetry broken ansatz, we
consider14–16

χ(u) =

{

χ(uc), for uc ≥ u,

0, for uc < u.
(B14)

Correspondingly,

B(u) =

{

B, for uc ≥ u,

∞, for uc < u.
(B15)
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The Green functions [GC(ωn, k), G̃(ωn, k), and
G(ωn, k;u) ] depend on χ(u). We introduce self-energy
parameters Σ and I(ωn) to encode the interacting Green
functions,

G−1
C (ωn, k) =

1

πvK

(

ω2
n + v2k2

)

+
M2

π
+ (1− δωn,0)Σ + I(ωn), (B16)

where

I(ωn) =8∆̃

∫

dτ [1− cos(ωnτ)]
[

e−2B̃(τ) − e−2B
]

,

(B17)

Σ = = ucχ(uc) = 8∆̃ucβe
−2α2B. (B18)

The structure of G−1
C encodes translational invariance

after disorder average, with I(ωn) vanishing as ωn goes
to zero. In addition to G−1

C , we also need to examine the
zero frequency Green functions. In particular,

G̃(0, k)−G(0, k;u) =







G̃(0, k), for u < uc,

1
v

πK
k2+M2

π
+Σ

, for u ≥ uc,

(B19)

where G(0, k) is given by Eq. (21) and we have used the
inversion formula of hierarchical matrices13.
With Eqs. (B12), (B13), and (B19), we obtain

B − B̃(τ) =
2

βL

∑

νn,q

cos(νnτ)GC(ν, q) (B20)

and lim
τ→∞

lim
β→∞

B̃(τ) = B.

For determining the explicit frequency dependence of
I(ωn), we expand Eq. (B17) to leading order of B−B̃(τ),
treating it as a small parameter for a sufficiently large τ .
The self-consistent equation for I(ωn) then reduces to

I(ωn) =
2Σ

ucβ

√

πK

v









1√
Σ′

− 1
√

[

Σ′ + I(ωn) +
ω2

n

πvK

]









,

(B21)

where Σ′ = Σ + M2

π . To close the equations, one needs
to obtain the expression of Σ and uc as well. Following
Giamarchi and Le Doussal, we use marginal stability14,
that determines the solution for 1D interacting fermion
problems. We first assume that I(ωn) ≈ c1|ωn| for small
frequencies. The existence of a solution in Eq. (B17) can
be expressed as

c1|ωn| =
4Σ

uc

1

β

∫ ∞

−∞

dq

2π

c1|ωn|
[

1
πvK (v2q2) + Σ′

]2 , (B22)

→ Σ

uc

1

β

√

πK

v
= Σ′3/2 . (B23)

With this, Eqs. (B23) and (B21) lead to a simple self-
consistent equation as follows,

I(ωn) = 2Σ′3/2









1√
Σ′

− 1
√

[

Σ′ + I(ωn) +
ω2

n

πvK

]









.

(B24)

We define Ĩ = I/Σ′, z =
√

(1/vπK)(ω2
n/Σ

′), and Σ′ =

Σ+ M2

π . Equation (B24) is simplified by

Ĩ(z) = 2



1− 1
√

1 + Ĩ(z) + z2



 , (B25)

that gives Ĩ(z), which determines the optical conductiv-
ity discussed in the main text, with limiting forms given
by

Ĩ(z) ∼
{

2√
3
z, for z ∼ 0,

2− 2
z , for z → ∞.

(B26)
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F. Schütze, Phys. Rev. Lett. 99, 186402 (2007), URL
https://link.aps.org/doi/10.1103/PhysRevLett.99.

186402.
20 E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Mon-

tangero, Phys. Rev. Lett. 112, 201601 (2014), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.112.201601.
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