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We report muon spin relaxation and rotation (µSR) measurements on hydrothermally-grown
single crystals of superconducting tetragonal FeS, which help to clarify the controversial magnetic
state and superconducting gap symmetry of this compound. µSR time spectra were obtained from
280 K down to 0.025 K in zero field (ZF) and applied fields up to 75 mT. In ZF the observed loss
of initial asymmetry (signal amplitude) and increase of depolarization rate ΛZF below 13 K indicate
the onset of static magnetism, which coexists with superconductivity below Tc. Transverse-field
µSR results indicate a linear temperature dependence of the superfluid density at low temperature,
consistent with nodal superconductivity. The s+d-wave model gives the best fit to the observed
temperature and field dependencies, and yields an in-plane penetration depth value λab(T=0) =
241(3) nm.

I. INTRODUCTION

The discovery of superconducting La(O1−xFx)FeAs
1

has triggered extensive studies on iron-based supercon-
ductors (IBS)2,3. Most of the IBS share the same com-
mon structural motif of Fe-As layers, and the highest
Tc value is up to 56 K4,5. Density functional theory
(DFT) calculations showed similarities of Fermi-surface
structure between Fe-As based superconductors and iron
chalcogenides (FeSe, FeS and FeTe)6. These compounds
have the simplest crystal structure (iron chalcogenide lay-
ers) of the IBS, and have therefore attracted great inter-
est7. FeSe, the most studied iron chalcogenide, becomes
superconducting below Tc = 8 K8, which is a lower transi-
tion temperatures than many iron arsenide superconduc-
tors. However, Tc increases drastically under pressure9,
by carrier doping10, or by growing single-layer FeSe on
a SrTiO3 substrate11,12. Nematic order13 occurs in bulk
FeSe below Ts = 90 K14, and antiferromagnetic (AFM)
order is absent15,16. This makes FeSe a clean platform
to study the nature of Fe-based superconductivity. How-
ever, its superconducting gap structure remains contro-
versial17–19.
Recently, superconducting tetragonal FeS (Tc ≈ 4.5 K)

was successfully synthesized by Lai et al.20 using a hy-
drothermal method. It has the same structure as FeSe,
with selenium replaced by sulfur. Many studies have
been made to understand the magnetic state and super-
conducting gap symmetry of FeS. Notably, two super-
conducting domes were observed under pressure21, pos-
ing challenges to understanding its pairing mechanism.
The muon spin relaxation/rotation (µSR) tech-

nique22–24 has been used to study superconductivity in
polycrystalline tetragonal FeS25,26. These experiments

indicated fully-gapped superconductivity, and found low-
moment disordered magnetism below Tmag ≈ 20 K25.
However, a nodal superconducting gap was observed in
single-crystalline FeS by low temperature specific heat
and thermal conductivity measurements27,28. Yang et
al.29 calculated the electronic structure of FeS using DFT
and reported that the gap function is nodal/nodeless
on the hole/electron Fermi pockets. Soon after, angle-
resolved photoemission spectroscopy (ARPES) studies30

observed two hole-like and two electron-like Fermi pock-
ets around the Brillouin zone center and corner, respec-
tively. The authors attribute the controversies over the
superconducting gap structure to the absence of a hole-
like γ band, which had been observed in other IBS. As
for the magnetic properties, Man et al.31 concluded that
FeS is a tetragonal paramagnet from elastic neutron scat-
tering and transport measurements. This is consistent
with a prediction of dynamical mean-field theory32, but
it contradicts the previous µSR results25.
To help resolve these controversies we have performed

µSR experiments on single crystals of tetragonal FeS.
Our zero-field (ZF) and longitudinal-field (LF) µSR data
reveal low-moment disordered static magnetism below
Tmag ≈ 13 K. Transverse field (TF) µSR experiments
in the superconducting state yield an in-plane supercon-
ducting penetration depth λab(0) = 241(3) nm. The data
reveal a linear temperature dependence of λ−2

ab as T → 0,
characteristic of an order parameter with line nodes (the
quantity λ−2 is proportional to the superfluid density;
in the following we use the two terms interchangeably).
We conclude that the temperature dependencies of λab

measured at various applied fields are best described by
a s+d-wave model.
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II. EXPERIMENTS AND RESULTS

Single-crystalline tetragonal FeS was prepared by de-
intercalation of potassium cations from KxFe2−yS2 (x ≈
0.8, y ≈ 0.4) single crystals by hydrothermal reac-
tion33,34. Elemental analysis, X-ray diffraction (XRD),
scanning electron microscopy image, magnetic suscepti-
bility and in-plane resistivity measurements were carried
out, with results that are consistent with previously re-
ported work21,28. Two batches of single crystal mosaics
were prepared, denoted as Sample A and Sample B. µSR
experiments were performed at the M15 and M20 beam
lines at TRIUMF, Vancouver, Canada35. ZF- and LF-
µSR measurements were carried out over the temperature
range 25 mK–280 K for fields up to 20 mT. TF-µSR mea-
surements were performed from 6 K down to 25 mK in
transverse fields µ0HT = 7.5 mT, 30 mT and 75 mT. In
all experiments the positron detectors were aligned along
the direction of the initial muon polarization. The evolu-
tion in time of the decay positron count asymmetry A(t),
which is proportional to the muon polarization, is often
called a µSR time spectrum.

A. ZF- and LF-µSR

a. Constant terms in µSR spectra. µSR time spec-
tra were measured with the fragile samples mounted on
a silver backing plate36 The spectra contain a “back-
ground” contribution from muons that miss the sample
and stop in the backing plate. In ZF or LF experiments
the total (sample + background) spectrum is given by

A(t)/A(0) = (1− fAg)G(t) + fAg, (1)

where A(0) is the initial magnitude of the total asym-
metry, G(t) is the sample relaxation function [G(0) = 1],
and fAg is the fraction of muons that stop in the backing
plate. For static muon relaxation (precession in a static
distribution of local fields), in ZF or LF G(t) has the
form37,38

G(t) = G′(t) + const. (2)

in the absence of dynamic relaxation. Here G′(t) is due
to the ensemble muon spin precession and decays to zero
as the precession dephases the spins. The constant term
in Eq. (2) is intrinsic to the sample, and is due to the
components of the initial muon spins along the resultant
of local and any applied longitudinal fields; these compo-
nents do not precess and hence do not contribute to the
relaxation. In ZF the constant fZF = 1/3 for randomly-
oriented local fields37,38. It is greater or smaller than this
value, respectively, if the local-field distribution is pref-
erentially oriented parallel or perpendicular to the initial
muon polarization.
The quantities fAg and fZF cannot be determined sep-

arately from ZF experiments alone, since they both con-
tribute to the constant signal at late times. In TF-µSR,

however, there is no analog to fZF, and fAg is the frac-
tional amplitude of the late-time oscillatory signal. It
can be measured accurately if the sample signal decays
rapidly, as is the case in our TF-µSR experiments at low
temperatures (Sec. II B a) where we obtain fAg = 0.50(1)
in a field of 30 mT. In ZF fAg is essentially the same as
in fields of this magnitude, since it depends only on the
overlap of the muon beam with the backing plate. For the
same reason the background asymmetry AAg ≡ A(0)fAg

(= 0.093(2) in ZF) is not expected to depend significantly
on temperature.
b. Experimental results. In our ZF- and LF-µSR ex-

periments, the initial ensemble muon polarizationPµ and
applied longitudinal field HL (if present) were both par-
allel to the crystal c axis. Representative ZF-µSR spec-
tra between 2 K and 280 K are shown in Fig. 1(a). The

0 2 4 6 8

0.10

0.15

0.20

0 2 4 6 8

0.10

0.15

0.20

0 2 4 6 8

 280 K  40 K
 200 K  10 K
 100 K  2 K  

A
(t)

Time t ( s)

FeS Sample A ZF 

Sample A T = 5.5 K

 0 mT 
 4 mT 
 20 mT

A
(t)

Time t ( s)

(b)

(a)

 0 mT   
 3.4 mT
 20 mT 

Time t ( s)

Sample B T = 5 K(c)

FIG. 1. (Color online) µSR time spectra from single-
crystalline tetragonal FeS. (a) ZF-µSR spectra at represen-
tative temperatures. Curves: fits to the data by a simple ex-
ponential decay function [Eq. (3)]. (b)–(c) ZF- and LF-µSR
time spectra from samples A and B for various longitudinal
fields HL at 5 K. Curves: fits of the LF Lorentzian Kubo-
Toyabe function24,39 to the LF data. The background signal
from muons that stop in the silver backing plate has not been
subtracted.

spectra are well described by a simple exponential decay
function

A(t)/A(0) = (1− f) exp(−ΛZFt) + f (3)
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at all temperatures, where ΛZF is the ZF muon depolar-
ization rate and f = 0.59(2) at low temperatures.
From Eqs. (1)–(3)

fZF = (f − fAg)/(1− fAg) (4)

= 0.18(6),

indicating that local fields at muon sites are preferentially
oriented in the ab plane. For Gaussian distributions of
the local field with uniaxial symmetry40, this value of fZF
yields a rms width of the field distribution ‖ c roughly
half that ⊥ c. The observed depolarization is, however,
clearly exponential and not Gaussian (cf. Fig. 1), thus
this result is not a quantitative measure of the anisotropy.
We note that the natural abundances and nuclear mag-
netic moments of both 57Fe and 33S are small24, and the
Gaussian Kubo-Toyabe relaxation expected from their
dipolar fields is negligible.
Exponential muon depolarization is usually caused ei-

ther by motionally-narrowed dynamic relaxation, or by
a Lorentzian static field distribution24,39. A longitudi-
nal applied magnetic field µ0HL ≫ ΛZF/γµ ≈ 0.5 mT,
where γµ = 851.616 MHz/T is the muon gyromagnetic
ratio, “decouples” the local field24,38,39 (i.e., prevents
muon precession). As shown in Figs. 1(b) and (c), at
5 K muon depolarization is completely suppressed in a
field µ0HL = 20 mT, indicating that the local field is
(quasi)static. The µSR spectra for intermediate fields
can be fitted by the LF KT function appropriate to a
randomly-oriented Lorentzian static field distribution39,
although, as noted above, the local fields are preferen-
tially oriented.
The temperature dependencies of ΛZF and the total

observed initial asymmetry A(0) [sample + background,
Eq. (3)] are given in Fig. 2. The decrease of A(0) with de-
creasing temperature above ∼70 K is due to the onset of
a strong local field in a fraction of the sample volume, so
that muons in this volume are rapidly depolarized and
do not contribute to the signal41. This “lost” volume
fraction Aloss/(A0 − AAg), where A0 = 0.201(2) is the
initial asymmetry at 300 K, increases with decreasing
temperature to ∼12% at 70 K. Magnetic susceptibil-
ity and XRD measurements on our FeS single crystals
show no signature of spurious impurity phases, indicat-
ing that the volume fraction of second phase is much
less than 12%. A similar loss of A(0) was observed in
ZF-µSR measurements on polycrystalline FeS samples25,
where it was attributed to small grains of a ferromag-
netic impurity phase. These produce stray fields that af-
fect an increasing fraction of the sample with decreasing
temperature. Observation of these fields in both single-
crystal and polycrystal FeS samples suggests that a spuri-
ous ferromagnetic phase is a byproduct of hydrothermally
grown FeS25,26.
The anomaly in ΛZF(T) at 70 K (which was not re-

ported in Ref.25) is close to a structural transition tem-
perature for FeSe14, and is reminiscent of the possibility
of nematic order13. However, neither a structural tran-
sition nor nematic order has been observed in FeS31,42.
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FIG. 2. (a) ZF muon depolarization rate ΛZF (square) ver-
sus logarithmic temperature for Sample B. Inset: the ΛZF

(circle) versus temperature for Sample A. (b) Temperature
dependence of initial asymmetry A(0) for Sample B. Solid
lines are guides to the eye. Loss of initial symmetry with de-
creasing temperature above ∼70 K is attributed to a magnetic
impurity phase (see text). The onset of static magnetism is
evidenced by the additional increase of ΛZF and decrease of
A(0) below Tmag ≈ 13 K.

The lattice parameters of tetragonal FeS decrease with
decreasing temperature above 100 K, and remain almost
constant below 100 K with a change of less than 1% from
the value at 300 K42. Excluding these possibilities, the
increase of ΛZF(T) with decreasing temperature above
70 K is most probably due to increased local fields as
discussed above. This in turn suggests a distribution of
impurity-phase Curie temperatures TC .
Between 13 K and 70 K A(0) is temperature indepen-

dent. This is consistent with the anomaly in ΛZF at 70 K,
and suggests that 70 K is the minimum in the distribution
of impurity-phase TC ; all grains are ferromagnetic below
this temperature. The increase of ΛZF with decreasing
temperature below 70 K is then probably intrinsic to FeS
and dynamic, due to slowing down of intrinsic magnetic
moment fluctuations. Future LF-µSR experiments will
be necessary to determine separate static and dynamic
contributions to ΛZF in this temperature range.
From 13 K to ∼Tc A(0) decreases slightly [A(0)], and

ΛZF(T ) increases further, indicating a second source of
static magnetism with a distribution of ordering temper-
atures41. The absence of oscillations in ZF-µSR spectra
[Fig. 1(a)] indicates that this static magnetism is also
disordered. The exponential form of the muon depolar-
ization discussed in Sect. II A b is expected in dilute spin
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glasses39, where the required Lorentzian field distribu-
tion is a consequence of the 1/r3 spatial dependence of
the dipolar local field, but a “Lorentzian” distribution
can arise from aspects of the disorder other than dilu-
tion. Here the origin is probably low-moment short-range
static magnetism25 with considerable inhomogeneity.
If we assume that the muon site in FeS is the same as

calculated for isostructural FeSe43, then ΛZF ∼ 0.4 µs−1

corresponds to a Fe magnetic moment of the order of
10−3 µB

25. Such a small moment would be undetectable
by neutron diffraction. It should be noted, however,
that the calculated muon stopping site43 possesses a high
point symmetry, so that partial cancellation of local fields
is possible if the short-range correlation is AFM. The
above estimate does not take this into account, so that
the actual Fe magnetic moment could be considerably
higher.
Below Tc ΛZF saturates at ∼0.4 µs−1, and A(0) is

again constant. Here exponential relaxation character-
izes the entire observed sample signal, i.e., ∼85% of
the sample volume [Fig. 2(b)]. In ZF no signature of
the superconducting transition is expected. However,
superconducting-state relaxation also characterizes the
entire TF-µSR sample signal (Sec. II B a). This is evi-
dence that low-moment static magnetism coexists micro-
scopically with superconductivity without the competi-
tion observed in other IBS44–46.

B. TF-µSR

In a type-II superconductor an applied magnetic field
can induce a flux line lattice (FLL), in which the distribu-
tion of the field is determined by the magnetic penetra-
tion depth λ, the vortex core radius ξ, and the structure
of the FLL47. The distribution of precession frequencies
in a FLL and resulting loss of ensemble muon spin po-
larization reflect the field inhomogeneity, and quantities
such as penetration depth λ can be extracted from the
µSR spectra24,48.
For a perfect FLL the distribution of internal field

is highly asymmetric, far from either a Gaussian or
a Lorentzian field distribution. Weak random pinning
slightly distorts the FLL so that the extrema of the field
distribution fluctuate spatially; this often makes a Gaus-
sian field distribution a good approximation 47. The
muon spin depolarization rate σsc = γµ∆Brms, where
∆Brms is the rms width of the internal field distribution
in the FLL. In turn, ∆Brms is approximately related to
the penetration depth λab by25,49

∆Brms = 0.172
Φ0

2π
(1− b)[1 + 1.21(1−

√
b)3]λ−2

ab , (5)

where Φ0 = 2.068×10−15 Wb is the magnetic flux quan-
tum and b = B/Bc2 ≈ HT /Hc2(T ). Equation (5) is
a good approximation for κ = λ/ξ > 5 and 1 > b &
0.25/κ1.349, which is appropriate to FeS below Tc and
HT > 30 mT.

a. Experimental results. In our TF-µSR experi-
ments, the orientations of the initial muon spin polariza-
tion Pµ and the applied field HT relative to the crystal c
axis were Pµ ⊥ c andHT ‖ c, respectively. TF-µSR data
were taken after cooling from the normal state in con-
stant field, to avoid spurious field inhomogeneity due to
flux trapping if the field is changed below Tc. Figure 3(a)
gives representative TF-µSR spectra for FeS Sample B at
µ0HT = 30 mT above and below Tc. These spectra are
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FIG. 3. (Color online) TF-µSR data from FeS Sample B,
µ0HT = 30 mT. (a) Time spectra for FeS Sample B above
(squares) and below (circles) the superconducting transition
temperature Tc = 4.1 K. Curves: fits of Eq. (6) to the data.
The additional muon depolarization below Tc is due to the
field distribution in the FLL. (b) Temperature dependence of
the Gaussian depolarization rate σsc from fits of Eq. (6) to TF-
µSR data measured at µ0H = 30 mT. (c) Temperature depen-
dence of σsc(T )/σsc(0) (squares) and λ−2

ab
(T )/λ−2

ab
(0) (circles).

See main text for details.

well described by the TF muon depolarization function

A(t) = (A(0)−AAg) exp(−ΛTFt− 1
2σ

2
sct

2) cos(γµBt+ ϕ)

+AAg cos(γµBextt+ ϕAg),

(6)

where ΛTF is the depolarization rate due to static mag-
netism (in analogy to ΛZF), σsc is the Gaussian depolar-
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ization rate due to the FLL, B and ϕ are the mean field
and initial phase of the ensemble muon precession, re-
spectively, and AAg is the background signal asymmetry
discussed in Sec. II A a. The muon depolarization above
Tc is due only to static magnetism, and exhibits a simple
exponential character similar to ZF data (Fig. 1). Above
Tc ΛTF ≈ 0.63 µs−1, which is slightly larger than ΛZF.
This suggests that the applied field orients the local field
slightly along the c axis.
Below Tc the additional muon depolarization due to

the FLL is well fit by the Gaussian term in Eq. (6)
with ΛTF fixed to its value above Tc. This is consistent
with association of both exponential and Gaussian relax-
ation with the observed sample-component signal (initial
asymmetry A(0) − AAg). There is no phase separation
between magnetism and superconductivity; the two co-
exist microscopically.
Figure 3(b) gives the temperature dependence of σsc

for µ0HT = 30 mT. We obtain λ−2
ab (T ) from Eq. (5),

using the temperature dependence of Bc2 reported in
Ref.25 together with Bc2(0) = 0.5 T28 and Tc = 4.1 K for
our single crystal. Figure 3(c) compares the temperature
dependencies of σsc(T )/σsc(0) and λ−2

ab (T )/λ
−2
ab (0). The

difference is not large, and both quantities exhibit linear
behavior at low temperatures.
b. Gap symmetry. We fit the relation17,50,51

λ−2
ab (T )

λ−2
ab (0)

= 1 +
1

π

∫ 2π

0

dϕ

∫

∞

∆(T,ϕ)

dE
∂f

∂E

E
√

E2 −∆2(T, ϕ)
,

(7)
where f(E) is the Fermi function, to the observed tem-
perature dependence of λ−2

ab . The gap symmetry enters
this expression via the form of ∆s(T, ϕ). For the s-wave
model ∆s(T, ϕ) = ∆s(0)δ(T/Tc), where the temperature
dependence δ(T/Tc) of the relative superconducting gap
is estimated using17,51

δ(T/Tc) = tanh
{

1.82[1.018(Tc/T − 1)]0.51
}

. (8)

Similarly, ∆d(T, ϕ) = ∆d(0)δ(T/Tc) cos(2ϕ) for the d-
wave model. In the recently-proposed orbital-selective
sτ3 state for iron selenides52, the intraband (dx2

−y2) and
interband (dxy) nodal pairing terms add in quadrature.
As a consequence, the quasiparticle excitation is fully
gapped on the Fermi surface. A simplified model of the
sτ3 state gives ∆sτ3(T, ϕ) = δ(T/Tc)[(∆1(0) cos(2ϕ))

2 +
(∆2(0) sin(2ϕ))

2]1/253. Finally, for two weakly coupled
superconducting bands (s+s or s+d), a linear combina-
tion of terms of the form of Eq. (7) can be used51,54:

λ−2(T )

λ−2(0)
= ω

λ−2(T,∆1(T ))

λ−2(0,∆1(0))
+ (1− ω)

λ−2(T,∆2(T ))

λ−2(0,∆2(0))
.

(9)

Fits of s-wave, d-wave, s+s-wave, s+d-wave, and
orbital-selective sτ3 models to our data are shown in
Fig. 4. The angular dependencies of the gaps are shown
schematically in the insets. It is obvious that the single

s-wave and d-wave models do not describe the temper-
ature dependence of λ−2

ab accurately. Fit parameters for
the three multi-band models are shown in Table I. Fits
using the s+s-wave model give large values of the re-
duced chi-square χ2

red (see also Fig. 4), and the smaller
gap (0.02 meV) and its ratio to Tc (2∆2/kBTc = 0.11) are
unreasonably small. This is evidence against s+s pair-
ing symmetry. The discrepancy with previous work25,26

in this regard reflects differences in λ−2
ab (T ) obtained from

polycrystal and single-crystal samples, as discussed be-
low in Sec. III b.
For the sτ3 model, the larger gaps are four times the

smaller. This is similar to results in the heavy fermion
superconductor CeCu2Si2, which is fitted by the same
model53. The sτ3 model and s+d-wave describe both
sets of data quite well. As noted in Ref.25, the mea-
sured superfluid density λ−2

ab is integrated over the entire
Fermi surface. Thus it is hard to distinguish slight differ-
ences of anisotropy [See Figs. 4(c) and (d)] over the entire
temperature range below Tc. However, the temperature
dependence of λ−2

ab for these two models is quite different
at low temperatures, where the s+d-wave model gives a
better description.
Thus our results suggest an s+d-wave pairing state

with multi-band and nodal superconductivity, and yield
in-plane penetration depth λab(0) = 241(3) nm. Table I
shows that the s band and the d band make comparable
contributions to the superfluid density, which is consis-
tent with theoretical calculation29. Table I also shows
that 2∆/kBTc for one gap is less than BCS value of 3.54
and is larger for the other gap. This is consistent with the
theoretical constraints55, and has been observed in many
IBS as summarized by Adamski et al.56. The values of
2∆(0)/kBTc are close for different fields, indicating the
self-consistency of the fits.
c. Field dependence. The field dependence of σsc at

low temperatures from our data (denoted by σab) and
from previous results in polycrystals25,26 (denoted by
σeff) are compared in Table II. A maximum near 30 mT
is observed in our results and those of Ref.25, which also
shows agreement at higher fields with Eq. (5) (as previ-
ously noted26,49, this relation is not valid at low fields).
The magnitude of σsc from our single-crystal measure-

ments is remarkably similar to results from polycrystals.
As discussed below in Sec. III b, this result is unexpected,
and is important for characterizing the superconducting
penetration depth in FeS.

III. DISCUSSION

a. Static magnetism. Previous µSR experiments
on polycrystalline FeS by Holenstein et al.25 revealed
low-moment magnetism below Tmag ≈ 20 K, whereas no
intrinsic static magnetism was reported in other µSR ex-
periments26 or by neutron scattering or transport exper-
iments31. Our ZF-µSR experiments on single crystalline
FeS confirm the onset of low-moment static magnetism
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TABLE I. Parameters from fits of the s+s-wave, s+d-wave and sτ3 models to the temperature dependence of λ−2
ab

(T ).

Model µ0HT (mT) Tc (K) ∆1(0) (meV) 2∆1/kBTc ∆2(0) (meV) 2∆2/kBTc ω λ−2
ab

(0) (µm−2) χ2
red

s+s-wave 30 4.32 0.44 2.36 0.02 0.11 0.97 16.8 1.83

s+d-wave 30 4.04(4) 0.43(4) 2.47 0.79(5) 4.54 0.36 17.2 0.53

sτ3-state 30 4.04(2) 0.72(2) 4.13 0.16(2) 0.92 16.8 0.74

s+s-wave 75 3.77 0.42 2.56 0.05 0.31 0.92 17.8 2.26

s+d-wave 75 3.63(5) 0.40(5) 2.56 0.68(6) 4.35 0.30 18.0 1.44

sτ3-state 75 3.64(4) 0.67(3) 4.27 0.15(3) 0.96 17.5 1.30

in the ab plane below a lower Tmag ≈ 13 K, which coex-
ists with superconductivity below Tc. The present results
and those of Ref.25 for the temperature dependencies of
ΛZF and A(0) are more or less consistent, although Ref.25

does not report an anomaly at 70 K.
We note that the muon depolarization functions are

different between our ZF-µSR spectra and those of Ref.25:
these authors report “root exponential” exp[−(Λt)1/2]
relaxation, whereas we observe simple exponential re-
laxation. The difference is consistent with our conclu-

sion that the muon local field from the low-moment
static magnetism is roughly oriented in the ab-plane,
since then it would be more disordered in randomly-
oriented polycrystalline samples. The root exponential
function, which signals a broad distribution of exponen-
tial rates5758, would then be a better description for ZF-
µSR spectra of polycrystalline FeS.
The ZF-µSR study of polycrystalline FeS by Kirschner

et al.26 used a sum of two simple exponential functions to
describe the muon depolarization. The authors reported
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TABLE II. Field dependence of FLL relaxation rate σsc in
FeS at low temperatures.

µ0HT (mT) σab (µs−1) σeff (µs−1)

This work Ref.25 Ref.26

7.5 0.92 0.96

15 0.91

30 1.13 0.8–1.03 1.1

75 0.87 0.81

a slow relaxation in 85% volume fraction, attributed to
intrinsic magnetic moments of the iron in FeS, and a fast
relaxation with 15% volume fraction attributed to a mag-
netic impurity phase. The difference between this result
and the root-exponential relaxation reported in Ref.25

may not be primarily in the data, but instead a conse-
quence of the fact that a fit to data of a relaxation func-
tion that is a sum of exponentials often does not deter-
mine the coefficients in the sum (or the distribution func-
tion in an integral) well; the problem is ill-conditioned59.
A two-exponential function is difficult to distinguish from
a “stretched exponential” exp[−(Λt)α] (α < 1) unless the
two amplitudes are comparable and the rates are very
different.
b. Single-crystal/polycrystal sample dependence.

Our TF-µSR measurements suggest s+d-wave super-
conducting pairing symmetry in FeS, with nodal and
multi-band superconductivity. This differs from the
previous µSR results of Refs.25 and26 on polycrystals,
which reported fully gapped superconductivity based
on the absence of a linear λ−2(T ) at low temperatures.
A similar situation arose in early TF-µSR penetration
depth measurements on high-Tc cuprates YBa2Cu3O7−δ

(YBCO). Experiments on polycrystal materials as
well as the first available single crystals indicated an
isotropic s-wave order parameter60,61. Nodal super-
conductivity was observed only after experiments on
good single-crystalline YBCO revealed a linear low
temperature dependence of penetration depth62. The
difference has been attributed to disorder in the earlier
samples63. In hydrothermal-growth FeS the impurity
phase is a byproduct of the growth process, and has
been observed in both polycrystal and single crystal
samples. Nevertheless, disorder remains a candidate for
the lack of a linear relaxation rate in Fe polycrystals,
since single crystals might be less disordered in spite of
similar preparation techniques.
Anisotropy in the temperature dependence of the pen-

etration depth is an alternative candidate mechanism for
these differences. In polycrystal samples the correspond-
ing muon relaxation rates σab (single crystal, HT ‖ c)
and σeff (polycrystal) are related by

σeff = σab[(3 + η)/3(1 + η)]1/2, (10)

where the anisotropy parameter η = λ2
c/λ

2
ab − 164. For

η ≫ 1

σeff = σab/3
1/2 (λc ≫ λab), (11)

i.e., a long enough λc does not affect σeff .
The in-plane depth λab in uniaxial superconductors

with strong anisotropy is often estimated from the mea-
sured λeff in polycrystal samples by assuming that λab ≪
λc, so that λeff = 31/4λab (λ ∝ σ

−1/2
sc ) and λc plays no

role. This assumption was made in Refs.25 and26 to ob-
tain the magnitude and temperature dependence of λab.
It breaks down, however, if η is not too large (so that λc

plays a role in λeff) and if in addition the temperature de-
pendence of the penetration depth is not the same for λc

as for λab. This is observed in YBCO, for example65. If it
is also the case in FeS, and if η is not large, then λeff ∝ λab

is not a good approximation. We test this assumption by
comparing single-crystal and polycrystal data from Ta-
ble II at the same field (30 mT) with Eq. (11). The ex-
perimental ratio σeff/σab ranges from 0.71 to 1.03, much
closer to the isotropic result σeff/σab = 1 (η = 0) than
the value 3−1/2 = 0.577 for η ≫ 1.
Thus weakened anisotropy and/or disorder in polycrys-

tals are both candidates for the single-crystal/polycrystal
difference. More work will be needed to clarify this sit-
uation, including direct measurement of the magnitude
and temperature dependence of λc in a single crystal.
c. Pairing symmetry. The fits of the models for

λ−2
ab (T ) suggest the presence of weakly-coupled bands

with s-wave (nodeless) and d-wave (nodal) pairing, con-
sistent with other results. ARPES measurements30 ob-
served two hole-like and two electron-like Fermi pock-
ets around the Brillouin zone center and corner, respec-
tively. Theoretical study suggested that the gap func-
tion is nodal/nodeless on the hole/electron Fermi pock-
ets29. Scanning tunneling microscopy (STM) experi-
ments66 showed a V-shaped spectrum, which is well de-
scribed by both anisotropic s-wave and s+d-wave mod-
els. The weight factor and energy gaps of the s+d-wave
model fit to the STM spectra are close to our fitting re-
sults. Nodal gap behavior is also inferred from low tem-
perature heat capacity and thermal conductivity mea-
surements27,28.
It is not surprising that the fits of both s+d-wave and

sτ3 models give comparable goodness of fits. Distinguish-
ing between a very small second gap and no gap (line
nodes), or different anisotropy of gap from the µSR data
alone is of course very difficult, thus s+s-wave and sτ3
pairing cannot be conclusively ruled out. The data are,
however, fully consistent with the s+d-wave picture that
emerges from other studies.

IV. CONCLUSIONS

In summary, we have studied the magnetic and super-
conducting properties of FeS single crystal samples by
µSR. Loss of initial sample asymmetry with decreasing
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temperature indicates rapid muon relaxation, presum-
ably due to impurities, in 12% of the sample volume, in-
creasing to 15% at the superconducting transition. In the
remainder of the sample low-moment disordered static
magnetism is found below Tmag ≈ 13 K, which coex-
ists microscopically with superconductivity below Tc =
4.1 K. A significant T -linear dependence of the in-plane
superfluid density λ−2

ab is observed at low temperatures,
indicating a nodal superconducting gap. The tempera-
ture dependencies of the superfluid density are best de-
scribed by the multi-band and nodal superconductivity of
the s+d-wave model. The absolute value of the in-plane
T=0 penetration depth is λ−2

ab (0) = 241(3) nm.
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