
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Small-angle x-ray scattering in amorphous silicon: A
computational study

Durga Paudel, Raymond Atta-Fynn, David A. Drabold, Stephen R. Elliott, and Parthapratim
Biswas

Phys. Rev. B 97, 184202 — Published  2 May 2018
DOI: 10.1103/PhysRevB.97.184202

http://dx.doi.org/10.1103/PhysRevB.97.184202


Small-angle X-ray scattering in amorphous silicon: A computational study

Durga Paudel,1, ∗ Raymond Atta-Fynn,2, † David A. Drabold,3, ‡ Stephen R. Elliott,4, § and Parthapratim Biswas1, ¶

1Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg, MS 39406
2Department of Physics, University of Texas, Arlington, TX 76019

3Department of Physics, Ohio University, Athens, Ohio 45701
4Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom

We present a computational study of small-angle X-ray scattering (SAXS) in amorphous silicon (a-Si) with
particular emphasis on the morphology and microstructure of voids. The relationship between the scattering
intensity in SAXS and the three-dimensional structure of nanoscale inhomogeneities or voids is addressed by
generating large high-quality a-Si networks with 0.1-0.3 % volume concentration of voids, as observed in exper-
iments using SAXS and positron annihilation spectroscopy. A systematic study of the variation of the scattering
intensity in the small-angle scattering region with the size, shape, number density, and the spatial distribution of
the voids in the networks is presented. Our results suggest that the scattering intensity in the small-angle region
is particularly sensitive to the size and the total volume-fraction of the voids, but the effect of the geometry or
shape of the voids is less pronounced in the intensity profiles. A comparison of the average size of the voids
obtained from the simulated values of the intensity, using the Guinier approximation and Kratky plots, with that
of the same from the spatial distribution of the atoms in the vicinity of void surfaces is presented.

I. INTRODUCTION

Small-angle X-ray scattering (SAXS) is a powerful method
for studying structural inhomogeneities on the extended
length scale in solids and condensed-phase systems in solu-
tion.1–3 While X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy can provide high-resolution
structural information, small-angle scattering of X-rays and
neutrons is particularly useful in probing low-resolution struc-
tural characteristics of partially-ordered and disordered ob-
jects on the nanometer length scale, which is often comple-
mented with results from X-ray diffraction and NMR mea-
surements.4 Since its first inception by Guinier1 in the late
1930s, SAXS has been employed extensively in probing struc-
tural properties of a variety of crystalline and non-crystalline
solids, including nanocomposites, alloys, glasses, ceramics,
and polymers.1,2,5 In recent years, the advancement of SAXS
instrumentation and the availability of high-brilliance X-ray
sources have led to the development and emergence of SAXS
as a principal tool in structural biology6,7 for studying an ar-
ray of biological objects ranging from large macromolecules8,
biopolymers,9 RNA folding,10,11 multi-domain proteins with
flexible linkers,12 and intrinsically disordered proteins.13 In
spite of the tremendous success and the widespread applica-
tions of SAXS in obtaining structural information on the size,
shape, and compactness of the scattering objects (e.g., macro-
molecules in solution or voids in amorphous environments), a
direct determination of the three-dimensional structure of the
scatterers solely based on the information content of a given
SAXS data set is impossible unless additional independent in-
formation is available to complement the SAXS data. Since
the distribution of the scatterers produces a rotational aver-
aging of the intensity in reciprocal space, the absence of di-
rectional (or phase) information between the scatterers makes
it extremely difficult to unambiguously reconstruct the three-
dimensional shape of a mono-disperse scattering object from
one-dimensional intensity profiles. While the problem is more
acute for poly-disperse objects in biomolecular systems, the
analysis of SAXS data in structural biology is often accom-

panied by complementary structural information from high-
resolution X-ray crystallography and NMR data, providing
additional information on the structure of the constituents or
sub-units of the scattering objects in order to develop a three-
dimensional model.14 Complications also arise in interpreting
and translating experimental SAXS data from the reciprocal-
space domain to the real-space domain owing to the finite size
of the data set, sampled only at specific points in reciprocal
space. In an authoritative treatment, Moore15 has addressed
this problem by developing a framework based on the sam-
pling theorem of Shannon,16 which provides an elegant ansatz
to extract the full information content in a given data set and
to estimate the errors associated with the parameters derived
from the analysis.

Given the complexity involved in the analysis of exper-
imental SAXS data and the subsequent determination of a
three-dimensional model of the scattering objects, a natural
approach to address the problem is to study the relationship
between the SAXS intensity and the structure of scattering ob-
jects by directly simulating the scattering intensity from real-
istic model configurations, obtained from independent calcu-
lations. In this paper, we address the morphology of voids in
a-Si with particular emphasis on the relationship between the
(simulated) intensity from SAXS and the shape, size, density,
and the spatial distribution of the voids in amorphous silicon.
While the problem has been studied extensively using experi-
mental SAXS data for a-Si and a-Si:H,17–20 there exist only a
few computational studies21,22 that have attempted to address
the problem from an atomistic point of view using rather small
models of a-Si, containing only 500 to 4000 atoms. Since
the information that resides in the small-angle region of recip-
rocal space is connected to real space via the Fourier trans-
formation, it is necessary to have a significantly large model
to include any structural correlations that may originate from
distant atoms in order to produce the correct long-wavelength
behavior of the scattering intensity. Thus, accurate simula-
tions of SAXS in non-crystalline solids were hampered in the
past by the lack of appropriately large structural models of a-
Si, with a linear size of several tens of angstroms, which are
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necessary for reliable computation of the scattering intensity
in the small-angle region.

We should mention that an impressive number of compu-
tational and semi-analytical studies can be found in the liter-
ature from the past decades that address the relationship be-
tween the scattering intensity in SAXS and the morphological
characteristics of inhomogeneities present in a sample, using
the homogeneous-medium approximation.1,23–25 Such an ap-
proach, however, crucially relies on the assumption that the
length scale (l) associated with the inhomogeneities is signifi-
cantly larger than the atomic-scale structure (R) of the embed-
ding medium (i.e., l >> R), so that any density fluctuations
that may originate from the atomic-scale structure of the em-
bedding matrix on the length scale of R can be neglected for
the computation of the intensity in the relevant small-angle re-
gion of interest. It thus readily follows that, given the length
scale of the voids in a-Si (l ≈ 10–18 Å) and the atomic-scale
structure of the amorphous-silicon matrix (R ≈ 10–15 Å),
neither the homogeneous-medium approximation nor an ap-
proach based upon relatively small atomistic models of a-Si,
consisting of 500–4000 Si atoms, is adequate for accurate sim-
ulations of SAXS intensity in the presence of nanometer-size
inhomogeneities in amorphous silicon.

The importance of atomistic simulations becomes particu-
larly apparent in determining the effect of surface relaxation
on the shape of the inhomogeneities and its possible man-
ifestation on SAXS intensities, which cannot be addressed
realistically using the homogeneous-medium approximation.
Furthermore, the behavior of the static structure factor in the
small-angle limit is by itself an important topic for studying
the long-wavelength density fluctuations in disordered sys-
tems. In an influential paper appearing in the Proceedings
of the National Academy of Sciences, Xie et al.26 presented
highly sensitive transmission X-ray scattering data of a-Si
samples to examine the infinite-wavelength limit (q → 0) of
the structure factor S(q) for determining the degree of hyper-
uniformity, and reported a value of S(0) = 0.0075± 0.0005.
Following these authors, S(q → 0) can be used as a figure-of-
merit to study the quality of the amorphous-silicon network
generated in our simulations. Here, we shall show that the
value of S(q → 0) obtained from our simulations is closer
to the experimental value than the computed value reported
in the literature by de Graff and Thorpe.27 For a discussion
on hyperuniformity and its applications to disordered sys-
tems, the readers may refer to the work by Torquato and co-
workers.28,29

The remainder of the paper is as follows. In Sec. II, we
address the computational method associated with the pro-
duction of ultra-large high-quality structural models of a-Si,
which is followed by the calculation of the SAXS intensity
and the construction of voids of different shapes, sizes, den-
sities, and their spatial distributions in several model config-
urations of amorphous silicon. Section III discusses the re-
sults from our simulations where we address the characteristic
structural properties of the models and compare the simulated
structure factor with the high-resolution structure-factor data
of a-Si from experiments. This is followed by a discussion
on the restructuring of a void surface upon total-energy relax-

ation and the subsequent changes in the shape and topology
of the surface atoms. Thereafter, we examine the relationship
between the morphology of the voids and the scattering in-
tensity in SAXS, by studying several models of a-Si with a
varying size, shape, and concentration of the voids. A com-
parison of the size of the voids with the same obtained from
the simulated intensity in the small-angle region is also pre-
sented from Guinier and Kratky plots. Section IV presents the
conclusions of our work.

II. COMPUTATIONAL METHODS

A. Large-scale modeling of a-Si for simulation of SAXS

Since the main purpose of the present work is to study the
structure and statistical properties of extended-scale inhomo-
geneities on the nanometer length scale, we are interested in
the scattering region associated with small wave vectors in the
range of 0–1 Å−1. For inhomogeneities, such as voids, with a
typical size of l ≈ 10–20 Å, one needs to measure scattering
intensities for the wave vectors in the vicinity of k = 2π/l ≈
0.3–0.6 Å−1. This means that the appropriate structural mod-
els needed to be used in the simulation of small-angle X-ray
scattering must have a linear dimension of several nanometers
in order to compute statistically-reproducible physical quanti-
ties from the simulated SAXS data. To fulfill this requirement,
we generated ultra-large atomistic configurations of a-Si using
classical molecular-dynamics (MD) simulations, as described
below.

Two independent initial configurations, each comprising
N = 262400 Si atoms, were generated by randomly plac-
ing atoms in a cubic simulation box of length 176.12 Å, so
that the minimum distance between any two Si atoms was 2.0
Å. This corresponds to a mass density of 2.24 g/cm3 for the
models, which is identical to the experimental mass density of
a-Si reported by Custer et al.30 Starting from these initial con-
figurations, MD simulations were carried out in the canonical
ensemble by describing the interatomic interaction between Si
atoms using the modified Stillinger-Weber potential.31,32 The
equations of motion were integrated using the velocity-Verlet
algorithm with a time step of ∆t = 1 fs and the Nosé-Hoover
thermostat33–35 was employed to control the simulation tem-
perature, with a thermostat period of τ = 0.2 ps. The ini-
tial temperature of each configuration was set to 1800 K and
the configurations were equilibrated for 20 ps. After equili-
bration at 1800 K, each configuration was cooled to 300 K
over a total time period of 300 ps with a cooling rate of 5
K/ps. Since atomistic models of amorphous silicon obtained
from MD simulations, using a single heating-and-cooling cy-
cle, cannot produce good structural properties owing to the
large volume and dimensionality of the phase space in a lim-
ited simulation time, we repeated the heating-and-cooling cy-
cles 30 times in order to sample the phase space extensively
for producing high-quality atomistic configurations with ex-
cellent structural properties. For the present simulations, this
translates into a total simulation time of 9 nanoseconds for
each configuration. The final configurations were obtained by
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minimizing the total energy with respect to the atomic posi-
tions using the limited-memory BFGS algorithm.36,37 In the
following, we refer to these final configurations as M-1 and
M-2, and we have used them for further simulation and anal-
yses of the scattering intensity in SAXS. The characteristic
structural properties of these models are listed in Table II.

B. Simulation of SAXS intensity for amorphous solids

For disordered and amorphous systems, the intensity of X-
ray scattering is a function of the microscopic state of the
system. The scattering intensity depends on the individual
scattering units (e.g., atoms, molecules, cells) and the charac-
teristic statistical distribution of the units in the system. The
scattering intensity for a system consisting of N atoms can be
written as,

I(k) =
N∑
i

N∑
j

fi(k)fj(k) exp[ık · (ri − rj)], (1)

where the contribution from an individual atom enters through
the atomic form-factor fi(k) and the structural information
follows from the (positional) distribution of the constitutent
atoms in the system. Here, the wave-vector transfer, k, is
the difference between the scattered (kf ) and incident (ki)
wave vectors, and its magnitude is given by k = |kf − ki| =
4π sin θ/λ, where 2θ and λ are the scattering angle and the
wavelength of the incident X-ray radiation (e.g., 1.54 Å for
the Cu Kα line), respectively. While Eq. (1) can be evaluated
directly for small systems, it is computationally very demand-
ing and infeasible to compute the intensity for large models
with hundreds of thousands of atoms. Since it is necessary to
minimize surface effects by imposing the periodic boundary
conditions, one needs to evaluate the double sum in Eq. (1)
in order to compute the intensity values. Further, the compu-
tation of the configurational-averaged values of the scattering
intensity, for a given k, requires angular averaging over all
possible directions of k over a solid angle of 4π. Finally, us-
ing the well-known sampling theorem of Shannon,16 it can
be shown that, in order to extract the full information con-
tent of SAXS data, one must sample the scattering intensity
at equally-spaced points, ki, with spacing ∆k – also known
as Shannon channels – such that ∆k ≤ π/l, where l is the
maximum linear size of the inhomogeneities dispersed in the
system.15,38 These considerations lead to the conclusion that,
for a system with 105 atoms, one requires to compute approx-
imately 1015 or more operations in order to obtain the inten-
sity plot from Eq. (1). The conventional approach is to carry
out the averaging procedure analytically by introducing a pair-
correlation function g(r), which is associated with the proba-
bility of finding an atom at a distance r, given that there is an
atom at r = 0. By invoking the assumptions that the system
is homogeneous and isotropic and that the strong peak near
k=0, originating from a constant density term, does not pro-
vide any structural information and thus can be removed from
consideration, one arrives at the following expression for the

scattering intensity for a monatomic system,

IN (k) = Nf2(k)S(k), (2)

where

S(k) = 1 +
4πρ

k

∫ ∞
0

r(g(r)− 1) sin kr dr

≈ 1 +

∫ R

0

r G(r)
sin kr

kr
dr. (3)

In Eq. (3), we have introduced the reduced distribution func-
tion, G(r) = 4πρ r(g(r)− 1). For computational purposes, it
is also necessary to replace the upper limit of the integral by
a large but finite cutoff distance, R, beyond which (g(r)− 1)
tends to vanish. For finite-size models, the cutoff distance,
R, is generally, but not necessarily, chosen to be the half of
the box length for a cubic model of linear size L. Equation
(3) can be readily employed to compute the structure factor
reliably in the wide-angle limit but the difficulty remains for
very small values of k. It has been shown by Levashov et al.39

that g(r) converges to unity very slowly, and at finite tempera-
ture there exist small but intrinsic fluctuations, even for a very
large value ofR. In the small-angle limit, the term sin(kr)/kr
in Eq. (3) changes very slowly but the fluctuations in r G(r)
grow considerably beyond a certain radial distance Rc due to
the presence of the r2 term. Thus, Rc must be as large as pos-
sible to extract structural information for small k values. It is
often convenient to write Eq. (3) in two parts by introducing
a damping factor γ(r) in the region r ≥ Rc. The resulting
equation now reads,

S(k) ≈ 1 +

∫ Rc

0

rG(r)
sin kr

kr
dr+

∫ R

Rc

γ(r)rG(r)
sin kr

kr
dr.

(4)
Computational studies on G(r) in a-Si, using large simulated
models, indicate that the optimum value of Rc is of the order
of 30–40 Å. Beyond this distance, it is difficult to distinguish
G(r) from numerical noise and the accuracy of the integral in
Eq. (3) is found to be affected by the presence of growing os-
cillations in rG(r). To mitigate the effect of the truncation of
the upper limit of the integral at small k values, we have used
an exponential damping factor, γ(r) = exp[−(r − Rc)/σ],
in the region r ≥ Rc. Numerical experiments indicate that a
choice of Rc = 35–40 Å and σ = 1 Å is appropriate for our
models. Since structural information on extended-scale inho-
mogeneities generally resides beyond the first few neighbor-
ing shells, this observation implies that, even with very large
models, one must be careful to interpret the simulated values
of the scattering intensity below k = 2π/Rc ≈ 0.1 Å−1 due
to a low signal-to-noise ratio in rG(r), as shown in Fig. 1.
Once the structure factor is available, the reduced scattering
intensity, I(k), can be obtained from the expression,

I(k) =
IN (k)

N
= f2(k)S(k), (5)

where N is the number of atoms in the model. The
atomic form-factor can be obtained from the International Ta-
bles for Crystallography40 or from a suitable approximated
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FIG. 1. The variation of r G(r) with r for the M1 model of a-Si
containing 262400 atoms. The inset shows the growing fluctuations
in r G(r) beyond 40 Å, which affect the evaluation of the integral in
Eq. 3. See Sec. IIB for a discussion.

form of f(k).41,42 At a finite temperature T , the expres-
sion for the reduced intensity in Eq. (5) is multiplied by the
Debye-Waller (DW) factor,43,44 exp(−2M), where M =
(8π2 sin2 θ/λ2)(u2/3) and u2(T ) is the mean-square dis-
placement of Si atoms in the amorphous state at temperature
T . The Debye-Waller-corrected reduced intensity can be writ-
ten as,

IDW (k, T ) = exp(−2M) I(k). (6)

The calculation of the Debye-Waller factor for the amorphous
state is, by itself, an interesting problem and it is related to
the vibrational dynamics of the atoms at a given temperature.
The factor plays an important role in extracting structural in-
formation from X-ray scattering data by reducing and redis-
tributing the scattering intensity at high temperature. At room
temperature, the DW factor affects the intensity values only
marginally for small values of k and it can be replaced by
unity for the computation of scattering intensity in the region
k < 1.0 Å−1.

C. Geometry of voids in a-Si for SAXS simulation

In order to examine the relationship between the morphol-
ogy of voids and the intensity of the small-angle X-ray scat-
tering in a-Si, it is necessary to construct a variety of void
distributions in a-Si networks, which are characterized by dif-
ferent shapes, sizes, and number densities of voids. Since
experimental data from IR, NMR, SAXS,17,19,45–47 positron
annihilation spectroscopy (PAS),48–50 and implanted helium-
effusion measurements51,52 suggest that the percentage of
void-volume fraction (fv) in a-Si and a-Si:H varies from 0.1%
to 0.3% of the total volume of the samples, and the typical
size or radius of the voids ranges from 5 Å to 10 Å, we have
restricted ourselves to generating structural models of a-Si
with voids that simultaneously satisfy both the requirement
of void-volume fraction and the size of the voids. Toward
that end, we have created several void distributions, which are
characterized by spherical, ellipsoidal, and cylindrical voids,

D

v

d

R

FIG. 2. A schematic representation of voids in two dimensions (left)
showing the characteristic lengths associated with void size (Rv),
interface width (d), and the surface-to-surface distance (D) between
two voids. The figure on the right-hand side shows a spherical void
of radius 6 Å in a network of size 10 Å. For visual clarity, the silicon
atoms on the void surface, having an interface width of d = 2.8 Å,
and the bulk region are shown in red and yellow colors, respectively.

by randomly generating void centers within two model net-
works, M-1 and M-2, consisting of 262400 Si atoms in a
cubic simulation cell of length 176.12 Å. To ensure that the
randomly-generated void distributions in the networks are as
realistic as one observes in experiments, we introduced three
characteristic lengths, Rv , d, and D, as illustrated in Fig. 2.
The radius of a spherical void is given by Rv , whereas d in-
dicates the width of the spherical concentric region between
radii Rv and Rv + d, which determines the interface region
of the (spherical) void and the bulk network. Silicon atoms in
this region will be referred to as interface atoms, and we shall
see later that these atoms play an important role in the relax-
ation of void surfaces. The atoms within a void region are
removed from the system in order to produce an empty cav-
ity or a void. D indicates the minimum interface-to-interface
distance between two neighboring voids, as shown in Fig. 2.
This implies that the center-to-center distance, rij , between
two spherical voids at sites i and j satisfies the constraint
rij ≥ 2(Rv + d) + D. By choosing appropriate values of
fv , Rv , and D, one can produce a variety of void distribu-
tions, which are consistent with experimental results as far as
the void-volume fraction and the size of the voids are con-
cerned. For example, by choosing a large (or small) value
of D, one can construct a sparse (or clustered) distribution of
voids. Throughout the study, we have used d = 2.8 Å that cor-
responds to the maximum nearest-neighbor distance between
two silicon atoms in a-Si. For a given set of fv , Rv , D, and
the shape of the voids, one can compute the number of voids
nv = fvV/ν, where ν and V are the volumes associated with
an individual void and the simulation cell, respectively. For
non-spherical voids, such as ellipsoidal and cylindrical voids,
we replace Rv by appropriate lengths Rev and Rcyv , which in-
dicate the geometric mean radius of an ellipsoidal void and
the cross-sectional radius of a cylindrical void, respectively.
Ellipsoidal voids were generated by constructing triaxial el-
lipsoids with the axes ratios a : b : c = Rv

2 : Rv : 2Rv , so
that the geometric mean radius Rev (= 3

√
abc) is equal to the

radius Rv of a spherical void for a given fv . For cylindrical
voids, the height of a cylinder was taken to be three times its
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TABLE I. Characteristic properties of a-Si models with void distribu-
tions used in this work. R,Nb,Ns, andNv indicate the actual radius,
and the total number of bulk, surface, and void atoms, respectively.
The percentage void-volume fraction (fv), number density per cm3

(nρ), and the average radius of gyration (Rg) of the voids are listed.
See text for the nomenclature of the models listed below.

Model R (Å) Nb Nv Ns fv nρ × 1019 Rg (Å)
SP6-R6 6.0 261584 259 557 0.1 0.11 6.13
SP3-R8 8.0 261634 306 460 0.1 0.05 8.09
SP12-R6 6.0 260761 533 1106 0.2 0.22 6.13
SP5-R8 8.0 261126 508 766 0.2 0.09 8.09
SP18-R6 6.0 259936 801 1663 0.3 0.33 6.13
SP8-R8 8.0 260371 819 1210 0.3 0.15 8.09
EL6-R6 6.0 261491 260 649 0.1 0.11 7.3
EL3-R8 8.0 261563 302 535 0.1 0.05 9.66
EL12-R6 6.0 260578 502 1320 0.2 0.22 7.31
EL5-R8 8.0 261005 513 882 0.2 0.09 9.66
EL18-R6 6.0 259666 763 1971 0.3 0.33 6.15
EL8-R8 8.0 260173 825 1402 0.3 0.15 9.66
CY6-R5 4.58 261731 260 409 0.1 0.11 5.83
CY3-R6 6.10 261752 298 350 0.1 0.05 7.73
CY12-R5 4.58 261065 511 824 0.2 0.22 5.78
CY5-R6 6.10 261327 494 579 0.2 0.09 7.74
CY18-R5 4.58 260389 774 1237 0.3 0.33 5.8
CY8-R6 6.10 260696 792 912 0.3 0.15 7.75
SP18-D1-R6 6.0 259935 789 1676 0.3 0.33 6.13
SP18-D8-R6 6.0 259948 785 1667 0.3 0.33 6.13
SP18-D14-R6 6.0 259949 795 1656 0.3 0.33 6.09

cross-sectional radius, Rcy , and the latter was chosen so that
the volume of the cylinder was identical to that of a sphere or
an ellipsoid (see Ref. 53). The orientations of the ellipsoidal
and cylindrical voids were randomly generated by construct-
ing a three-dimensional unit random vector from the center
of each void and aligning the major axis of an ellipsoid or a
cylinder along that direction. An example of a spherical void
of radius Rv = 6 Å and interface width of d = 2.8 Å is shown
in Fig. 2, which is embedded in a region of the a-Si network of
linear dimension 10 Å. The silicon atoms in the bulk and in-
terface regions of the void are shown in yellow and red colors,
respectively.

Table I lists some characteristic features of voids and the
resulting models obtained by incorporating voids of different
shapes, sizes, numbers, and void-volume fractions. In order to
produce a statistically-significant number of voids for a given
volume fraction of voids, the radii of the voids were restricted
to 5–8 Å. For fv = 0.1%, 0.2%, and 0.3%, spherical, ellip-
soidal and cylindrical voids of different sizes were generated
randomly within the networks in such a way that none of the
voids was too close to the boundary of the networks. In this
work, we have studied a total of 21 models that are listed in
column 1 of Table I. Each of the models is indicated by its
shape, the number of voids present in the model, and the ap-
proximate linear size of the voids. For example, EL6-R6 in-
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FIG. 3. The structure factors of a-Si obtained from experiments and
the present simulations. High-resolution experimental data at small
k for as-implanted and annealed samples of a-Si, from Ref. 26, are
indicated in green and red colors, respectively, while the simulated
data, averaged over M-1 and M-2 configurations, are shown in blue.
The full structure factors are presented in the inset, with the cor-
responding experimental data (using the same color coding) from
Ref. 55.

dicates a model with 6 ellipsoidal voids of radius 6 Å. Sim-
ilarly, SP18-D8-R6 implies a model with 18 spherical voids
of radius 6 Å, which are separated by the surface-to-surface
distance (D) of at least 8 Å. For cylindrical voids, the exact
value of the cross-sectional radius of a void is given in column
1 of Table I. The total number of bulk (Nb), surface (Ns), and
void54 (Nv) atoms, along with the corresponding void-volume
fraction (fv), number density of voids per cm3 (nρ), and the
average radius of gyration (Rg) of the voids for each model
after total-energy relaxation are also listed in Table I. The
average radius of gyration, Rg , of voids in a model configu-
ration can be obtained from the atomic coordinates of all the
interface atoms in a model.

III. RESULTS AND DISCUSSION

In the preceding sections, we have seen that the structural
information from extended length scales chiefly resides in the
small-angle scattering region of wave vectors, k ≤ 1.0 Å−1.
In view of our earlier observation that the computed values
of the structure factor could be affected by finite-size effects,
owing to the growing oscillations in rG(r) at large r, it is nec-
essary to examine the accuracy of the simulated values of the
scattering intensity before addressing the relationship between
the scattering intensity and the inhomogeneities or voids from
SAXS measurements. To this end, we shall compute the struc-
ture factor from model a-Si networks and compare the same
with high-resolution experimental structure-factor data of a-Si
reported recently in the literature.26,55

A. Structure factor of a-Si in the small-angle scattering region

In Table II, we have listed the characteristic structural prop-
erties of two models of a-Si, M-1 and M-2, as mentioned ear-
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FIG. 4. Reconstruction of a spherical void surface (in the SP18-R6
model) and a cylindrical void surface (in the model CY8-R6 model)
during total-energy relaxation. For visual clarity, the interface atoms
within a thin shell of width 2.8 Å and the associated reconstructed
surfaces are shown in the plot. The red patches on the surfaces in-
dicate the regions which are significantly reconstructed via the dis-
placement of Si atoms (red) by more than 15% of the average Si-Si
bond length.

TABLE II. Structural properties of a-Si models used in the present
study. L = Simulation box length (Å), ρ = mass density (g/cm3), C4

= number of four-fold coordinated atoms (%), dSi = Average Si-Si
bond length (Å), θavg = Average bond angle (degree), and ∆θRMS =
Root-mean-square deviation (degree).

Model N L ρ C4 dSi θavg ∆θrms

M-1 262400 176.12 2.24 97.4 2.39 109.23◦ 9.26◦

M-2 262400 176.12 2.24 97.4 2.39 109.23◦ 9.20◦

lier in section IIA. Each of the models consists of 262400
atoms in a cubic simulation cell of length 176.12 Å, which
translates into an average mass density of 2.24 g/cm3. The
average bond angle of 109.23◦ between the nearest-neighbor
atoms is found to be very close to the ideal tetrahedral value
of 109.47◦, with a root-mean-square deviation of ∼9.2◦. The
average Si-Si bond distance is observed to be about 2.39 Å,
which is slightly higher than the experimental value56 of 2.36
Å and the theoretical value of 2.38 Å reported from ab initio
calculations.57 The number of coordination defects is found
to be somewhat higher (2.6%) than the values observed in
high-quality WWW58 or ART59 models obtained from event-
based simulations but significantly lower than the structural
models of a-Si obtained from earlier ab initio and classical
molecular-dynamics simulations.57,60 We shall see later in this
section that the presence of a small percentage of coordination
defects, which are sparsely distributed in the models on the
atomistic length scale of 2–3 Å, do not affect the scattering
intensity in the long-wavelength limit.

Having addressed the structural properties of the models,
we now examine the structure factor, S(k), of a-Si in the
small-angle region. Figure 3 presents S(k) obtained by av-
eraging the results from the model networks M-1 and M-2.
The corresponding experimental data for as-implanted and an-
nealed samples of a-Si, from Ref. 26, are also plotted for com-
parison. Several observations are now in order. First, the sim-
ulated structure factor agrees well with the experimental data

obtained from the annealed and as-implanted samples for k
values up to 15 Å−1, as shown in the inset of Fig. 3. Sec-
ond, an inspection of the simulated and experimental data in
the vicinity of 1–2 Å−1 reveals that the former is closer to the
annealed data than to the as-implanted data. This observation
is consistent with the expectation that a-Si models from MD
simulations should be structurally and energetically closer to
annealed samples than to as-implanted samples. Annealing of
as-implanted samples at low to moderate temperature (400–
500 K) reduces the network imperfection locally and thereby
enhances the local ordering, which reflects in the first peak of
S(k). Third, it is notable that the models have reproduced the
structure factor in the small-k region, 0.15≤ k ≤ 1 Å,−1 quite
accurately, despite the presence of an artificial damping term
in Eq. (4) that imposes an effective cutoff length of Rc + 5σ
(≈ 35–40 Å) on the radial correlation function and the pres-
ence of a small number of coordination defects.

While a direct comparison of the simulated structure factor
(of a-Si) with its experimental counterpart establishes the effi-
cacy of the numerical approach and the reliability of the mod-
els used in our study, a more stringent test to determine the
accuracy of structure-factor data in the small-k region follows
from the behavior of S(k) in the long-wavelength limit. de
Graff and Thorpe27 addressed the problem computationally by
analyzing S(k) as k → 0, and concluded that S(0) was of the
order of 0.035± 0.001 by studying large a-Si models contain-
ing 105 atoms. Likewise, an analysis of the high-resolution
experimental structure-factor data of a-Si in the small-angle
limit, presented in Fig. 3, by Xie et al.26 indicated a value
of S(0) ≈ 0.0075 ± 0.0005 from experiments. Although a
full analysis of the behavior of S(k) near k = 0 is outside the
scope of the present work and will be addressed elsewhere, an
extrapolation of S(k) at k = 0, by employing a second-degree
polynomial fit in k in the region 0.15–1.0 Å−1, yields a value
of 0.0154 ± 0.0017 in the present study. This value is compa-
rable to the computed/experimental values mentioned earlier
and is a reflection of the fact that our models produce accurate
structure-factor data in the small-angle scattering region. The
degree of hyperuniformity of a continuous-random-network
model is often indicated by the value of S(k) at k = 0; a low
value of S(0) reflects a high degree of hyperuniformity.26–28,61

B. Reconstruction of void surfaces

Recent studies on hydrogenated a-Si, using ab initio
density-functional simulations62–64 and experimental data
from SAXS,17 IR,19,46 and implanted helium-effusion mea-
surements,51,52 indicate that the shape of the voids in a-Si:H
can be rather complex and that it depends on a number of fac-
tors, such as the size, number density, spatial distribution and
the volume fraction of voids, and the method of preparation
and conditions of the samples/models. While the experimen-
tal probes can provide considerable structural information on
voids, it is difficult to infer the three-dimensional structure of
voids from scattering measurements only. More importantly,
experimental data from small-angle X-ray and neutron scat-
tering measurements include, in general, contributions from
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FIG. 5. The distribution of atomic displacements (u) of the inter-
face atoms on a void surface in the models SP18-R6 and CY8-R6
after total-energy relaxation. For clarity and comparison, only those
values of the displacement with u > 0.1 Å are shown above.

FIG. 6. Local topological restructuring of a void surface (in the
SP18-R6 model) via a change of atomic-coordination numbers. The
silicon atoms, whose coordination number has increased [from (2,3)
to (3,4)] during the restructuring process are indicated in light blue
color.

an array of inhomogeneities with varying shapes and sizes, so
it is difficult to ascertain the individual role of various factors
in determining the shape of the measured intensity curve in
small-angle scattering. In contrast, simulation studies are free
from such constraints and capable of addressing systemati-
cally the effect of different shapes, sizes, number densities and
the nature of distributions (e.g., isolated vs. interconnected)
of voids/extended-scale inhomogeneities on scattering inten-
sities. Before addressing these important issues, we shall first
examine the restructuring of a spherical and a cylindrical void
surface and the resulting changes of its shape due to atomic
rearrangements on the surface or interface region of the voids.

Figure 4 shows the reconstructed void surfaces of a spher-
ical void of radius 6 Å in the model SP18-R6 and a cylindri-
cal void of cross-sectional radius 6.1 Å and height 18.3 Å in
the model CY8-R6. As stated in section IIC, a spherical void
is defined as an empty cavity of radius r (6 Å for SP18-R6)
with an interface width d (2.8 Å). Atoms within the region
between radii r and r + d are defined as the surface or inter-
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FIG. 7. The effect of relaxation on the shape of the scattering curve
for the model SP18-R6. The variation of the scattering intensity re-
sults from the three-dimensional restructuring of spherical void sur-
faces, as shown in Fig. 4(left).

face atoms. A cylindrical cavity or void can be defined in a
similar way. The radius of gyration of an assembly of surface
atoms can be readily obtained from the atomic positions be-
fore and after total-energy relaxation to determine the degree
of reconstruction and the shape of the void. For SP18-R6 and
CY8-R6, it has been observed that approximately 50% and
30% of the total surface atoms moved from their original po-
sition by more than 0.36 Å or 15% of the average Si-Si bond
length, respectively, indicating significant rearrangements of
the surface atoms on the voids. A similar observation applies
to the rest of the void models, where approximately (20–50)%
of the interface atoms have been observed to participate in sur-
face reconstruction. The interface atoms on a void surface in
the models SP18-R6 and CY8-R6 are shown in Fig. 4 in red
colors, along with the heavily reconstructed regions of the sur-
face as red patches. The displacement of the interface atoms
from their original position are presented in Fig. 5 by show-
ing the distribution of the atomic-displacement values. Such
a reconstruction of a void surface reduces the strain in the lo-
cal network and increases the local atomic coordination via
topological rearrangements. Figure 6 shows several atoms (in
light blue color) on the surface of a void in model SP18-R6,
whose coordination number has been found to increase from
2–3 to 3–4 upon total-energy relaxation. The effect of void-
surface relaxations on the scattering intensity can be readily
observed by computing the intensity before and after the re-
laxation. The results for the model SP18-R6 are shown in
Fig. 7. It is apparent that the scattering intensity changes con-
siderably upon total-energy relaxation despite the fact that the
one-dimensional scattering intensity can carry only limited in-
formation associated with three-dimensional structural relax-
ation of voids.

C. Dependence of SAXS intensity on the size and volume
fraction of voids

Experimental SAXS data on pure and hydrogenated a-Si
suggest that the scattering intensity in the small-angle region
is sensitive to the size and the total volume fraction of voids
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FIG. 8. The variation of the scattering intensity (from Eq. 5) for four
different void-volume fractions. For comparison, voids of an iden-
tical shape (i.e., spherical) and size but of different numbers were
employed in the simulations. The average radii of gyration of the
voids are indicated.

present in the samples.17,19,20,65 Here, we have studied the
variation of the scattering intensity for different void volume
fractions by introducing nanometer-size voids of spherical,
ellipsoidal, and cylindrical shapes in model a-Si networks.
Since the scattering intensity from an individual void is pro-
portional to the volume of the void, it is necessary to choose
spherical/ellipsoidal/cylindrical voids of an identical volume
to ensure that any variation of the intensity can be solely at-
tributed to the total volume fraction of the voids. Following
experimental observations,45,65 we chose void-volume frac-
tions in the range 0.1–0.3% by generating different number
of voids of identical volumes and shapes. Figure 8 shows
the intensity variation for four different values of the void-
volume fraction with an identical individual volume of spher-
ical voids. For small values of k, the scattering intensity
strongly depends on the volume fraction of the voids and it
increases steadily with increasing values of the void-volume
fraction from 0.1% to 0.3%. Similar observations have been
noted for ellipsoidal and cylindrical voids but are not shown
here. Likewise, the effect of void sizes on the shape of the
intensity curve in a-Si can be addressed in an analogous man-
ner by introducing voids of different sizes at a given volume
fraction of voids. The results for spherical and cylindrical
voids for fv = 0.3% are presented in Fig. 9. An examination
of the simulated data presented in Figs. 9(a) and 9(b) show
that there is a noticeable variation in the scattering intensity
in the small-k region below 0.4 Å−1 for both spherical and
cylindrical voids.

D. Effect of void shapes on SAXS: Kratky plots for a-Si

In this section, we have studied the intensity plots for a-Si
with spherical, ellipsoidal, and cylindrical voids for an iden-
tical total volume fraction of the voids to examine the effect
of the shape and the spatial distribution of the voids on the
scattering intensity in the small-angle region. Since the vol-
ume of an individual void can affect the scattering intensity
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FIG. 9. The simulated values of the scattering intensity for two differ-
ent void sizes with 0.3% volume fraction of the voids. The results for
spherical and cylindrical voids are shown in (a) and (b), respectively.
The average radii of gyration (Rg) and the total volume fraction of
the voids (fv) are indicated in the plots.

considerably, we chose the size of the voids in such a way that
the individual volumes of the voids were identical as far as
the total number of missing atoms (in a void) is concerned.
Figure 10 shows the variation of the scattering intensities with
the wave vector for three models with different void shapes,
averaged over two independent configurations for each model.
Specifically, we have employed the models SP8-R8, EL8-R8,
and CY8-R6. Each of the models contains 8 voids and has a
total volume fraction of voids of 0.3%. Although the average
radii of gyration of the voids are somewhat different in these
models, the individual volume of the voids is kept constant to
ensure that they contribute equally to the total scattering in-
tensity. It is evident from Fig. 10 that the scattering intensity
is not particularly sensitive to the shape of the void as long
as the total volume fraction, individual void volume, and the
number of voids are identical. This observation is consistent
with the earlier experimental studies on a-Si:H by Mahan et
al.,19,47 Leadbetter et al.,66 and the study by Young et al.,67

where a weak dependence of the nature of the scattering curve
on the shape of the voids or inhomogeneities was reported by
tilting the incident beam with respect to the samples. In the
next paragraph, we will see that a more effective approach to
determine the effect of void shapes on the scattering intensity
follows from studying Kratky plots, obtained from voids of
different shapes.



9

0 0.1 0.2 0.3 0.4 0.5 0.6
k  (Å

-1
)

0

20

40

60

80

100

SA
X

S 
In

te
ns

ity
 (

A
rb

itr
ar

y 
U

ni
t)

fv  =  0.3  SP8-R8   Rg  =  8.1 Å

fv  =  0.3  EL8-R8   Rg  =  9.7 Å

fv  =  0.3  CY8-R6  Rg  =  7.7 Å

FIG. 10. The dependence of the scattering intensity on the shape of
the voids for a given total volume-fraction of voids in a-Si. The sim-
ulated values of the intensity for spherical (SP), ellipsoidal (EL), and
cylindrical (CY) voids, having an identical value of the individual
void-volume, are shown.

To examine the relationship between the shape of voids and
the scattering intensity more closely, we have studied the vari-
ation of k2 Ic(k) with k, which is often referred to as a Kratky
plot in the literature.68 Here, following the standard conven-
tion in the literature, Ic(k) is the background-corrected in-
tensity, which is obtained by subtracting the scattering con-
tribution from the amorphous-silicon matrix with no voids.
The quantity k2Ic(k) can be viewed as a k-space analog of
rG(r), which is more sensitive to the intensity variation than
the conventional intensity I(k), in the same manner as rG(r)
is more sensitive to structural ordering then the radial pair-
correlation function g(r). In recent years, Kratky plots have
been used extensively in studying the structure of biologi-
cal macromolecules in solution. It has been observed that,
for compact and globular (i.e., spherical) proteins, the varia-
tion of k2Ic(k) with k is distinctly different and stronger than
for ones in the partially disordered and/or unfolded states.69,70

Specifically, a globular protein in the folded state exhibits an
approximate semi-circular variation of k2Ic(k) with k, which
gradually dissipates or flattens out as the degree of structural
disorder increases and the protein becomes partially disor-
dered by unfolding itself. Following this observation, one may
expect that the shape-dependence of the scattering intensity on
a Kratky plot would be more pronounced for spherical voids
than that for long cylindrical or highly elongated ellipsoidal
voids (see Refs. 4 and 71).

Figure 11 shows the variation of k2 Ic(k) for spherical
(SP), ellipsoidal (EL), and cylindrical (CY) voids. The re-
sults can be understood qualitatively as follows. Since the
largest dimension (length) associated with the spherical, ellip-
soidal, and cylindrical voids are given by 2R, 4R, and 2.3R
(see Ref. 53), respectively, where R is the radius of a spher-
ical void, it is not unexpected that the intensity variation is
most pronounced for the spherical voids and vice versa for
the (elongated) ellipsoidal voids. Deschamps and De Geuser72

have shown that the peak position(s) (kmax) in a Kratky plot is
(are) related to the pseudo-Guinier radius, Rpg =

√
3/kmax,

in metallic systems, where the particle-size dispersion is usu-
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FIG. 11. Kratky plots showing the variation of the background-
correct k2Ic(k) with k for spherical (SP), ellipsoidal (EL), and cylin-
drical (CY) voids of identical volumes and a total void-volume frac-
tion. The pseudo-Guinier radii (Rpg) correspond to the k values ob-
tained from the peak position(s) of the intensities for different void
shapes.

ally large. The approach has been recently adopted by Clau-
dio et al.73 to estimate the size of silicon nanocrystals in bulk
nanocrystalline (nc)-doped silicon from small-angle neutron-
scattering data in order to study the effect of nanostructuring
on the lattice dynamics of nc-doped silicon. Likewise, Diaz
et al.74 employed in situ SAXS for the detection of globular
Si nanoclusters of size 20-30 Å during silicon film deposi-
tion by mesoplasma chemical vapor deposition. The SAXS
intensity profiles obtained by these authors are more or less
similar to the one obtained by us for the spherical voids. The
pseudo-Guinier radii obtained from the peak positions in the
scattering intensity for the spherical, ellipsoidal, and cylin-
drical voids are indicated in Fig. 11. The pseudo-Guinier ra-
dius of 6.7 Å, obtained from the Kratky plot in Fig. 11, for
the spherical voids, matches closely with the initial radius of
8 Å before relaxation. For ellipsoidal and cylindrical voids,
the presence of two peaks is clearly visible in the respective
Kratky plots, which correspond to linear sizes of (3.8,7.7)Å
and (4.3,6.9)Å, respectively. The presence of multiple peaks
in a Kratky plot is indicative of a non-spherical shape of scat-
tering objects. The lengths associated with these peaks are
comparable to the ideal values of (4, 8)Å (minor and major
axes) for ellipsoidal voids and (6, 9)Å (cross-sectional radius
and height) for cylindrical voids before relaxation. We shall
see in section 3F that the values of the pseudo-Guinier radii
are also quite close to the values obtained from a conventional
Guinier approximation and the average radii of gyration com-
puted from the spatial distribution of the interface atoms in the
vicinity of voids in a model.

E. Effect of spatial distributions of voids on SAXS

In this section, we address the effect of spatial distributions
of voids on the shape of the intensity curve in SAXS. Before
discussing our results, we make the following observation.
The application of the homogeneous-medium approximation
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in the dilute concentration limit of the inhomogeneities or par-
ticles, such that the particles are spatially well-separated, with
a maximum linear size of l, suggests that the scattering inten-
sity for monodisperse particles solely depends upon the vol-
ume (V (l)), number density (N(l)) and the shape of the par-
ticle for a given density difference (∆ρ) between the particles
and the average density of the medium. Following Guinier1

and others,23,24,75 the scattering intensity in this approxima-
tion can be expressed as,

I(k) = (∆ρ)2 V (l)N(l)

∫ l

0

4πr2γo(r)
sin(kr)

kr
dr, (7)

where γo(r) is a characteristic shape function of the particle
whose value lies between 0 and 1. The expression in Eq. (7)
suggests that the scattering intensity is independent of the
atomic-scale structure of the embedding medium, provided
that the maximum linear size of the particles (l) is significantly
larger than the length scale (R) associated with the atomistic
structure of the medium, i.e., l >> R. Given that l ≈ R ≈
10-18 Å in the present study, it thus follows that the criterion
for the homogeneous-medium approximation is not satisfied
adequately and that a dependence of the scattering intensity
on the spatial distribution of voids may be expected.

The effect of the spatial distribution of the voids on the
scattering intensity can be studied conveniently by generat-
ing a number of suitable isolated and clustered distributions
of voids in real space. Since the microstructure of thin-
film amorphous silicon is characterized by the presence of
voids, which cause local fluctuations in the (mass) density,
it is important to examine to what extent a sparse or inter-
connected distribution of voids can affect the scattering inten-
sity in pure and hydrogenated amorphous silicon. Using im-
planted helium-effusion measurements, Beyer et al.51,52 have
shown that the presence of He-effusion peaks at low and high
temperatures are associated with the diffusion of He atoms
through an interconnected void region and the trapping of He
atoms in a network of isolated voids, respectively. These au-
thors have further noted that unhydrogenated samples of a-Si,
prepared by vacuum evaporation, can have a high concentra-
tion of isolated voids. To examine this, we have studied a
number of models with different spatial distributions of voids.
By using three different surface-to-surface distances (D = 1,
8, 14 Å), we have produced three void distributions consisting
of 18 voids and of radius 6 Å. Each distribution corresponds
to a volume-fraction density of 0.3% of voids and is reflective
of a sparse distribution of voids, as one observes in hot-wire
or plasma-deposited films of a-Si:H at low concentrations of
hydrogen. Figure 12 shows the scattering intensity as a func-
tion of the wave vector obtained for these void distributions.
While it is apparent that the intensity is not strongly sensitive
to the void distribution, it is quite pronounced in the region of
k below 0.1 Å−1 and in the vicinity of 0.26 Å−1 for smaller
values of D. A similar observation has been noted for the
model CY18-R6 but the results are not shown here. This de-
pendence can be attributed to the local density fluctutaions and
the interaction between neighboring voids, which can origi-
nate from a clustered or interconnected distribution of voids
produced by a small value of D. This is particularly likely in
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FIG. 12. The dependence of the scattering intensity on the spatial dis-
tribution of the voids in a-Si for a given volume fraction and size of
the voids. The surface-to-surface distance (D) between the voids is
indicative of the degree of sparseness of the void distribution. Higher
values of D correspond to a more scattered or sparse distribution of
voids.

a-Si:H at high concentrations of hydrogen, where the void dis-
tribution has been observed to be highly interconnected both
from experiments51,52 and ab initio simulations.62,64 However,
since the values of the intensity for k < 0.1 Å−1 is sensitive to
the numerical noise in G(r) and the real-space cutoff Rc, it is
difficult to determine the behavior of the scattering intensity
for wave vectors below 0.1 Å−1. Thus, it would not be in-
appropriate to conclude that the scattering intensity is notice-
ably affected by the spatial distribution of voids, especially for
a sparse distribution, for a given void-volume fraction in the
small-angle region of k ≥ 0.1 Å−1.

F. Guinier approximation and the size of the inhomogeneities
from SAXS

In writing Eq. (2) from (1) in section IIB, we have noted
that a peak in S(k), represented by a delta function,76 at k = 0
was excluded explicitly to arrive at the expression for the static
structure factor. The exclusion of the central peak can be read-
ily justified in experiments by recognizing that the (central)
peak, being dependent on the external shape of the sample,
is extremely narrow and thus it practically coincides with the
incident beam. Analogously, one may invoke a similar as-
sumption in the computer simulation of SAXS by employing
a large but finite-size model of amorphous solids so that the
computed values of the intensity at small k are minimally af-
fected. Guinier1 has shown that, for a homogeneous distribu-
tion of particles (e.g., voids) in the dilute limit, the scattering
intensity for small values of k can be approximated as,1

I(k) = I(0) exp

(
−
k2r2g

3

)
, (8)

provided that the particles are distributed randomly with all
possible orientations and krg < 1. In Eq. (8), rg is the radius
of gyration of the particles and the inter-particle interaction
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FIG. 13. Guinier plots showing a comparison of the experimental
SAXS data on a-Si, from Ref. 45, with the simulated values for a
void-volume fraction of 0.3%.

is neglected owing to the dilute nature of their distribution.
This relationship between the intensity and the wave vector
in the small-angle limit is widely known as the Guinier ap-
proximation and it is frequently used in the experimental de-
termination of the size of scattering objects on the nanometer
length scale. The approximation suggests that, as long as the
voids are distributed randomly (within a large model) in a di-
lute environment, one should be able to estimate the size of the
voids from the shape of the intensity curve for small values of
k. In practice, the calculation of the scattering intensity from
Eq. (8) is constrained by the effective cutoff distance (Rc) of
the reduced pair-correlation function and the size (l) of the in-
homogeneities, which determine the lower and upper limits of
k in the Guinier approximation, respectively. For the present
simulations, these values translate to an approximate k-range
from 0.1 Å−1 to 0.5 Å−1.
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FIG. 14. Guinier plots for the simulated values of the intensity for
spherical (SP), ellipsoidal (EL), and cylindrical (CY) voids for a vol-
ume fraction of 0.3%. Rg and rg refer to the radius of gyration ob-
tained from the distribution of the interface atoms and the best-fit
Guinier plots, respectively. For visual clarity, the results for the el-
lipsoidal (blue) and cylindrical (green) voids were given a vertical
offset of -5 and 5 units, respectively.

Figure 13 shows a comparison of the experimental data
from Ref. 45 with the results obtained from our simulations
for a void-volume fraction of 0.3% on a Guinier plot, where,
following Eq. (8), the scattering intensity is plotted on a natu-
ral log scale as a function of k2. The simulated values of the
intensity match closely with the experimental data, except for
very small values of k2 below 0.05 Å−2. The deviation for
small values of k is not unexpected; it can be attributed partly
to the difficulty in extracting information beyond Rc from the
reduced pair-correlation function and in part to the intrinsic
differences between the simulated models and experimental
samples. Since the latter generally include, depending upon
the method of preparation and experimental conditions, voids
of sizes from 5 Å to 15 Å, it is difficult to compare simulated
data with experimental results at a quantitative level for very
small values of k. The Guinier approximation in Eq. (8) sug-
gests that the approximate size of the voids/inhomogeneities
can be obtained from the slope of a ln I(k) vs. k2 plot. To this
end, we have plotted ln I(k) as a function of k2 in Fig. 14 for
spherical, ellipsoidal, and cylindrical voids. Since the values
of the intensity are close to each other for different shapes, the
results for the ellipsoidal and cylindrical voids are offset by +5
and -5 units, respectively, for the clarity of presentation. The
radii of gyration obtained from the slopes of the fitted plots
are indicated as rg , whereas Rg reflects the average value of
the gyrational radius computed from the real-space distribu-
tion of the interface atoms of a void. Evidently, the latter is
larger than the actual size of the void. For the purpose of com-
parison, we have subtracted 1.4 Å – a length equal to the half
of the interface width d – from the value obtained from the
Guinier plot and have listed the corresponding corrected val-
ues for each model in the plots and in Table I. It may be noted
that Rg values provide an upper bound of the average radius
of gyration of the voids, whereas rg values of the same ob-
tained from the Guinier plots might have been underestimated
in our work owing to a possible deviation from the Guinier
approximation in the scattering region of 0.1 to 0.6 Å−1.

IV. CONCLUSIONS

Small-angle X-ray scattering is a powerful and versatile
technique for the low-resolution structural characterization
of inhomogeneities over a length scale of a few nanometers
for a variety of ordered and disordered materials. In this
work, we have presented a computational study of small-
angle X-ray scattering in amorphous silicon, with particular
emphasis on the shape, size, number density, total volume
fraction, and the spatial distribution of voids in amorphous
silicon. Since it is difficult to control these factors during
experimental sample preparation and hence the analysis of
the effect of these factors on experimental SAXS data, a di-
rect simulation of the scattering intensity is particularly use-
ful in studying the variation of the simulated SAXS inten-
sity with respect to these factors using atomistic models of
amorphous silicon. For the accurate simulation of the scat-
tering intensity in the small-angle region down to 0.1 Å−1,
we have produced high-quality molecular-dynamical (MD)
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models containing 262400 atoms that correspond to the ex-
perimental mass density of 2.24 g/cm3 for amorphous sili-
con. The MD models exhibited a narrow bond-angle distribu-
tion with an average bond angle of 109.23◦±9.2◦ and 97.4%
four-fold coordinated atoms. The static structure factors ob-
tained from these models agreed quite accurately with high-
resolution experimental structure-factor data, obtained from
transmission X-ray scattering measurements. The models ex-
hibited a high-degree of hyperuniformity, characterized by the
value of S(k → 0) ≈ 0.0154 ± 0.0017, which compares
well with the value of 0.0075 extracted from the experimental
structure-factor data.

An extensive analysis of the simulated SAXS data, obtained
by varying the size, shape, and the volume fraction of voids
introduced in the a-Si models, suggests that the scattering in-
tensity is particularly sensitive to the size and the total vol-
ume fraction of the voids present in the models. The scat-
tering intensity increases steadily with an increase of the size
of the voids, irrespective of the shape and total volume frac-
tion of the voids. While the shape dependence is less pro-
nounced in the I(k) vs. k plots and is consistent with ex-
perimental SAXS data, an analysis of background-corrected

k2Ic(k) vs. k (Kratky) plots for spherical, ellipsoidal, and
cylindrical voids reveals a clearer picture of the overall shape
of the voids than the conventional intensity versus wave vector
plots. The size of the voids obtained from the Guinier approx-
imation and the Kratky plots are more or less consistent with
each other and comparable with the values computed from the
real-space distribution of the interface atoms, provided that
the skin depth of the void-surfaces is taken into account.
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57 I. Štich, R. Car, and M. Parrinello, Phys. Rev. B 44, 11092 (1991).
58 F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392

(1985).
59 G. T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996).
60 To our knowledge, we are not aware of any MD studies of a-Si

– ab initio or otherwise – that have produced ultra-large CRN
models of a-Si, consisting of 105 or more atoms, with four-fold
coordination above 97% and a root-mean-square deviation of the
bond angles below 10◦ on the length scale discussed here. In a
recent study77 on a-Si, based on machine-learning interatomic
potentials, the requirements above were satisfied but on a much

smaller length scale. A few ab initio studies, addressing up to 200
atoms, reported values of the four-fold coordination in the vicinity
of 95-96% but at the expense of a high RMS deviation (≥ 15 ◦)
of the bond-angle distribution. Experimental values56 of the latter
typically lie betwen 9◦ and 11◦.

61 M. Hejna, P. J. Steinhardt, and S. Torquato, Phys. Rev. B 87,
245204 (2013).

62 P. Biswas, D. Paudel, R. Atta-Fynn, D. A. Drabold, and S. R.
Elliott, Phys. Rev. Applied 7, 024013 (2017).

63 P. Biswas, D. A. Drabold, and R. Atta-Fynn, Journal of Applied
Physics 116, 244305 (2014).

64 P. Biswas and S. R. Elliott, Journal of Physics: Condensed Matter
27, 435201 (2015).

65 D. L. Williamson, S. Roorda, M. Chicoine, R. Tabti, P. A. Stolk,
S. Acco, and F. W. Saris, Applied Physics Letters 67, 226 (1995).

66 A. J. Leadbetter, A. A. M. Rashid, N. Colenutt, A. F. Wright, and
J. C. Knights, Solid State Communications 38, 957 (1981).

67 D. L. Young, P. Stradins, Y. Xu, L. M. Gedvilas, E. Iwaniczko,
Y. Yan, H. M. Branz, Q. Wang, and D. L. Williamson, Applied
Physics Letters 90 (2007).

68 O. Glatter and O. Kratky, Small Angle X-ray Scattering (Aca-
demic Press, London, UK, 1982).

69 A. G. Kikhney and D. I. Svergun, FEBS Letters 589, 2570 (2015).
70 V. M. Burger, D. J. Arenas, and C. M. Stultz, Scientific Reports

6, 29040 EP (2016).
71 As far as the shape of scattering objects is concerned, the prob-

lem of determining the SAXS intensity profile, produced by a dis-
tribution of compact globular (or spherical) proteins in solution
and a dilute random distribution of spherical voids in a homo-
geneous environment, can be treated approximately as a primal
and its dual problem. In both cases, the scattering is due to the
difference of mass density of the scattering objects from the sur-
rounding medium. Likewise, a partially disordered or an unfolded
protein – characterized by a large end-to-end distance or radius
of gyration – can be approximated by an elongated scattering ob-
ject in SAXS. Such an approximation is frequenctly employed in
coarse-grained representation of proteins on a lattice.

72 A. Deschamps and F. De Geuser, Journal of Applied Crystallog-
raphy 44, 343 (2011).

73 T. Claudio, N. Stein, D. G. Stroppa, B. Klobes, M. M. Koza,
P. Kudejova, N. Petermann, H. Wiggers, G. Schierning, and R. P.
Hermann, Phys. Chem. Chem. Phys. 16, 25701 (2014).

74 J. M. A. Diaz, M. Kambara, and T. Yoshida, Journal of Applied
Physics 104, 013536 (2008).

75 S. R. Elliott, Physics of Amorphous Materials (Longman Scien-
tific & Technical, Harlow, UK, 1990).

76 For finite-size systems or samples with boundary surfaces, it can
be shown, following Guinier1, that the central peak at k=0 is rep-
resented by an integral involving a delta function modulated by
a shape-dependent term, describing the distribution of boundary
points. The peak does not contain any structural information and
it coincides with the incident beam in experiments.

77 V. L. Deringer and N. Bernstein and A. P. Bartók and M. J. Cliffe
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