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Line nodes in the superconducting gap are known to be a source of Majorana flat bands (MFBs)
on a surface. Here, we extend this relation to all symmetry-protected line nodes where an additional
constraint arising from crystal symmetry destabilizes or hides the existence of MFBs. By establishing
a one-to-one correspondence between group theoretical and topological classifications, we are able
to classify the possible line-node-induced MFBs, including cases with (magnetic) non-symmorphic
space groups. Our theoretical analysis reveals MFBs in antiferromagnetic superconductors.

Over the last few years, the study of nodal gap struc-
tures of superconductors (SCs) has experienced renewed
interest due to the fact that they can be novel kinds of
topological objects 1–19. In this context, a line node
in time-reversal (TR) invariant SCs is protected by a
one-dimensional (1D) topological number and induces a
Majorana flat band (MFB) on its surface20–24. These
MFBs exhibit a zero-bias conductance peak that can
be revealed through tunneling measurements in TR in-
variant SCs such as high-Tc cuprate SCs25–31 and non-
centrosymmetric SCs32–34, and thus provide conclusive
evidence for the existence of bulk topological line nodes.

In materials with strong spin-orbit interactions (SOIs),
e.g., heavy fermion SCs, the formation of Cooper pairs is
constrained by the underlying crystal structure because
a group operation is followed by the spin operation35,36.
When crystal symmetry forbids an irreducible represen-
tation (IR) of Cooper pairs in a highly symmetric sub-
space of the Brillouin zone (BZ), a symmetry-protected
node arises36–42. Recently, there has been much ef-
fort devoted to exploring such symmetry-protected line
nodes in SCs with (magnetic) non-symmorphic space
group symmetry43–48; however, the corresponding phys-
ical phenomena remains unclear. Nevertheless, some of
symmetry-protected line nodes are known to be simul-
taneously protected by a topological number12,46, which
implies the existence of MFBs.

In this paper, we unify the topology of symmetry-
protected line nodes and MFBs. By taking general sym-
metry constraints affecting line nodes into account, we
show that symmetry-protected line nodes host two dif-
ferent kinds of topological numbers: a 0D topological
number that describes the topology of the symmetry-
protected line nodes, and a 1D topological number that
reflects the MFBs. The two topological numbers are in-
trinsically related to each other and the relationship be-
tween them fills the gap between the symmetry-protected
line nodes and MFBs.

Our topological argument allows us to categorize line
nodal SCs into three different classes with respect to the
MFBs: (i) odd-parity SCs with TR or a magnetic trans-

lation symmetry, (ii) even-parity SCs with TR symme-
try, and (iii) even-parity SCs with a magnetic translation
symmetry. The three classes are directly linked to the
symmetry-protected line nodes, as shown in Table I and
II. Furthermore, we show that there is no MFB in Class
(i) SCs , and that the magnetic translation is sensitive to
the surface orientation, which provides an additional con-
straint on the MFBs in Class (iii) SCs. As a result, each
case is distinguishable through surface sensitive measure-
ments. Finally, we demonstrate the existence of a MFB
in Class (iii) SCs based on a minimal model describing
UPd2Al3, which hosts nodal loops on the Brillouin zone
face (ZF). Interestingly, the MFB in this case only arises
if the crystal symmetry protecting the nodal loops is bro-
ken, reflecting the additional constraint mentioned above.

IRs of Cooper pairs— First, we revisit the group the-
oretical results. In materials with strong SOIs, electron
states respect symmetry of the crystal structure and are
thus characterized by its IRs. Therefore, the possible for-
mation of Cooper pairs is determined by the IRs of the
electron states. For clarity, let γk(m) be an IR of the
symmetry group m ∈ Gk for an electron with momen-
tum k, where Gk is the little group of k. When electrons
at k and −k form a Cooper pair, it can be represented
by Pk(m) ≡ γdk(m)⊗ γk(m)− γk(m)⊗ γdk(m), where d
is a symmetry operator satisfying dk = −k. Therefore,
Pk is an induced representation in Gk + dGk, and such
anti-symmetrized IRs can be systematically calculated
using the Herring’s test49,50 and the Mackey–Bradley
theorem51,52, χ[Pk(m)] = χ[γk(m)]χ[γk(d

−1md)] and
χ[Pk(dm)] = −χ[γk(dmdm)], where χ is a character of
the representation. In the following, we apply this theo-
rem to the case of SCs with line nodes. In the case of a
3D BZ, a line node may occur along the intersection of
a highly symmetric plane and the Fermi surface, so we
must also take the mirror-reflection (MR) operation σh

into account as crystal symmetry. If a Cooper pair lies on
such a mirror plane, d then corresponds to either spatial
inversion I, a two-fold rotation C2, or TR θ. However,
in order to take the non-symmorphic group symmetry
into account, we must generalize the group operations
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TABLE I. Character table of Pk and IR decompositions of Pk

in the two possible mirror planes, k⊥ = 0 and k⊥ = π, where
Ê is the unit element of the crystal group symmetry and Ag,

Bg, Au, and Bu are IRs of C2h generated by (Ê , Ĉ2, P̂ , M̂).

Pk⊥=0 Ê Ĉ2 P̂ M̂ Decomposition

(a-d) ∀
tθ , tσ 4 2 −2 0 Ag + 2Au + Bu

Pk⊥=π Ê Ĉ2 P̂ M̂ Decomposition

(a) [tσ]⊥ = [tθ ]⊥ = 0 4 2 −2 0 Ag + 2Au + Bu

(b) [tσ]⊥ 6= 0, [tθ]⊥ = 0 4 −2 −2 4 Ag + 3Bu

(c) [tσ]⊥ = 0, [tθ]⊥ 6= 0 4 2 −2 −4 Bg + 3Au

(d) [tσ]⊥ 6= 0, [tθ]⊥ 6= 0 4 −2 −2 0 Bg + Au + 2Bu

above so that P̂ = {I|0}, T̂ = {θ|tθ}, M̂ = {σh|tσ}, and

Ĉ2 = P̂M̂, where the operator {p|a} acts on the position
r as {p|a}r = pr + a, while tσ and tθ correspond to
the zero or half translation operators. We note that any
non-symmorphic generalizations of I, θ, σh, and C2 can
be written in the above forms by an appropriate choice
of the origin. Using the generalizations provided above,
the operators T̂ , M̂, and Ĉ2 include magnetic transla-
tion, glide, and screw transformations, respectively, and
thus allow for the complete classification of symmetry-
protected line nodes.

The characters of Pk can thus be obtained using the
Mackey–Bradley theorem, and are as listed in Table I53,
where [tσ ]⊥ and [tθ]⊥ correspond to translations per-
pendicular to the mirror plane. We find that the re-
sults can be classified into four different cases46,48: (a)
[tσ]⊥ = [tθ]⊥ = 0; (b) [tσ ]⊥ 6= 0 and [tθ]⊥ = 0; (c)
[tσ]⊥ = 0 and [tθ]⊥ 6= 0; and (d) [tσ]⊥ 6= 0 and [tθ]⊥ 6= 0.
In the basal plane (BP) (k⊥ = 0, where k⊥ is the momen-
tum normal to the mirror plane), the symmetry operators
have the common expected characters in all cases, but on
the ZF (k⊥ = π), the characters in each case are different.
Comparing these characters with those of the IRs of C2h,
we can thus obtain the IR decomposition of Pk, which is
summarized in Table I and indicates the possible pairing
symmetries of Cooper pairs that are consistent with the
crystal structure.

Topology of symmetry-protected line nodes—Let us
now discuss the symmetry-protected line nodes from
the viewpoint of topology. Such topological proper-
ties are of importance in identifying the bulk–boundary
correspondence, i.e., the line-node-induced MFBs. We
can formulate the topology of line nodes using the
Bogoliubov–de Gennes (BdG) Hamiltonian, HBdG =
1
2

∑

k,α,β Ψ
†
k,αH̃(k)αβΨk,β , with ΨT

k,α = (ck,α, c
†
−k,α).

We note that this Hamiltonian exhibits particle-hole
(PH) symmetry i.e. CH̃(k)C† = −H̃(−k), where C =
τxK is the anti-unitary operator, τ is the Pauli matrix
in Nambu space, and K is the complex conjugate. We
choose a periodic Bloch basis so that H̃(k) = H̃(k+G),
where G a reciprocal lattice (RL) vector.

First, we consider how the symmetry operations

TABLE II. (Color online) Topology of the symmetry-
protected line nodes, labeled by the symbol M

p q

g(u). The

superscripts p, q are defined by p = e−iGσ·tσ ησh
and q =

e−iGσ·tθ ησh
, respectively, while the subscript g(u) indicates

whether the SC has even (g) or odd (u) parity. The bot-
tom table shows the comparison between Table I and the 0D
topological numbers, where Ag(Bu) and Bg(Au) in the BP
correspond to the M++

g(u) and M−−

g(u) classes, respectively. The

labels (i)–(iii) indicate the SC class of MFBs.

Topo. # M++
g M+−

g M−+
g M−−

g M++
u M+−

u M−+
u M−−

u

0D 0 2Z 0 Z2 0 2Z 0 0

1D 2Z 2Z 2Z 2Z 0 0 0 0

Ag Bg Au Bu

Cases BP ZF BP ZF BP ZF BP ZF

(a) 0 → 0 (ii) Z2 → Z2 0 → 0 0 → 0

(b) 0 → 0 (ii) Z2 → 2Z (i) 0 → 2Z 0 → 0

(c) (iii) 0 → 2Z (iii) Z2 → 0 0 → 0 (i) 0 → 2Z

(d) (iii) 0 → Z2 (iii) Z2 → 0 0 → 0 0 → 0

affect the BdG Hamiltonian. The creation oper-

ator of an electron satisfies {p|ap}c
†
k,α{p|ap}−1 =

c†pk,β [e
−ipk·apU(p)k]βα, where {p|ap} = P̂ , M̂, or Ĉ2.

If the BdG Hamiltonian is invariant with respect to

the symmetry operations, one yields Ũ(p)kH̃(k)Ũ(p)†
k
=

H̃(pk) with Ũ(p)k = diag[U(p)k, ηpU(p)∗−k
]. Here, ηp =

±1, where the choice of sign is the same as the sign of
the character of p in the IR of ∆(k). In addition, T̂ acts
on the creation operators in a similar way to TR symme-
try, and is thus accompanied by an additional momentum

factor for tθ 6= 0, i.e., T̂ c†
k,αT̂

−1 = c†−k,β[e
ik·tθU(θ)k]βα,

which yields Ũ(θ)kH̃(k)∗Ũ(θ)†
k
= H̃(−k), with Ũ(θ)k =

diag[U(θ)k, U(θ)∗−k
].

Next, we clarify the relations between the symmetry
operations. On the mirror plane, the PH operator sat-
isfies CŨ(p)k = ηpŨ(p)−kC, while U(σh)k, U(I)k, and
U(θ)k satisfy U(I)kU(σh)k = ηI,σh

U(σh)−kU(I)k and

U(θ)kU(σh)
∗
k

= ηθ,σh
ei(σhk−k)·tθU(σh)−kU(θ)k, where

we have used U(pp′)k = ηp,p′U(p′p)k and the addi-

tional phase factor ei(σhk−k)·tθ (called the factor sys-
tem52) is only nontrivial on the ZF. Hereafter, we assume
ηI,σh

= ηθ,σh
= 1 as all space groups do.

A line node in superconducting gaps, in general, ap-
pears either at a) a general position or b) on a high-
symmetric plane, i.e., a mirror or a glide plane since it oc-
curs on the Fermi surface. See Fig. 1 (a). For the former
case, symmetries affecting a line node are ones keeping
the arbitrary position of line node. Such symmetry op-
erations are given by the PH-like operator Ck ≡ CŨ(I)k,

the TR-like operator Tk ≡ Ũ(I)−kŨ(θ)kK, which are
obtained from combinations of the PH and TR oper-
ators with inversion operators, and the chiral operator
Γk ≡ iCŨ(θ)kK. Here, ηIC2

k
= −T 2

k
= Γ2

k
= 1. On
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FIG. 1. (Color online) When a line node appears at a general
position k0, it is encircled by a loop l (a). On the other hand,
if one lies on a high-symmetric plane, two points kin and kout

encircle it (b).

the other hand, for the latter case, a line node is on a
high-symmetric plane, which may be enforced by the MR
operation Ũ(σ)k. Since Ũ(σ)2

k
= −e−iGσ·tσ , the sign of

the squared operator may also change at the ZF. We con-
veniently fix the sign by defining Mk ≡ eiGσ ·tσ/2Ũ(σ)k
which satisfies M2

k
= −1, where Gσ is the RL vector

normal to the high-symmetric plane. Using the above
relationships, we then obtain the commutation relations:

CkMk = e−iGσ ·tσ ησh
MkCk, (1a)

ΓkMk = e−iGσ ·tθ ησh
MkΓk, (1b)

while the commutation relation between Tk and Mk can
be determined from Eq. (1). Since Gσ · tp = 2π[tp]⊥, the
right-hand side of Eq. (1) may change sign in the BP and
the ZF, depending on the action of [tσ]⊥ and [tθ]⊥.
a) line node at a general position: As a vortex in the

momentum space, stability of a line node is ensured by
a 1D topological number defined on a circle enclosing
the line node. However, the PH-like or TR-like operator
does not give non-zero 1D topological number, so the
chiral symmetry is required9,16,19,54. Furthermore, since
C2
k
= ηI , even-parity SCs (ηI = 1) and odd-parity SCs

(ηI = −1) belong to different Altland–Zirnbauer (AZ)
classes55,56, and only even-parity SCs can support a non-
zero 1D topological number9. For even-parity SCs, the
1D topological number in terms of Γk can be defined on
a loop l:

Wl =
i

4π

∮

l

dk · Tr
[

ΓkH̃(k)−1
∂kH̃(k)

]

. (2)

b) line node on a high-symmetric plane: We take Mk

into account as a symmetry operation relevant to a line
node in addition to Ck, Tk, and Γk. On a high-symmetric
plane, a line node separates the 2D BZ into two disjoint
regions, which are distinguished by a 0D topological num-
ber. See Fig. 1 (b). For a 0D topological number, we re-
fer to the topological periodic table presented in57–62 and
regarding Tk, Ck, and Γk in terms of the AZ symmetry.

On the mirror plane, the MR operator commutes with
the BdG Hamiltonian and so the BdG Hamiltonian splits
into MR sectors: H̃ → h̃λ⊕h̃−λ, where λ is an eigenvalue
of Mk. Then, Γk (Ck and Tk) exists within the MR sec-
tors if it (anti-)commutes with Mk. For instance, when
[Ck,Mk] = {Tk,Mk} = {Γk,Mk} = 0, the symmetry
class of each MR sector is the AII class (T 2

k
= −1) and

its 0D topological number is 2Z. As such, we have de-
termined the possible 0D topological numbers in the MR
sectors and summarized them in Table II. The obtained
0D topological numbers 2Z and Z2 of a line node in the
MR sector hλ can then be defined as

Ñλ = ñ(kout)λ − ñ(kin)λ, (3)

(−1)ν̃λ = sgn

[

Pf{h̃λ(kout)Lkout,λ}

Pf{h̃λ(kin)Lkin,λ}

]

, (4)

respectively, where ñ(k)λ is the number of occupied
states with momentum k, Ck = (Lk,λ ⊕ Lk,−λ)K, and
kin(out) is the momentum inside (outside) the line node.
In the weak coupling limit, i.e., ∆(k) → 0, Eqs. (3) and
(4) are directly linked to the Fermi surface topology: If
we define Nλ = n(kout)λ − n(kin)λ in the normal Hamil-
tonian to be the topological number of the Fermi surface
in the mirror sector with eigenvalue λ, Eqs. (3) and (4)

are reduced to Ñλ = 2Nλ and (−1)ν̃λ = (−1)Nλ53, which
implies that a nodal loop is only topologically stable if
Nλ 6= 0.
We are now in a position to elucidate the relationship

between the group theoretical and topological classifica-
tions. The IRs Ag, Au, Bg, and Bu then correspond
to the topological classifications labeled by M++

g , M−−
u ,

M−−
g , and M++

u in the BP, where the superscripts of the
symbol encode the commutation relations (1a) and (1b)
and the subscript indicates even (g) or odd (u) parity.
Moreover, the MR symmetry classes in the ZF depend
on [tσ ]⊥ and [tθ]⊥ due to Eq. (1). In Table II, we have
summarized the correspondence between the 0D topolog-
ical numbers and the four cases, (a)–(d). In comparison
to Tables I and II, we find a one-to-one correspondence,
in which the absence of IRs coincides with the presence
of the 0D topological numbers.
Possible MFBs—Finally, we consider the connection

between symmetry-protected line nodes and MFBs,
which are characterized by 0D and 1D topological num-
bers, respectively. As was discussed above, the 1D topo-
logical number exists only for even-parity SCs, so does
MFBs. In such even-parity SCs, the 1D and 0D topolog-
ical numbers are intrinsically related to each other and
satisfy53

|Ñλ| = |Wl|, (−1)ν̃λ = (−1)
Wl
2 , (5)

which implies that a symmetry-protected line node is al-
ways accompanied by the 1D topological number. We
note also that the 1D topological number survives even
when the MR symmetry is broken, which reflects the
strong stability of the line nodes.
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Using Table II and Eq. (5), we can identify three
classes with respect to the stability of the line nodes.
A line node may be protected by: (i) the 0D topolog-
ical number in odd-parity SCs with TR or a magnetic
translation symmetry, or alternatively, by both the 0D
and 1D topological numbers in even parity SCs with (ii)
TR or (iii) a magnetic translation symmetry. We im-
mediately find that there is no MFB in Class (i) SCs
since there is no 1D topological number corresponding
to an MFB in odd-parity SCs. In order to demonstrate
the existence of MFBs in Class (ii) and (iii) SCs, con-
sider a system with an open boundary, e.g., the xi = 0
plane. Then, an MFB appears on the xi = 0 plane
if the 1D topological number (2) defined on the loop
l(kj , kl) = {(ki, kj , kl)| − π ≤ ki ≤ π} is nonzero20,63,
where (ki, kj , kl) are perpendicular to each other, and
l(kj , kl) does not intersect with the line node. For SCs

satisfying the conditions of Class (ii), the operator T̂ cor-
responds to a pure TRS, so l(kj , kl) can be defined for ar-
bitrary surface direction. Thus, an MFB appears on the
SC’s surface in analogy with high-Tc cuprate SCs64,65.
On the other hand, T̂ in Class (iii) corresponds to a
magnetic translation, so l(kj , kl) needs to be compati-
ble with a translation vector tθ, i.e., an MFB only arises
when one satisfies tθ · êi = 0 for Class (iii) SCs, where
êi is a unit vector normal to the surface. Note that
the behavior we have outlined here is similar to that
of surface states in aniferromagnetic topological insula-
tors66–73. Thus, a limitation on possible MFBs in Class
(iii) SCs appears in contrast to MFBs in Class (ii) and
non-centrosymmetric SCs32–34. In particular, when tθ is
perpendicular to the mirror plane, MFBs do not exist
on any surface because no surface direction simultane-
ously satisfies the constraints arising from the magnet
translation and the MR symmetry. Thus, a distortion or
interaction that breaks the MR symmetry is necessary to
reveal the hidden MFBs.
Application to UPd2Al3—In order to verify the exis-

tence of a MFB in Class (iii) SCs, let us consider a
minimal model of the antiferromagnetic SC UPd2Al3

45.
The antiferromagnetic phase of this material is speci-
fied by the magnetic space group Pb21/m, and the two
U atoms are situated at the (0, 0, 0) and (0, 0, 12 ) posi-
tions in the magnetic unit cell. Taking a single orbital
at each U site into account, the tight-binding model can
then be given by H(k) = ǫ(k)1 + ǫ(k)2σx(kz) + δMσzsx,
where ǫ(k)1 = −2txy(cos kx+cos ky)−2t′z cos kz , ǫ(k)2 =

−2tz cos
kz

2 , and σx(kz) ≡ cos kz

2 σx + sin kz

2 σy . The
constants txy, t′z, and tz are hopping parameters and
δM represents the molecular field in terms of the mag-
netic moment . For simplicity, the gap function is as-
sumed to be given by the s-wave spin-singlet pairing,
∆0isy, and the symmetry operators are then given by

Ck = ei
kz
2 (cos kz

2 σ0 − i sin kz

2 σz)τxK, Tk = ei
kz
2 iσxsyK,

Γk = −σx(kz)syτx, and Mk = iσxszτz , where σ and s

are the Pauli matrices in the sublattice and spin spaces,
respectively. This model is known to host two nodal loops
in the kz = π plane45. Since the MR symmetry class is

E

p-p

0

- 0.1

0.1

ky

-p

p

-p

p

-p

p
kx

ky

kz

(a) (b)

kz=p

FIG. 2. (Color online) (a) Fermi surface of our model. (b)
Energy spectrum on the (100) plane, where the thick red line
indicates the surface state.

M−−
g , the nodal loops are protected by both 0D and

1D topological numbers. In fact, using Eq. (5), we find
νλ = 1 and |Wl| = 2 for each nodal loop and the resulting
nontrivial Fermi surface topology is shown in Fig. 2(a)53.
Notably, MFBs are absent in all surface planes because
tθ = 1

2 êz is perpendicular to the mirror plane.
However, when we add an MR-breaking distortion

term, e.g., 2txz sin kx sin
kz

2 σx(kz) to the Hamiltonian,
the nodal loop escapes from the mirror plane. In this
case, the surface state can be numerically determined and
the MFBs are revealed by the MR-breaking distortion, as
shown in Fig. 2(b).
Concluding remarks– We have established the relation-

ship between symmetry-protected line nodes and MFBs.
Classes (i)-(iii) of the symmetry-protected line nodes pro-
vide a comprehensive classification of line-node-induced
MFBs on unconventional SCs, where noncentrosymmet-
ric SCs with line nodes are included in Class (ii) SCs
as its stability is ensured by the pure TR operator. It
is straightforward to generalize our results to higher-
symmetric cases by relating IRs in C2h and compatible
ones. Based on our theory connecting the group theory
and topological arguments, various line-nodal SCs are
categorized. For instance, UPt3

43 is classified into the
Class (i) and UPd2Al3

45 and Sr2IrO4 (− + +− state)47

are the Class (iii), while ordinary d-wave SCs such as
high-Tc cuprates and heavy fermion CeCoIn5 are cate-
gorized to the Class (ii). These SCs are distinguished
by MFBs which can be detected through surface sensi-
tive experiments such as tunneling conductance measure-
ments.
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27 T. Löfwander, V. S. Shumeiko, and G. Wendin, Supercon-
ductor Science and Technology 14, R53 (2001).

28 J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik,
Phys. Rev. Lett. 81, 2542 (1998).

29 I. Iguchi, W. Wang, M. Yamazaki, Y. Tanaka, and
S. Kashiwaya, Phys. Rev. B 62, R6131 (2000).

30 A. Biswas, P. Fournier, M. M. Qazilbash, V. N. Smolyani-
nova, H. Balci, and R. L. Greene, Phys. Rev. Lett. 88,
207004 (2002).

31 B. Chesca, H. J. H. Smilde, and H. Hilgenkamp, Phys.
Rev. B 77, 184510 (2008).

32 P. M. R. Brydon, A. P. Schnyder, and C. Timm, Phys.
Rev. B 84, 020501 (2011).

33 K. Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys.
Rev. B 83, 064505 (2011).

34 A. P. Schnyder, P. M. R. Brydon, and C. Timm, Phys.
Rev. B 85, 024522 (2012).

35 P. W. Anderson, Phys. Rev. B 30, 4000 (1984).
36 M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
37 E. I. Blount, Phys. Rev. B 32, 2935 (1985).
38 G. E. Volovik and L. P. Gor’kov, JETP Lett. 39, 674

(1984).
39 G. E. Volovik and L. P. Gor’kov, Sov. Phys. JETP 61, 843

(1984).
40 K. Ueda and T. M. Rice, Phys. Rev. B 31, 7114 (1985).
41 V. G. Yarzhemsky and E. N. Murav’ev, Journal of Physics:

Condensed Matter 4, 3525 (1992).
42 V. G. Yarzhemsky, physica status solidi (b) 209, 101

(1998).
43 T. Micklitz and M. R. Norman, Phys. Rev. B 80, 100506

(2009).
44 T. Micklitz and M. R. Norman, Phys. Rev. B 95, 024508

(2017).
45 T. Nomoto and H. Ikeda, Journal of the Physical Society

of Japan 86, 023703 (2017).
46 T. Micklitz and M. R. Norman, Phys. Rev. Lett. 118,

207001 (2017).
47 S. Sumita, T. Nomoto, and Y. Yanase, Phys. Rev. Lett.

119, 027001 (2017).
48 S. Sumita and Y. Yanase, ArXiv e-prints (2018),

arXiv:1801.03293 [cond-mat.supr-con].
49 C. Herring, Phys. Rev. 52, 361 (1937).
50 E. P. Wigner, Group Theory and its Application to the

Quantum Mechanics of Atomic Spectra (Academic Press,
New York, 1959).

51 C. J. Bradley and B. L. Davies, Journal of Mathematical
Physics 11, 1536 (1970).

52 C. J. Bradley and A. P. Cracknell, The Mathematical The-

ory of Symmetry in Solids (Oxford University Press, New
York, 2003).

53 See the Supplemental Material at [ URL will be inserted
by publisher] for the detail calculation.

54 PT symmetry also enables us to define the 1D Z2 number,
but in the case of superconductors, either P or T should be
preserved in order for electrons at k and −k to form a bulk
Cooper pair. Thus, PT symmetry implies the presence of
T , which gives chiral symmetry with PH symmetry. The
Z2 number then reduces to the parity of Eq. (2).

55 M. R. Zirnbauer, Journal of Mathematical Physics 37,
4986 (1996).

56 A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142
(1997).

57 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-
wig, Phys. Rev. B 78, 195125 (2008).

58 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Lud-
wig, AIP Conference Proceedings 1134, 10 (2009).

59 A. Kitaev, AIP Conference Proceedings 1134, 22 (2009).
60 S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud-

wig, New Journal of Physics 12, 065010 (2010).
61 C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142

(2013).
62 T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129



6

(2013).
63 S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002

(2002).
64 Y. Tanaka, Y. Mizuno, T. Yokoyama, K. Yada, and

M. Sato, Phys. Rev. Lett. 105, 097002 (2010).
65 Y. Tanaka, M. Sato, and N. Nagaosa, Journal of the Phys-

ical Society of Japan 81, 011013 (2012).
66 R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev.

B 81, 245209 (2010).
67 A. M. Turner, Y. Zhang, R. S. K. Mong, and A. Vish-

wanath, Phys. Rev. B 85, 165120 (2012).
68 A. M. Essin and V. Gurarie, Phys. Rev. B 85, 195116

(2012).
69 S. Miyakoshi and Y. Ohta, Phys. Rev. B 87, 195133 (2013).
70 T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami,

Phys. Rev. B 87, 085134 (2013).
71 P. Baireuther, J. M. Edge, I. C. Fulga, C. W. J. Beenakker,

and J. Tworzyd lo, Phys. Rev. B 89, 035410 (2014).
72 R.-X. Zhang and C.-X. Liu, Phys. Rev. B 91, 115317

(2015).
73 F. Bègue, P. Pujol, and R. Ramazashvili, Physics Letters

A 381, 1268 (2017).
74 S. Kobayashi, Y. Tanaka, and M. Sato, Phys. Rev. B 92,

214514 (2015).


