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Abstract

We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial

compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations

reveal the formation of different diamond-like products starting from thermal graphite crystal

configurations. We identify distinct classes of final products with characteristic probabilities of

formation, stress states, and electrical properties, and show through simulations of rapid quenching

that these products are nominally stable and can be recovered at room temperature and pressure.

Some of the diamond products exhibit significant disorder and partial closure of the HOMO-

LUMO gap. Seeding atomic vacancies in graphite significantly biases toward forming products

with small HOMO-LUMO gaps. We show that a strong correlation between the HOMO-LUMO

gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects

are associated with gap closure. The rapid diffusionless transformation of graphite is found to

lock vacancy defects into the final diamond structure, resulting in configurations that prevent sp3

bonding and lead to localized HOMO and LUMO states with a small gap.
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I. INTRODUCTION

The scientific and technological relevance of carbon allotropes has driven substantial

interest1–18 in the carbon phase diagram since the first lab-grown diamonds were repro-

ducibly synthesized19 in the 1950’s. A detailed understanding of carbon phase boundaries

and transformations is necessary for astrophysical models of planetary interiors18,20,21 and

white dwarfs,22 the design of inertial confinement fusion targets,23 and for increased con-

trol in diamond manufacturing.24 Recent efforts to tailor diamond on the nanoscale seek

to produce components for photonics, electronics, and quantum computing.24–27 Manu-

factured diamonds are commonly synthesized from carbon-containing precursors through

chemical vapor deposition24,25,27 or under static high-pressure and high-temperature.19,24,28

Another promising synthetic route is through direct mechanochemical transformation of

graphite to diamond under uniaxial compression at very high strain rates (e.g., through

shock compression).1,3,4,12,15,17,18 Atomic-level shear strains can prompt chemical reactions

through mechanical means,29,30 which can be induced by highly non-hydrostatic stresses dur-

ing uniaxial shock compression31 and also through industrial processes such as ball milling32

or by precision manipulation using atomic force microscopy.33 Products obtained through

mechanochemistry can differ from their thermally synthesized counterparts through the for-

mation of long-lived metastable states.13,29 We show that subjecting graphite to extremely

rapid uniaxial strain rates can yield a means to synthesize diamond-like structures with

characteristic probabilities of formation, stress states, and electrical properties.

Understanding materials synthesis in the laboratory can require investigating a great

number of permutations of different starting materials and thermodynamic conditions, which

are too costly to address with experimental trial and error alone. In addition, experiments

tend to yield equations of state or spectra that can be difficult to interpret in terms of

specific chemical reactivity. Quantum-based simulation methods such as Density Functional

Theory34 (DFT) are often used to accurately model physical and chemical changes in mate-

rials progressing through the range of states visited during a shock on atomistic scales.12,35–38

However, DFT molecular dynamics simulations require immense computational effort per

simulation time step that can consequently impose harsh limits on the system sizes and

time scales that can be studied. The density functional tight binding method (DFTB) holds

promise to approach DFT-level accuracy over a wide range of phases and states,37,39,40 while
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affording up to a thousand-fold reduction in computational expense.41,42 DFTB simultane-

ously yields information on electronic states and can provide significantly improved trans-

ferability over empirical molecular dynamics potentials,43–45 which tend to be inaccurate

outside of their fitted regime. The relative high throughput of DFTB allows for gathering

ensemble statistics from numerous independent simulations run for a specific set of condi-

tions. Probabilistic physics-based predictions such as these can inform the interpretation of

noisy experimental results, validate the predictions of empirical potentials, and are also rele-

vant considering that some continuum material models46 take probability functions as input.

Here, we use an established DFTB model for carbon under extreme conditions37 with dis-

persion interactions39 to investigate the ensemble-average response for the mechanochemical

transformation of graphite to diamond under these dynamic loading conditions.

II. METHODS

Molecular dynamics simulations were performed using the DFTB method without self-

consistent charges,47 similar to previous studies on carbon.37,39 The total energy is defined

as

ETotal = EBS + ERep + EDisp, (1)

where EBS is the band structure energy, ERep is a pairwise potential that is fit to reproduce

ionic repulsion and Kohn-Sham double counting terms, and EDisp is a pairwise dispersion

term. The band structure energy was evaluated using a minimal basis set with the pbc-0-3

parameter set (available at https://www.dftb.org/). Evaluations of EBS were performed at

the Γ-point only without spin polarization and with Fermi-Dirac thermal smearing48 with

the electronic temperature set equal to the instantaneous ionic kinetic temperature at each

time step. We used an ERep potential that was specifically developed37 to model solid and

liquid phases of carbon at extreme pressures and temperatures. An additional dispersion

correction EDisp was included that was originally parameterized39 to better reproduce the

experimental49 compression curve and bulk modulus for graphite.

Trajectories were integrated using LAMMPS50 with forces and stresses evaluated by

the DFTB+ code.51 Orthorhombic, three-dimensionally periodic simulation cells were used

for all simulations. Isothermal-isochoric (NVT) and isothermal-isobaric (NPT) simulations

were performed using a Nosé-Hoover-style thermostat and combined thermostat/barostat,
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respectively.52–54 The three cell parameters were independently coupled to their respec-

tive diagonal stress tensor components in the NPT simulations. Isothermal simulations

at T = 300 K were performed with a 0.50 fs time step and all others were performed with

a 0.25 fs time step.

A starting hexagonal graphite configuration with 288 atoms and six crystal layers was

generated using the generalized crystal-cutting method55 and the T = 0 K lattice parameters

reported in Reference 39. The direction normal to the basal plane was aligned along z and the

corresponding cell dimension was 19.845 Å. The transverse cell directions were aligned in the

x-y plane and had dimensions 12.471 Å × 9.600 Å. Simulations with larger system sizes using

either a newly parallelized version of the DFTB+ code or with recently developed classical

force fields56 is the subject of work. Average cell parameters were obtained at T = 300 K

and P = 1 atm from the last 5 ps of a 10 ps NPT trajectory and were used to define

the cell dimensions in subsequent simulations. Thirty thermal phase-space configurations

were extracted in 1 ps intervals from the last 30 ps of a 50 ps NVT simulation performed

at T = 300 K. These thermal configurations were used as independent starting points for

compression simulations.

The DOLLS algorithm57 was used to adiabatically compress the cell along z at a constant

strain rate,

ε̇ =

∣∣∣∣ ∆z

z0∆t

∣∣∣∣ , (2)

where ∆z is the change in cell length from its initial value z0 and ∆t is the time interval

for the compression. Simulation with DOLLS allows us to test for the possible dependence

of mechanochemistry on the strain rate itself. This is in contrast to direct simulation of

a shock compression (e.g., Ref. 58), which would explicitly restrict our simulations to a

specific Hugoniot end point, only. The initial density was ρ0 = 2.418 g cm−3. We set ∆z

to yield a final density ρf = 3.925 g cm−3, which corresponds to a hydrostatic pressure

of 50 GPa according to an experimental equation of state for diamond.6 Four different

strain rates (ε̇ = 1.0× 1011, 5.0× 1010, 1.0× 1010, and 5.0× 109 s−1) were considered, with

corresponding ∆t ranging from 3.8 ps to 76.8 ps. Average statistics for each post-compression

state were obtained from a 5 ps isochoric-isoenergetic (NVE) trajectory following maximum

compression.

Local bonding configurations were characterized using the atomic tetrahedral order
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parameter,59

Si =
3

32

3∑
j=1

4∑
k=j+1

(r̂ij · r̂ik +
1

3
)2 +

1

3

4∑
j=1

(rij − 〈r〉)2

4〈r〉2
, (3)

where Si is computed for central atom i, the sums run over the four nearest neighbors, r̂ij

is the unit separation vector between atoms i and j, rij is the separation distance, and 〈r〉

is the arithmetic mean of the rij computed for the four nearest neighbors. The first term in

Equation 3 measures the degree to which the four bond separation vectors are tetrahedrally

aligned and the second term is a measure of the variance in the bond lengths. Several relevant

system averages 〈S〉 are 0.25 for an isotropic liquid, ≈0.20 for uncompressed graphite, and

0.00 for perfect diamond. Extended common neighbor analysis60 was used to identify cubic

and hexagonal diamond packing. Standard common neighbor analysis distinguishes between

atoms in local face-centered cubic and hexagonal close-packed arrangements (among others)

based on the bonding topology of neighboring atoms.61 An extension of this analysis exploits

the fact that cubic and hexagonal diamond structures consist of two intersecting lattices; a

central atom in a local cubic or hexagonal diamond packing environment has second nearest

neighbors that are respectively arranged on a face-centered cubic or hexagonal close-packed

lattice. The Open Visualization Tool62 (Ovito) was used to perform the extended common

neighbor analysis and render configuration snapshots.

The material stress state was characterized using scalar quantities proportional to the

first and second rotational invariants of the stress tensor σσσ, namely the volumetric stress (or

pressure, if hydrostatic) P = Tr [σσσ] /3 and von Mises stress,

σMises =
1√
2

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
yz + σ2

zx)
]1/2

. (4)

The latter is a useful measure of deviatoric (shear) stress that is independent of coordinate

frame. The average stress in the transverse dimensions was computed as σTrans = (σxx +

σyy)/2 for ease of comparison to the stress in the loading direction (σzz) as all three diagonal

components of σσσ were in general unequal. We use the convention of positive stress for a

compressed state. It should be noted that σσσ cannot be evaluated on a per-atom basis with

the DFTB method (unlike many classical force fields), as EBS in Equation 1 is inherently

many-body and cannot be unambiguously reduced into contributions from interaction pairs.
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Cubic Hexagonal Other

Z

t	=	3.4	ps t	=	3.5	ps t	=	3.6	ps t	=	3.7	ps

FIG. 1. Snapshots from a typical compression simulation showing the phase transformation from

graphite to diamond. Atoms with local cubic and hexagonal diamond packing environments iden-

tified by extended common neighbor analysis are respectively colored cyan and orange. Other

atoms that were not identified to have either diamond structure, such those in graphitic sheets,

are colored black. The periodic simulation cell is drawn with green lines.

III. RESULTS

A. Compression Response

We generated ensembles of thirty independent graphite compression simulations each for

four different strain rates (ε̇ = 1.0×1011, 5.0×1010, 1.0×1010, and 5.0×109 s−1), yielding a

total of 120 statistically independent simulations. Strain rates were chosen to correspond to

a broad range of possible experimental studies. Many of the qualitative features seen in our

ensembles of simulations are generally consistent across the different simulations and strain

rates, so we focus first on results from a single simulation at ε̇ = 1.0×1011 s−1. All simulations

exhibit a rapid phase transformation from graphite to diamond. In the example simulation,

the cell was compressed to its final density within 3.8 ps and the phase transformation

initiated at t = 3.45 ps. Snapshots of the simulation cell during the transformation are

shown in Figure 1. The transformation initiates with the buckling of a few graphite layers

that form a layered diamond structure, similar to previous DFT results.12 Neighboring layers

quickly buckle thereafter until the entire structure transforms to a predominantly cubic

diamond structure. The small region of atoms identified as “other” in the lower left hand

corner of the snapshot at t = 3.7 ps subsequently rearrange, leading to a cell that contains

only perfect strained cubic diamond.

Time histories for the density, stress, kinetic temperature, and packing configuration are

respectively shown in Figure 2 panels (a)-(d) for a typical simulation. The onset of the phase
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(a)

V/Vo
ρ

σzz
σTrans
Tr[σ]/3

(b)

(c)

Cubic
Hexagonal
Other

(d)

FIG. 2. Equation of state during a typical compression simulation showing (a) the volume and

density, (b) the stress state, (c) the temperature, and (d) the population of atoms identified as

either other or cubic/hexagonal diamond through extended common neighbor analysis. Initiation

of the phase transformation at 3.45 ps was identified through visual inspection of the trajectory

(see Figure 1) and is indicated by the vertical dotted line.
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transformation was identified by visual inspection of the trajectory and the corresponding

time is indicated in each panel. The phase transformation occurs after the system density

exceeds the density of diamond at room temperature and pressure (ρDiamond = 3.51 g cm−3).

The absolute maximum in the stress along the compression direction (σzz) most clearly

demarcates the time origin for the phase transformation. During the transformation, σzz

rapidly decreases while the transverse components σTrans rapidly increase. The volumetric

stress remains approximately constant at ≈60 GPa during the transformation before finally

reaching a value of 73 GPa at maximum compression. The temperature rise following the

phase transformation is significantly greater (≈2000 K) than the initial ≈200 K increase

due to work done to compress the graphite. The brief plateau in panel (d) at t = 3.5 ps

corresponds to the transient layered diamond configuration previously seen in Figure 1,

where only ≈50% of the atoms have transformed to cubic diamond with the others remaining

in graphite-like sheets. The fluctuations in relative population seen to the left of the dotted

phase transformation could indicate an earlier transformation time origin than was identified

by visual inspection of the trajectory. However, this analysis could be prone to error with

the rapidly changing adaptive cutoff63 used in the extended common neighbor analysis.60

The final configuration is not 100% cubic diamond due to the formation of a defect that

subsequently anneals during the 5 ps post-compression NVE equilibration.

Possible strain rate dependence was investigated by comparing the ensemble-average re-

sponse for selected compression rates in an interval spanning nearly two orders of magnitude.

Average post-compression states were first determined for each trajectory using a 5 ps NVE

simulation. These time averages were then used to compute the ensemble average for the

final state, taking the ensemble standard deviation as the uncertainty. The final stress state

and temperature are plotted as a function of strain rate in Figure 3, panels (a) and (b)

respectively. Final stresses in the material are non-hydrostatic and independent of strain

rate, with longitudinal and transverse stresses agreeing within the ensemble fluctuations for

the slowest and fastest rates. The peak value for σzz, which we determined during each com-

pression simulation, is also independent of the rate. The final temperature is only weakly

dependent on strain rate within uncertainty, with Tf = 2400± 400 K and Tf = 1900± 300 K

for the fastest and slowest cases. The decrease in Tf with decreasing rate is likely due to the

smaller degree of irreversible work under those conditions.

Sufficiently fast strain rates could drive the system to a metastable density and tempera-
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(b)

(a)

σxx
Tr[σ]/3

σyy
σzz
peak	σzz

1.0	x	10111.0	x	10101.0	x	109

1.0	x	10111.0	x	10101.0	x	109

FIG. 3. Ensemble averages for the final (a) stress state and (b) temperature, plotted as a function

of strain rate. Note that the ensemble averages for peak σzz were extracted from the compression

portion of each trajectory, unlike the other plotted quantities. Error bars correspond to one

standard deviation of the ensemble mean.

ture state for which the minimum free energy configuration would be diamond. We used the

peak σzz to systematically define the time origin of the phase transformation (denoted by

PT) and found the average density and von Mises stress at this point to be ρPT = 3.70 g cm−3

and σMises,PT = 127 GPa, respectively. Both ρPT and σMises,PT were independent of strain

rate and had respective maximum ensemble standard deviations of 0.08 g cm−3 and 14 GPa.

Clearly, for the present case the probability to initiate the phase transformation is highly

dependent on the strain, but not the strain rate. A likely explanation is that the rates

explored here are all too fast for thermal activation of the transformation, which instead ini-

tiates through mechanochemistry. This is consistent with the constant maximum deviatoric

stress (σMises,PT) that the graphite structure supports before transforming.
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Cubic

Hex

Other

Extended	Disorder
With	Twins No	Twins

Pure	Twins	
(16%)

With	Twins	(7%) No	Twins	(2%)
Extended	Disorder

Disorder	
(22%) No	Defects	

(53%)

σxx σyy σzz Tr[σ]/3 σMises

(a)

(b) (c)

Local

Local	DisorderPure	TwinsNo	Defects

FIG. 4. (a) Typical persistent post-compression configurations with atoms colored by their local

packing structure (cubic diamond, hexagonal diamond, or other). Dashed lines indicate twin

mirror planes and the simulation cell is drawn with solid green lines. Bonds are drawn using a 2 Å

separation distance cutoff. (b) Population statistics for the different types of final products averaged

over all strain rates. (c) Average post-compression stress states with error bars corresponding to

one standard deviation of the mean.

B. Diamond Products

Structural properties for the diamond products from our simulations indicate that ≈47%

of the simulations exhibited some sort of defect, consistent with earlier shock experiments

on pyrolytic graphite.4 Our observed distribution of products and defects was found to be

independent of strain rate. We observe four different types of post-compression configura-

tions that are predominantly cubic diamond (Figure 4): those with no defects, those with

pure twins (a mirror-plane defect), and those with either local disorder or extended disorder

to the tetrahedral bonding coordination. The percentage of simulations resulting in each

product type was determined from our ensembles, averaged over all strain rates (120 inde-

pendent simulations total), and the resulting distribution is shown in Figure 4(b). Local

and extended disorder configurations were differentiated based on whether regions of non-
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diamond-like atoms extended through the periodic boundary. Two typical configurations

classified as having local disorder are shown to illustrate different possible degrees of defect

localization relative to the extended disorder type. Two different sub-types of extended dis-

order were identified, with some exhibiting twin defects and others without. Practically all

of the configurations with local disorder also exhibited regions with hexagonal diamond. The

small minority of products (≈2%) exhibiting extended disorder without twins also exhibit a

partial closure of the HOMO-LUMO gap EGap ≈ 0.5 eV. All other configurations exhibited a

large EGap ≈ 4.3 eV, which is consistent with experiments1 that shock-compressed pyrolytic

graphite to an electrically insulating diamond-like phase. We verified that the defect types

shown in Figure 4(a) were recoverable at T = 300 K and Tr [σσσ] /3 = 1 atm by performing

NPT simulations of rapid quenching in which a linearly ramped thermostat and barostat

were applied to take each system from the hot compressed state to ambient conditions over

the course of 50 ps.

Histograms of the average post-compression stress state for systems with different types of

defects (Figure 4(c)) indicate that the transverse stresses σxx and σyy are modestly insensitive

to the presence or absence of defects whereas the longitudinal stress σzz is much lower in

systems without defects. The subtle variations in σxx, σyy, and σzz compensate to yield a

total system pressure Tr [σσσ] /3 that is also independent of the defects. Specific defect types

are predicted to have distinct signatures in the von Mises stress σMises. Systems with twins

exhibit the highest average σMises of 111 GPa, which is slightly lower than the maximum

(127 GPa) at the phase transformation. The σMises stresses are predicted to relax with

increasing disorder, with the local and extended disorder types yielding values of 79 GPa and

44 GPa, respectively. The opposite trend appears to be true for σzz, where extended disorder

configurations yielded the highest stress states. Non-zero shear stresses also manifest in the

quenched products at ambient conditions, except for those instances that do not exhibit

defects.

The defects observed in our simulations likely form due to an initial misalignment of the

graphite layers that prevents a complete transformation to the ideal structure under ex-

tremely rapid compression rates. Example snapshots highlighting the phase transformation

processes that ultimately yield diamond products with defects are shown in Figure 5. Vi-

sual inspection of the trajectories reveals that pure twins arise when multiple layers initially

buckle (t = 0 fs). These layers then bond to their neighbors, producing two layered diamond
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Cubic Hex

Time	

Other

Pure	Twins Local	Disorder Ext.	Disorder

0	fs

30	fs

60	fs

90	fs

120	fs

150	fs

180	fs

FIG. 5. Snapshots showing the kinds of transformation processes that lead to diamond products

with pure twins, local disorder, and extended disorder. The time origin is set to the initiation of

the phase transformation determined by the σzz criterion.

regions (t = 30 fs) that are aligned such that when the two regions meet they form twins

(t ≥ 60 fs). Disordering arises due to layer misalignments that pin some atoms in a given

layer (see extended disorder case at t = 60 fs and 90 fs), which prevents the overall alignment

of that layer with the new lattice. This appears to be a consequence of the extremely rapid

diffusionless transformation process. The extended disorder case exhibits greater layer mis-

alignment at earlier times than does the local disorder case (compare snapshots at t = 60 fs).

12



It is apparent from both disordered cases that initial misalignment and disordering can also

be locked into the final structure when the cubic diamond region grows through the periodic

boundary, which is analogous to the situation where two separate nucleation sites coalesce.

Determining the spatial extent of extended disorder defects that develop in larger systems

is the subject of future work.

Atomic vacancies present in real graphite crystals could potentially bias toward gap-

closing defect structures in diamonds formed through uniaxial compression. Previous work

has shown the ability to create highly specific extended defects and vacancies in graphite

materials.64,65 Thus, there exists the possibility to create materials with specific properties

through mechanochemistry based on the initial defect structure of the system. In this

respect, we considered four analogous 30-simulation ensembles at a strain rate of 1.0 ×

1011 s−1, starting from initial thermal graphite configurations with between one and four

contiguous vacancies in a single crystal layer. These four vacancy systems correspond to

defect concentrations of 0.35%, 0.69%, 1.04%, and 1.39%, respectively. Peak values for σzz

and σMises decrease from 142 GPa to 122 GPa and from 127 GPa to 111 GPa, respectively,

going from zero to four vacancies. These reductions are consistent with the expectation

that vacancies should lower the free energy barrier for the phase transformation. Final

configurations obtained from the vacancy simulations fall into the same four categories as the

initially defect-free simulations (no defect, pure twins, local disorder, extended disorder), but

with the additional presence of vacancies. The number of simulations that exhibit extended

disorder increases by ≈10% when a single or multi-center vacancy is introduced. Our results

show that the locations of seeded vacancies are largely preserved during the diffusionless

phase transformation, as the extremely rapid compression rates lock pre-existing vacancies

into the final structure. It is possible that slower compression rates might allow sufficient

time for vacancy defects to anneal or migrate.

A correlation analysis between the HOMO-LUMO gap and the maximum in the tetrahe-

dral order parameter S (see Equation 3) was computed for the ensembles of post-compression

states and is shown in Figure 6. A significant correlation between defects to the tetrahedral

coordination of the final state (identified by S > 0) and partial closure of the HOMO-LUMO

gap EGap was identified. Nearly all of the simulations with vacancies had some atoms in non-

tetrahedral bonding configurations. Other kinds of defects that do not perturb the bonding

coordination, such as twins, do not strongly influence the electrical properties of the diamond
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No	Vacancy
1	Vacancy
2	Vacancies
3	Vacancies
4	Vacancies

FIG. 6. Average EGap plotted as a function of the average maximum in the atomic tetrahedral

order parameter for each simulation, where averages were computed over the 5 ps post-compression

NVE trajectory portions. The single initially defect-free (non-vacancy) simulation with partial gap

closure corresponds to a configuration with extended disorder without twins.

products. In contrast to the initially defect-free simulations, nearly all of those simulations

that start with one or more vacancies exhibit EGap < 1 eV. The ensemble average EGap

decreases from 0.7 eV to 0.3 eV when the number of vacancies is increased from one to four.

These gap closures are sufficient to result in partial occupation of the LUMO due to thermal

excitation in the post-compression state and could affect electrical and thermal conductivity

measurements. The correlation between non-tetrahedral bonding coordination and gap clo-

sure suggests that mechanochemistry of rapidly compressed graphite with seeded vacancies

could be a possible route to obtain diamond-like materials with significantly reduced EGap.

Density functional theory single point calculations were performed for selected diamond

structures to validate the DFTB-predicted HOMO-LUMO gap and obtain maps for the

electronic density. Calculations were performed using the Vienna Ab-initio Simulation

Package66 (VASP), using the Perdew-Burke-Ernzerhof67 (PBE) generalized gradient approx-

imation functional with projector-augmented wave (PAW) pseudo-potentials.68,69 The elec-

tronic structure was evaluated the Γ-point only using a 500 eV plane wave cutoff without

spin polarization and with Fermi-Dirac thermal smearing48 with the electron temperature

set to 0.215 eV (i.e., 2500 K, the approximate temperature of each compressed state). The

self-consistent field accuracy threshold was set to 10−6 eV. Renderings of electronic density

iso-surfaces were prepared using VESTA.70 Figure 7 shows plots of the electronic density for

two diamond products with small gap, including the extended disorder configuration without
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FIG. 7. Snapshots showing extended common neighbor analysis packing assignments and electronic

density for two different diamond product types with a small HOMO-LUMO gap, including (a) an

example with extended disorder without twins, and (b) a predominantly cubic diamond structure

obtained from compressed graphite seeded with four contiguous vacancies. Isosurfaces (cyan) are

shown for the total electronic density and for the HOMO and LUMO states. The planar cross

sections of the simulation cell shown here also reveal regions with higher density bounded by the

isosurfaces that are indicated in blue, magenta, and yellow. Electronic density maps shown in (b)

are oriented so that the normal vector for the slicing plane indicated in the far left snapshot is

pointed out of the page.

twins shown in Figure 4 (rotated by 180o) and a typical example where a four-center vacancy

is the only structural defect. The DFT-predicted EGap for these configurations are 0.31 eV

and 0.13 eV, respectively, which are both close to the DFTB NVE averages 0.51 eV and

0.05 eV plotted in Figure 6. The extended disorder case exhibits HOMO and LUMO states

that localize to separate and distinct parts of the disordered region (identified as “other”

by the common neighbor analysis). This disorder also correlates with irregularities in the

covalant bonding network revealed by the total electron density. Due to the rapid diffusion-

less transformation, vacancies in graphite are locked into the final diamond structure and

are clearly revealed by both the common neighbor analysis and the total electron density.

Atoms centered on the top and bottom of the vacancy cannot sp3 bond to their neighbors
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and instead adopt pyramidal sp2 configurations (see arrow in panel (b)). Geometric con-

straints resulting in sp2 configurations are a likely explanation for the consistent closure of

the gap in the vacancy samples. The HOMO and LUMO states localize to the interior of the

vacancy centered on the missing atomic sites and generally overlap, which might facilitate

electronic transitions.

IV. CONCLUSIONS

Our DFTB model for carbon under extreme conditions allows for ensemble simulations

of different strain pathways, which in turn yields a more realistic sampling of phase space

than previous efforts. We find that use of independent thermal starting configurations can

have a significant bearing on the distribution of final diamond products formed during the

mechanochemical transformation of graphite. This is due to the fact that the instantaneous

atomic configuration before compression dictates the end products observed in our simula-

tions. Our results indicate that the rapid compressions studied here can induce defects and

disordered structures in the diamond end product, which in some cases results in a partial

closure of the material band gap. In particular, seeded vacancy sites in the graphite starting

material can become “pinned” into specific geometries as the material is strained, allowing

for small band gap energies where the HOMO and LUMO states are localized and centered

within the vacancy site. Capturing the spectrum of non-ideal products such as we have done

here can inform the development and validation of coarse-grained material models and in-

terpretation of experiments, especially considering the wide variation in possible structural,

mechanical, and electrical properties of those products. Our results indicate the possibil-

ity of using mechanochemical synthetic routes to create materials with tailored properties,

where desired characteristics are imparted as a direct result of the extremely rapid strain

experienced by the material.
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