
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Pair density waves in superconducting vortex halos
Yuxuan Wang, Stephen D. Edkins, Mohammad H. Hamidian, J. C. Séamus Davis, Eduardo

Fradkin, and Steven A. Kivelson
Phys. Rev. B 97, 174510 — Published 14 May 2018

DOI: 10.1103/PhysRevB.97.174510

http://dx.doi.org/10.1103/PhysRevB.97.174510


Pair Density Waves in Superconducting Vortex Halos

Yuxuan Wang,1 Stephen D. Edkins,2, 3 Mohammad H. Hamidian,4, 3
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We analyze the interplay between a d-wave uniform superconducting and a pair-density-wave
(PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear
sigma-model, solve the saddle point equation for the order parameter configuration, and compute
the resulting local density of states in the vortex halo. The intertwining of the two superconducting
orders leads to a charge density modulation with the same periodicity as the PDW, which is twice
the period of the charge-density-wave that arises as a second-harmonic of the PDW itself. We
discuss key features of the charge density modulation that can be directly compared with recent
results from scanning tunneling microscopy and speculate on the role PDW order may play in the
global phase diagram of the hole-doped cuprates.

I. INTRODUCTION

In the conventional Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity, electrons form Cooper pairs
with zero total momentum, and the resulting supercon-
ducting (SC) order parameter is spatially uniform. In
pair-density-wave (PDW) SC states, on the other hand,
the momenta of Cooper pairs are nonzero, and the or-
der parameter field ∆(r) is nonuniform and oscillatory
in space. Spatially non-uniform superconducting states
were first considered long ago by Fulde and Ferrell1 (FF)
and Larkin and Ovchinnikov2 (LO) in a BCS model with
a uniform external magnetic (Zeeman) field. More re-
cently, PDW states have been proposed3–11 to exist in
the absence of an external magnetic field in a family of
cuprate high-temperature superconductors (HTSC). In
several numerical studies PDW states have been shown
to be close competitors to the ground state of 2D t − J
models with a uniform d-wave superconductor (over a
broad range of parameters).12–14

Specifically, a dynamical layer decoupling is observable
in the transport properties15–17 of La2−xBaxCuO4 with
doping concentrations less than or equal to x = 1/8, both
in the presence and absence of a magnetic field, and in un-
derdoped La2−xSrxCuO4

18–22 and La2−xCa1+xCu2O6
23

in large enough magnetic fields. This can be natu-
rally explained by a PDW SC state, and thus con-
stitutes dramatic, albeit indirect evidence of the ex-
istence of a PDW in the “214 family” of HTSCs.
Whether PDW-type phases arise in HTSC other than the
lanthanum-based 214 materials is presently not known,
although certain indirect evidence of its existence in both
Bi2Sr2CaCu2O8+δ

7,24 and YBa2Cu3O6+x
7,25 has been

adduced by several authors. Evidence for PDW-type SC
states has also been found in the heavy-fermion material
CeRhIn5

26 and CeCoIn5
27 at high magnetic fields.

Charge-density-wave (CDW) correlations, similar to
those associated with the well-known28 “stripe” order
have recently been discovered in all families of hole-
doped HTSCs in which the requisite experiments have
been carried out, including in YBa2Cu3O6+x,29–37 in
Bi2Sr2CaCu2O8+δ,

38–44 and in HgBa2CuO4+δ.
45 This or-

der is characterized by an order parameter, ρK , where K
signifies the CDW ordering vector that appears to vary
somewhat with doping concentration and with the par-
ticulars of the crystal structure, but which typically cor-
responds to a period ∼ 3a0 - 4a0,44 where a0 is the lattice
constant in xy directions. The CDW order is short-range
correlated in zero field, but tends to strengthen and de-
velop substantially longer correlations in a high magnetic
field.

Despite the fact that the CDW order has a reasonably
high onset temperature, and that it apparently competes
on an equal footing with the SC order, in many ways the
CDW order appears to be extremely weak – which is a
partial explanation for the fact that it was so difficult to
detect for so many years. This has lead to the suggestion
that it might be a parasitic order, associated with a differ-
ent, possibly stronger ordering tendency. One important
feature of the PDW state is that it generally induces an
associated (composite) CDW order ρ̃2Q = B2∆∗−Q∆Q,
where ∆Q is the PDW order parameter, Q is the PDW
ordering vector, and B2 is an appropriate coupling con-
stant. More generally, in the presence of both CDW and
a PDW order, there is a natural tendency for a mu-
tual commensurate lock-in (encoded in a specific cubic
term in the Landau theory46) which favors the condition
K = 2Q. On the other hand, when PDW and uniform
SC coexist, the intertwining of the two orders leads in-
evitably to an additional charge density modulation ρ̃Q
with the same wave vector as that of the PDW given
by ρ̃Q = B1∆∗0∆Q, where ∆0 is the uniform SC order
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parameter. In other words, if the K = 2Q CDW has
a 4a0 periodicity, then the period of the charge modu-
lation where uniform and PDW order coexist would be
8a0. While it is difficult to directly detect PDW order,47

the observation of such a “8a0” charge modulation would
provide strong evidence for the PDW state in HTSC ma-
terials.

Since the 8a0 charge modulation is a composite of SC
and PDW order parameters, its magnitude is strongest
when the SC and PDW are of comparable strength. How-
ever, in the ground state of a HTSC without any defects,
one expects that the competition between SC and PDW
strongly reduces the latter or completely eliminates it.
One way to overcome this issue is to look for signatures of
the 8a0 charge modulation near a SC vortex core, where
the SC order parameter is suppressed.5,48 In this paper
we focus on the structure of the PDW order parameter
and its accompanying charge modulation in a vortex core
halo. We show that the PDW order and the resulting 8a0
charge modulation is enhanced near a SC vortex. The re-
sults we obtain here can be directly compared with the
measurement of local density of states (LDOS) in STM.

In this paper we develop a phenomenological nonlin-
ear sigma-model to describe the intertwining of the PDW
and SC order parameters, both with d-wave form fac-
tors. We analyze various coupling terms in this effective
model, and solve the saddle point equation in a vortex
configuration for the SC order parameter. By an ener-
getic argument, we show that the PDW order parameter
with a uniform phase is enhanced near the vortex core,
even in the presence of a phase coupling term that by
itself favors a phase winding configuration of the PDW
order. To facilitate comparisons with STM experiments,
we compute the local density of states (LDOS) using pa-
rameters relevant for a typical cuprate HTSC material.
The induced CDW order, both at Q and 2Q, have dom-
inantly s-wave form factors. Moreover, since the phase
of the SC order parameter changes by π across the vor-
tex center, the Q charge modulation patterns across the
vortex center must exhibit a π phase shift.

The present study was motivated in part by a re-
cent (unpublished) STM study49 of slightly underdoped
Bi2Sr2CaCu2O8+δ in which a period 8a0 CDW has been
observed in the halo of field-induced vortices. Broadly,
the measured characteristics of the field-induced CDW
are consistent with the theoretical results we have ob-
tained. This constitutes dramatic affirmative evidence
that a PDW phase is part of the physics of the cuprate
HTSCs.

The remainder of this paper is organized as follows: In
Sec. II we develop an effective theory for a cuprate HTSC
system with intertwined PDW and SC orders. We show
that this model naturally incorporates different types of
charge density modulations as parasitic order parame-
ters, and we discuss its interplay with an independent
(predominantly d-wave form factor) CDW degree of free-
dom. In Sec. III we solve the saddle point equation given
by the effective theory for the configuration of the order

parameters with the boundary condition enforced by an
isolated SC vortex. In Sec. IV, we couple this order pa-
rameter configuration to a cuprate-like Fermi surface and
compute the LDOS. In Sec. V we speculate more broadly
about the significance of the observation of PDW order
in vortex cores for the physics of the cuprates. Here,
we propose a plausible phase diagram as a function of
temperature and magnetic field and relate it to a variety
of other experiments that have shed light on the phases
that arise as superconductivity is suppressed. Here we
also discuss the similarities and differences of the present
results with the earlier ground-breaking work of Ref. 48,
in which a similar study of PDW in vortex cores was car-
ried out, but with importantly different underlying physi-
cal assumptions and broader consequences. In Sec. VI we
summarize our key findings, and in the Appendix, we dis-
cuss a variety of different possible microscopic subtleties
of the vortex core structure, including consideration of
the case in which the PDW order has a vortex centered
at the same position as the uniform SC.

II. EFFECTIVE THEORY FOR PDW AND SC

The Landau-Ginzberg effective field theory for inter-
twined uniform SC and PDW orders is shown to quartic
order in Ref. [6]. This approach makes the symmetries
apparent, but the expansion in powers of the order pa-
rameter is only valid in the vicinity of a high order multi-
critical point. In contrast, we will be primarily interested
in the behavior of the system at low T , mostly deep inside
the uniform SC phase.

At a microscopic level, it is reasonable to think that
since the PDW and the uniform SC order involve pre-
cisely the same electrons they compete ferociously. In-
deed, at short distances, (which is the relevant scale near
an isolated vortex), d-wave SC order and PDW order
with d-form factor should behave very similarly. Thus,
it is suitable to start by considering a nonlinear sigma-
model that enforces a fixed magnitude of the local pair-
field, without distinguishing between the uniform SC and
PDW components. The resulting theory has an unphys-
ical large (SO(10)!) symmetry, but this can be cor-
rected by including appropriate explicit symmetry break-
ing terms, under the assumption that these are in some
sense small. For a tetragonal system, the exact symme-
tries that remain are U(1)×U(1)×U(1)×C4, where the
first U(1) is associated with charge conservation, there is
a U(1) symmetry corresponding to translational symme-
try in the x and y directions, and the C4 symmetry re-
flects the assumed point group-symmetry. In this model,
charge density modulations do not appear as separate
degrees of freedom, but as we shall see, they emerge nat-
urally as composite orders.

We define a five-component complex order parameter
field

Φ = 〈∆,∆Q,∆−Q,∆Q′ ,∆−Q′〉 (2.1)
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where ∆ is the uniform d-wave SC order parameter, ∆Q

is the PDW order parameter with d-wave form factor and
an ordering wave-vector Q, Q′ is related to Q by a C4

rotation, and there is a constraint that

|Φ|2 = 1. (2.2)

The model we consider consists of the reference SO(10)
non-linear sigma-model plus symmetry breaking terms.
In this work we will be interested in the case in which
the order parameters are static and thus will be treated
as classically spatially-varying fields. The free energy of
a general configuration of the order parameter fields is

SI[Φ] =

∫
d2x

[ κ
2
| ~DΦ|2 + δL

]
(2.3)

where κ > 0, ~D = ~∇− 2ei ~A, and

δL =− ε
2
|∆|2+

δκ

2
| ~D∆|2

+
κ̃

2

[
|Q̂ · ~D∆Q|2 + |Q̂ · ~D∆−Q|2 (2.4)

+|Q̂′ · ~D∆Q′ |2 + |Q̂′ · ~D∆−Q′ |2
]

+γ
[
(|∆Q|2 − |∆−Q|2)2 + (|∆Q′ |2 − |∆−Q′ |2)2

]
+γ̃
(
|∆Q|2 + |∆−Q|2

) (
|∆Q′ |2 + |∆−Q′ |2

)
−λ∆∗∆∗(∆Q∆−Q + ∆Q′∆−Q′) + c.c.

−λ̃∆∗Q∆∗−Q∆Q′∆−Q′ + c.c.+ . . .

where we have exhibited explicitly all the necessary
terms for present purposes, while . . . represents addi-
tional terms that are less important and will not be
treated explicitly. The terms proportional to κ̃ (which
can be of either sign so long as κ + κ̃ > 0) link the ex-
change of components ∆Q and ∆Q′ with the interchange
of the directions of the associated ordering vectors. We
will assume that the remaining couplings (which in gen-
eral can be of either sign) are all positive. Thus, the
term proportional to ε is the leading term that favors
uniform SC order over PDW; the term proportional to
δκ (subject to the condition κ+ δκ > 0) is an example of
a potentially important additional term that reflects the
difference between the two types of order parameter; the
term proportional to γ favors the LO over FF states (i.e.,
favors the state in which |∆Q| = |∆−Q|; the term pro-
portional to γ̃ favors PDW stripes over checkerboards;
the terms proportional λ and λ̃ couple the relative su-
perconducting phases of the various SC orders to a value
determined by the phases of λ and λ̃.5 In a time reversal-
invariant system the couplings λ and λ̃ must be real. In
the presence of a magnetic field, time-reversal symmetry
is explicitly broken, and λ and λ̃ can be complex. On
the other hand, for a vortex in an extreme type-II limit
we will consider below, the magnetic field strength pen-
etrating the vortex is vanishingly small and λ and λ̃ can
be taken to be real. The case in which one, or both, are
negative allow for phases with a spontaneously broken
mirror (or, equivalently) time reversal symmetry.5 The

terms describing the coupling of the order parameters to
the fermions are presented and discussed in Sec. IV.

Since the PDW order breaks translational symmetry,
it induces charge density modulations as composite or-
ders. In particular, to quadratic order there are charge
modulations with ordering momenta Q and 2Q,

ρ̃Q(r) = B1

(
∆∗∆Q + ∆∆∗−Q

)
/2 (2.5)

and

ρ̃2Q(r) = B2∆∗−Q∆Q. (2.6)

As we are considering an extreme type-II supercon-

ductor, we set ~A = ~0 up to a length scale given by the
penetration depth R0; we will in the next section focus
on a single vortex by imposing boundary conditions at
large distances Φ(r) ∼ eiθ〈1, 0, 0, 0, 0〉.

A. Coupling to an independent CDW order

From a macroscopic perspective, the “minimal model”
above includes all the relevant phases, in which the
charge density modulations are given composite order
parameters. From this perspective, the CDW order ob-
served in the pseudogap region might be considered as a
signature of “vestigial order”50 which persists above the
temperature at which the expectation values of the pri-
mary order parameters vanish, and the CDW ordering-
vector K is interpreted as K = 2Q.

However, as we will discuss at greater length in Sec.
V for a general description of the cuprate phenomenol-
ogy, it is useful to include an independent CDW order
parameter with wave-vector K. In the first place, if the
CDW were purely parasitic on the PDW, one would ex-
pect that superconducting correlations would necessarily
also be substantial in the entire regime in which CDW
correlations are observed. Although there is currently
no convincing theory of such fluctuational regimes, it is
natural to presume that such PDW fluctuations would
lead to dramatic and detectable consequences, including
a large contribution to a SC-like fluctuation conductiv-
ity. There are clear and strong SC fluctuation effects
seen within maybe 30K above Tc, but for temperatures
further above Tc (in the regime where substantial CDW
correlations are still detected) such effects are exceedingly
weak. Second, it has been established40,51,52 that the 2Q
CDW has a predominantly d-wave form factor. However,
a parasitic CDW order parameter ρ̃2Q should have a pre-
dominantly s-wave form factor49, simply because it goes
as the square of the PDW order. It is important to point
out here that the s-wave and d-wave form factors are not
true symmetry designations, since all symmetries that
can be used to distinguish the two are broken by the or-
dering wave-vector K. However, to the extent that this
distinction remains approximately valid, it still argues for
introducing a separate CDW order parameter ρ2Q with
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predominantly d-form factor, which is weakly coupled to
ρ̃2Q.

Following this argument, we introduce the effective
model that incorporates independent CDW degrees of
freedom as

SII[Φ, ρ] =SI[Φ] + Scdw[ρ] + Sdis (2.7)

+α

∫
d2x

[
ρ∗2Qρ̃2Q + ρ∗2Q′ ρ̃2Q′ + c.c.

]
where we take the coupling α to be small (owing to the d-
form factor of ρQ), Scdw is the pure CDW part of the free
energy, and Sdis incorporates all spatially non-uniform
contributions to the effective free energy from “disorder.”
The leading order coupling to ρ is a “random field” cou-
pling to quenched disorder. There are higher-order disor-
der couplings to the superconducting fields and, since in
some cases impurities are seen in the cuprates to “punch
a hole in the superconductivity,” we consider terms of
the form

Sdis =

∫
d2x

{
[vρ∗Q + v′ρQ′ + c.c.] + u|∆|2

}
+ . . . (2.8)

where v(~x) and v′(~x) are complex random potentials and
u(~x) is a real random potential.

The effective free energy SII is relevant for analyzing
the impurity effects on PDW and charge modulations
near impurities. Indeed, near an isolated impurity, v and
v′ are non-zero over some finite range, which tends to
induce CDW order, even if it is somewhat suppressed
in the disorder-free Scdw. Some impurities also suppress
uniform SC, i.e., have a large positive value of u, as sug-
gested by STM data.53,54 It would be interesting to com-
pare the results from SII with STM measurements in the
presence of isolated impurities. However, to study the
properties an isolated superconducting vortex at temper-
atures well below the superconducting Tc we assume that
the independent CDW order parameter is negligible and
proceed to analyze SI[Φ].

III. SADDLE POINT EQUATION NEAR A SC
VORTEX

For simplicity, we focus on the case in which δκ = 0
and κ̃ = 0, and look for a single vortex solution. We
thus consider configurations that satisfy the boundary
conditions,

Φ(~x)→ eiθ(~x)〈1, 0, 0, 0, 0〉 as |~x| → ∞ (3.1)

and search for the minimum energy solution,

δSI

δΦ
= 0. (3.2)

Specifically, we consider a case in which γ and γ̃ are
assumed to be large and positive. In this case, the term

in Eq.(2.4) proportional to λ̃ is zero. Consequently, we
look for solutions of the form

∆(~x) = eiφsc(~x)F (~x) (3.3)

∆Q(~x) = ei[φcdw+φpdw(~x)]/2G(~x)/
√

2

∆−Q(~x) = ei[−φcdw+φpdw(~x)]/2G(~x)/
√

2

∆Q′(~x) = ∆−Q′(~x) = 0

G(~x) =
√

1− F 2(~x) where 1 ≥ F (~x) ≥ 0 .

(Of course, we could have chosen a PDW in the Q′ di-
rection just as well.)

There are three phase degrees of freedom of any such
solution: One of these correspond to an exact symme-
try (the global gauge symmetry), but its behavior at in-
finity is fixed by our assumed boundary condition to be
φsc(~x) = θ(~x). A second corresponds to translation of the

charge density modulation, φcdw → φcdw +Q · ~̀, which is
not truly a symmetry, since the vortex core breaks trans-
lational symmetry. However, it is unclear how exactly
the charge density modulation couples to the potential
introduced by a vortex core, and for now we assume the
pinning effect to be negligible and treat translation as
an exact symmetry. Thus, at this level of analysis, φcdw
is arbitrary. The third involves the phase of the PDW,
φpdw(~x), relative to the phase of the uniform SC order -
this symmetry is broken by the term proportional to λ,
and we will focus on the effect of this term later.

We first look for solutions to the field equations that
minimize SI under the assumption that the PDW order
has a uniform phase i.e. we take φpdw(~x) to be a po-
sition independent constant, φpdw. We show will that
in this case, the PDW component is peaked at the vor-
tex core, similar to the meron solution55,56 for an O(3)
nonlinear sigma-model. At the present level of approx-
imation, φpdw and φcdw are arbitrary; additional terms
would be needed in the effective free energy to determine
their value. For example, since the ordering vector of the
PDW is commensurate, φcdw can be fixed by its coupling
with the lattice potential. The value of φpdw can be po-
tentially fixed by the term proportional to λ in Eq. (2.4),
although the expectation value of this term vanishes for
our rotationally symmetric choice of the phase winding
in Eq. (3.1). However, as we will show below, our results
do not depend on the values of φcdw and φpdw. For sim-
plicity, in the present section we set φpdw = 0 and choose
φcdw so that ∆Q(~x) is real.

For this configuration, the expectation value for the
term proportional to λ in Eq.(2.4) is identically zero be-
cause of the phase winding of the SC order parameter.
We define the field ~n,

~n = (Re∆(r), Im∆(r),
√

2∆Q). (3.4)

It is straightforward to show that, for this class of solu-
tions, the effective free energy is the same as that of an
O(3) nonlinear sigma-model with Ising anisotropy given
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by

SI[~n] =

∫
d2x

[κ
2
|∇~n|2 +

ε

2
n23 + . . .

]
. (3.5)

The anisotropic term ε favors a meron solution,55,56 for
which ~n lies in-plane at |~x| → ∞ and points along ẑ di-
rection at ~x = 0. We make the following parametrization

~n = (sinα cosβ, sinα sinβ, cosα), (3.6)

where cosα(~x) = G(~x), and sinα(~x) = F (~x). Since we
have neglected the κ̃ terms, the solution is rotational in-
variant, and α = α(|~x|) and β = θ(~x). The effective free
energy becomes56

SI[α, β] =πκ

∫
rdr

[(
dα

dr

)2

+
sin2 α

r2
+
ε

κ
cos2 α

]

=πκ

∫
dt

[(
dα

dt

)2

+ sin2 α+ e2t cos2 α

]
,

(3.7)

where in the last step we defined t = ln(r/r0) ∈ (−∞,∞)
and the scale is defined as

r0 ≡
√
κ/ε. (3.8)

This free energy is minimized by solutions of

α̈ =
1

2

[
1− e2t

]
sin 2α (3.9)

subject to the boundary condition α(t) → 0 as t → −∞
and α(t) → π/2 as t → +∞. Manifestly, r0 determines
the size of the vortex halo. Note that, without the ε term,
the effective free energy is independent of the scale, r0,
and the free energy would be minimized by a skyrmion
configuration without a typical scale—i.e. the effective
free energy is scale invariant.

We numerically solved Eq. (3.9) by mapping the effec-
tive free energy to the action of a classical point parti-
cle in a time-dependent potential, and we plot the mag-
nitudes of PDW, SC and the resulting charge density
modulation in Fig. 1. Indeed, we see that the size of the
vortex halo is given by Eq. (3.8). From Eqs.(2.5) and
(2.6), we compute the magnitudes of ρ̃Q and ρ̃2Q with
B1 = B2 = 1, which are also shown in Fig. 1. Note that
since ρ̃Q is linear in the PDW order parameter ∆Q and
ρ̃2Q is quadratic, the latter decays faster in space away
from the vortex center. In other words, ρ̃Q has a larger
correlation length than ρ̃2Q.

The energy of such a meron is infrared divergent, given
by

E = πκ ln
R0

r0
= Evor + ∆E (3.10)

where R0 is a large length scale, which in our case is
set by the penetration depth. The creation energy of a

bare vortex (without an induced PDW in the core) is
Evor = πκ ln(R0/a), where a is an ultra-violet cutoff of
order the superconducting coherence length; the vortex
halo in effect reduces the vortex core energy by

∆E = −πκ ln
r0
a
. (3.11)

So far we have focused on a configuration where PDW
order has a uniform phase at the vortex core. Since the
term proportional to λ in Eq. (2.4) is minimized when the
phases of ∆±Q are locked to that of ∆, it is also interest-
ing to search for solutions of the saddle point equation
with phase locking between ∆ and ∆±Q, i.e. when there
are coincident vortices in both the uniform SC and the
PDW components of the order. We have also computed
the order parameter structure and free energy of such
a configuration. We found that the free energy of this
configuration is (logarithmically) singular in the ultravi-
olet cutoff a, and hence is only a metastable solution.
We show the details of this phase-locked solution in Ap-
pendix A.

0 1 2 3 4 5

r/r0

0

0.5

1

M
a
g
n
it
u
d
e PDW

SC

8a0 stripe

4a0 stripe

FIG. 1. The numerical solution to the meron-like configu-
ration of the order parameters in the vicinity of an isolated
vortex. The PDW order parameter has a uniform phase while
the SC one has a 2π winding. The magnitudes of ρ̃Q and ρ̃2Q
(i.e., the period 8a0 and period 4a0 stripes) are computed
from Eqs.(2.5) and (2.6) with coefficients B1 = B2 = 1.

IV. LOCAL DENSITY OF STATES IN A
VORTEX HALO

We now address the implications of the above analysis
for microscopic and spectroscopic properties of the sys-
tem. Specifically, we use the field configurations derived
from the effective field theoretic considerations above as
the input to an appropriate Bogoliubov-de Gennes (BdG)
effective Hamiltonian for the electrons. Consider the ef-
fective lattice Hamiltonian:

Htr =−
∑
r,r′,σ

t(r − r′)c†r,σcr′,σ (4.1)

+
∑
r,r′

[
∆(r, r′)c†r,↑c

†
r′,↓ + h.c.

]
where we will take as an ansatz

∆(r, r′) =∆0D(r − r′)
[
F (r)eiθ(r) (4.2)

+G(r) cos(Q · r + φcdw)eiφpdw
]
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FIG. 2. LDOS with s-form factor as a function of position at
V = 35mV with a vortex centered at the origin and a halo size
∼ 25a0. Note that even if the PDW and SC order parameters
we used are rotationally invariant, the envelop of the charge
density modulations are elongated along x-direction.

FIG. 3. Absolute value of LDOS with d-form factor at V =
35mV as a function of position with a vortex centered at the
origin and a halo size ∼ 25a0. The color code scale is the
same with that of Fig. 2.

where D(r) is the nearest-neighbor d-wave form factor
and the real functions, F and G are subject to the bound-
ary conditions F (~0) = 0 and F (r) → 1 as |r| → ∞ and
G(r)→ 0 as |r| → ∞.

Given Htr, we compute the local density of states near
an isolated vortex, as this can be directly compared to
what is seen in an STM experiment. We also compute
the induced charge density modulation – which could in
principle be seen with REXS.

We have performed a direct diagonalization of the
real space BdG Hamiltonian on a 120a0 × 120a0 lat-
tice, and computed the LDOS with an energy resolu-

FIG. 4. Top panel: Fourier transform of LDOS with s-form
factor at V = 35mV for a vortex halo of size ∼ 25a0. The
peak at Q = π/4 is visible. Bottom panel: the same data
along the qy = 0 cut.

tion at 1meV. The period of PDW order parameter is
set at 8a0. For the normal state band structure, we
have used a parametrization57 of the band structure of
Bi2Sr2CaCu2O8+δ in a single-band t − t′ − t′′ model
with t = 0.22eV, t′ = −0.034eV, t′′ = 0.036eV, and
µ = −0.243eV. We take ∆0 = 40meV, and the radius of
the vortex halo (meron) to be 100A, which is about 25a0.
Specifically, we will use the optimal solution (shown in
Fig. 1) from previous section as input for F and G. In
that solution, the phases φcdw and φpdw can be arbitrary.
For definiteness, we take φcdw = π/2, and φpdw = 0 for
the following analysis. We present the results for other
choices of φcdw and φpdw in Appendix B, and show that
all the qualitative features are the same.

We placed a single vortex on a square lattice with peri-
odic boundary conditions, which means there are branch
cuts of the order parameters far away from the vortex
core at the unphysical edges of the torus. We found these
“rough edges” generally do not affect the LDOS near the
vortex much. When performing a Fourier transform, we
exclude these rough edges.

In Fig. 2, we show such a LDOS plot with s-form fac-
tor (probing on-site density) at V = 35mV, at which
the signal appears to be strongest. Charge density mod-
ulations with period 8a0 are clearly discernible for the
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FIG. 5. Top panel: the Fourier transform of LDOS with d-
form factor at V = 35mV for a vortex halo of size ∼ 25a0.
The color code scale is the same with that of Fig. 4. Bottom
panel: the same data along qy = 0 cut.

parameters specified above. Note that, even if the input
for F (r) and G(r) are rotational invariant solutions of
the effective theory, the envelope of the 8a0 charge den-
sity modulation is elongated in the x-direction. This is
because in Htr the C4 rotational symmetry is explicitly
broken by the unidirectional PDW term. The 4a0 stripe
pattern is also discernible in this data, and it comes pri-
marily from the regime closer to the vortex core than
does the 8a0 pattern. Remarkably, the fact that the 8a0
pattern has a larger spatial profile than the 4a0 pattern
does is consistent with the observation in the recent STM
measurement.49

FromHtr we can also compute the LDOS with a d-form
factor, which probes the xy-anisotropy of bond-centered
density.40 For a CuO2 plane in a cuprate HTSC, this
can be directly measured via the charge density on the
oxygen sites; in our single-band model, this corresponds
to computing the LDOS using the spatial profile of

ρd(~r) =
1

4
[ψ∗(r)ψ(~r + ~a) + ψ∗(r)ψ(~r − ~a)

−ψ∗(r)ψ(~r +~b)− ψ∗(r)ψ(~r −~b) + c.c.
]
, (4.3)

where ~a and ~b are lattice vectors, and ψ(r) is the wave-
function of an eigenstate of energy E.

With the same parameters, the computed LDOS with a
d-form factor is shown in Fig. 3. We see that the Q peak
in the LDOS with s-form factor is stronger than that
with d-form factor, while for the 2Q peaks the s-form
factor component is comparable but weaker than the d-
form factor one. If these form factors had a symmetry
meaning (for example, if they are distinguished by mirror
reflection in the diagonal direction), then we would have
expected s-form factor for the LDOS only. However, di-
agonal reflection symmetry here is broken by the charge
stripes and by the vortex configuration. Therefore s-form
factor and d-form factor components are always mixed.
As the 2Q density modulation oscillates over a shorter
wavelength than the Q density modulation, the diagonal
reflection symmetry is more “strongly” broken. Thus the
d-form factor component is relatively larger for 2Q peak
than for Q peak. In the STM experiment49 it has been
reported that for both Q and 2Q peaks are primarily of
s-form factor. However, the form factors are defined ex-
perimentally via local density on Cu and O sites, which
is not directly accessible in our single-band model. Mod-
ifying our model to compute local density on the O sites
would inevitably require microscopic details, which we
do not pursue further here.

The Fourier transform of the images in Figs. 2, 3 are
shown in Figs. 4 and 5. We have only used the central 1

2×
1
2 parts of the images, to exclude the rough edges. From
the Fourier transforms, it is clear that the 8a0 stripe has
dominantly an s-wave form factor. While it is difficult to
quantify due to finite size effects, from Fig. 4 we see that
the 8a0 charge modulation has a sharper peak than the
2Q one, i.e., has a larger correlation length, consistent
with our analytical results.

A. The structure of the 8a0 charge density
modulation

Let us go back to ρ̃Q defined in Eq. (2.5). For an iso-
lated vortex, we have considered the energetically favor-
able configuration where ∆ has a phase winding around
the vortex core, while ∆Q, and the 8a0 stripe order ρ̃Q
emerges as the a composite order of ∆ and ∆Q. A di-
rect consequence of this is that across the center of the
vortex, the 8a0 charge density modulation should exhibit
a π-phase shift. This feature is directly observed in the
numerics, as we show in Fig. 6.

The argument for the π phase shift of the 8a0 stripe
only relies on the structure of the SC vortex, i.e., the fact
the SC phase differs by π across the vortex center. Thus,
this feature should be robust for any configurations of the
meron solution (whose PDW components differ by either
a global phase or a translation, i.e., by φcdw or φpdw).
We have indeed verified this, and present the results in
Appendix B.

It would very interesting to see whether the same fea-
ture can be observed in STM experiments near an iso-
lated vortex too. It would provide strong (phase sen-
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FIG. 6. Local density of states as a function of position in
the neighborhood of an isolated vortex. Notice the π-phase
shift of the 8a0 stripes across the vortex center. The lower
panel shows the local density along the solid black line in the
upper panel. Here the global phase of the SC order parameter
is chosen so that ∆(r) is real along the x axis, and the PDW
order parameter is real. The red curve in the bottom panel is
a sine-function added to help visualize the π-phase shift.

sitive) evidence for the PDW origin of the 8a0 stripe.
On the other hand, if multiple vortices are close to each
other, the phase winding around each vortex becomes
distorted, then one would no longer expect this feature
to be robust.

V. BROADER IMPLICATIONS FOR
UNDERDOPED CUPRATES

As mentioned above, enough of the theoretically ex-
pected structure has been recently seen in STM studies
of the vortex state of BSCCO-2212, that it is reasonable
to conclude (as is argued in Ref. 49), that PDW order
in the halos is an experimental reality. In this section,
we speculate on the implications of this for the under-
standing of the cuprates more broadly, in an attempt
to place the present results in context. Specifically, in
Fig. 7 we show a schematic phase diagram of a puta-
tive disorder-free hole-doped cuprate in the temperature-
magnetic field plane, where to be concrete we have drawn
the basic phase diagram with experimental results on un-

Mostly d-form factor
unidirectional CDW

SC

Thermal vortex liquid

Quantum 
   vortex

         liquid
(PDW)2+
SC+CDW

(PDW)2

+SC
Nematic

Nematic

H

T

FIG. 7. A putative phase diagram for underdoped cuprates
as a function of magnetic field H and temperature T in the
absence of quenched disorder. The solid red line marks a
transition to a low-temperature/low-field d-wave SC vortex
crystal phase, and the dotted red line represents a crossover
region below which SC fluctuations are significant. Marked
by the heavy green line, inside the vortex crystal phase, PDW
fluctuations appear inside the SC vortex halo, which are not
phase coherent across different vortices but induce a long-
range CDW order with primarily s-form factor. The explicit
analysis of the current work applies to the low field region of
this phase. In the high-field/low-temperature region bounded
by the heavy blue line, a long-range, unidirectional CDW or-
der develops with a dominantly d-form factor. The two CDW
phases at low fields and high fields are weakly coupled to each
other via a commensurate lock-in. The thin green and blue
lines denote a transition into a vestigial nematic phase, with
lattice rotational symmetry broken but translational symme-
try associated with the CDW order restored.

derdoped YBCO-123 with doped hole concentration in
the range p ∼ 0.1 − 0.13 in mind. The explicit calcula-
tions in the present paper apply directly only to the low
field, low temperature regime, in the bottom portion of
the phase denoted (PDW)2+SC.

The SC phase: The high-temperature phase is not
superconducting and is translationally invariant. The
red line58 is the thermodynamic Hc2 line that marks
the boundary of the d-wave SC (vortex crystal) phase
that exists at low enough fields and temperatures. (For
graphical simplicity, we have ignored the existence of a
Meissner state, i.e. we assume that Hc1 ≈ 0.)

The SC + (PDW)2 phase: Since at low fields, the
vortex halos are non-overlapping, the associated PDW
order we have computed as a saddle-point of an effec-
tive action is presumably thermally disordered (unless
pinned by impurities) down to low enough temperatures
that the coupling between neighboring halos is large
enough to produce long-range coherence. The consid-
erations governing the interactions between neighboring
halos – which are essentially identical to those discussed
in Ref. 59 – lead to the heavy green phase boundary
that marks the point at which the induced CDW corre-
lations lock between different halos to macroscopic dis-
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tances. The resulting phase has coexisting long-range
CDW and SC order, although especially at low fields,
this order is likely to be quite easily destroyed by even
rather minimal quenched disorder. The magnetic field
necessarily induces vortices in the superconducting phase
associated with the PDW, but as a corollary of our re-
sults, these PDW-vortices lie preferentially in the region
far from the PDW halos where the PDW order parameter
is vanishingly small. Thus, the PDW vortices are likely
melted at all accessible temperatures. It is therefore only
the induced CDW orders, ρ̃Q and ρ̃2Q, that actually or-
der in this phase. We label the phase (PDW)2+SC on
the phase diagram to indicate that the coexisting orders
are a usual, d-wave SC order and a CDW order that is as-
sociated with a harmonic of the PDW order. The CDW
in this phase has a dominantly s-wave form factor. Evi-
dence for this phase has been provided in recent magnetic
torque experiments.25

The CDW phase: At high fields beyond the
boundary of the SC phase, ultrasound experiments60 in
YBa2Cu3O6+x have detected an additional thermody-
namic phase transition marked by the heavy blue line
in the figure; on the basis of NMR29,32 and high field
X-ray diffraction experiments,30,37,61 this transition has
been identified with the onset of long-range unidirec-
tional CDW order. The existence of small electron pock-
ets detected in quantum oscillation62–66 experiments are
widely accepted as reflecting the Fermi surface recon-
struction produced by the high-field CDW order. Short-
range correlated versions of the same order – presum-
ably pinned by quenched disorder – have been observed
in a larger range of temperatures and (low) magnetic
fields by X-rays30,31,33–37 and NMR29,32,67. The existence
of closely related CDW correlations have been inferred
in a variety of STM (and M-EELS) measurements on
Bi2Sr2CaCu2O8+δ, as well.38,39,41–44 The identification
of the low field CDW correlations as disorder pinned ver-
sions of the high field CDW order is strengthened by the
observations that they have the same in-plane ordering
vector, that both forms of order appear to favor unidirec-
tional (stripe) over bidirectional (checkerboard) ordering.
Moreover, there is some evidence that they probably both
have a dominantly d-wave form factor.

One CDW or Two: A key issue of perspective is
whether the high field CDW is essentially a separate or-
der, ρ2Q, or a parasitic consequence of a much stronger
PDW ordering tendency. In drawing our phase diagram,
we have assumed that the PDW is always (slightly) sub-
dominant to the SC order, and so have identified the high
field phase as being primarily a CDW. In contrast, the
alternate view – that PDW order is much more stable
at high magnetic fields than the SC – was adopted in
Ref. 68 and still more emphatically in Ref. 7. The fact
that the ρ̃2Q order in the vortex halos has the same or-
dering vector as the disorder pinned CDW correlations
seen in many older STM studies suggests that they are
related. However, this can be accounted for by a mutual
commensurate lock-in between the two forms of CDW

order, as in Eq. (2.8). Conversely, as stressed above, the
low field CDW has a predominantly d-wave form factor
while the field induced order in the halos is dominantly
s-wave. Moreover, the field induced order is also almost
perfectly particle-hole symmetric in its modulation in-
tensity, while the zero-field CDW which is largely anti-
symmetric. Moreover, one would generally expect that
in a globally superconducting state, the PDW-induced
CDW order should exhibit ordering vectors at both Q
and 2Q; indeed, in any state that has dominant SC or-
der and subdominant PDW order, the Q peak should be
stronger than the 2Q. No clear evidence of a Q peak has
been reported in the low field STM on Bi2Sr2CaCu2O8+δ.
All these observations clearly favor the idea that there
are two distinct forms of CDW order that are (weakly)
coupled so as to be mutually commensurate where they
coexist.

There is further evidence against interpreting the high
field CDW phase as originating from PDW order. In the
first place, over most of the region of T and H in which
CDW order is shown, the system is not superconducting,
and (beyond a crossover line - the dashed red line in the
figure) does not show any clear evidence of identifiable
short-range superconducting coherence. The fact that
the CDW transition temperature, TCDW, (the heavy blue
line) is essentially field independent at high fields – which
follows directly from the ultrasound and NMR experi-
ments in YBa2Cu3O6+x – further corroborates this. It is
generally accepted that the magnetic field does not have
much direct effect on CDW ordering; rather, increasing
field suppresses local superconducting order, with the re-
sult that to the extent that CDW and SC orders compete,
a high field will indirectly enhance the CDW order. A
corollary of this is that once the SC is sufficiently weak
that it no longer competes with CDW order, the field
ceases to affect the CDW order. Conversely, if the CDW
order was induced by PDW order, it is difficult to see
why TCDW would not be a strongly decreasing function
of increasing H. Finally, the presence of quantum oscil-
lations with seemingly standard Onsager periodicity as a
function of 1/H and a temperature dependence that is
very accurately given69 by the Lifshitz-Konsevich form,
is difficult to reconcile with the existence of a PDW, even
though a PDW does support Fermi pockets of an appro-
priate size.4,7,70–74

Vestigial nematic order: As we have assumed that
both the preferred CDW and the PDW order are uni-
directional, there is the possibility that fluctuations will
cause a two-step melting of the density wave order. Upon
increasing temperature, the lattice translational symme-
try that is broken by the density-wave orders is restored
by thermal fluctuations. However, the lattice rotational
symmetry breaking, being a Z2 Ising degree of freedom,
is more robust against thermal fluctuations and survives
to higher temperatures50,52,75. The intermediate phase
with broken lattice rotational symmetry but intact trans-
lational symmetry is an Ising nematic bounded by a ne-
matic critical temperature shown as the thin blue and
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green lines in the figure. While in the absence of disorder,
such nematic phases tend to occur in very narrow slivers
of the phase diagram, the presence of quenched disorder
can greatly enhance their importance.50 Evidence of the
existence of such nematic phases has been reported in
various experiments, including STM experiments28,38 in
Bi2Sr2CaCu2O8+δ and neutron scattering76 and Nernst
effect77 measurements in YBCO.

More than one vortex crystal phase: To the
extent that the two forms of CDW are approximately
distinct, a crossover must occur within the coexistence
phase, as shown by the dashed blue line in the figure.
Near the boundary of the SC phase, the CDW that
coexists with SC must look increasingly like the high-
field CDW, while well below the dashed line, its origin
as a consequence of a primary tendency to PDW order
must become increasingly pronounced. Under some cir-
cumstances this dashed line could correspond to a sharp
phase transition; for instance, if the PDW were bidirec-
tional and the CDW were unidirectional, then the dashed
line would likely correspond to a first order transition
line, at which a coexisting nematic order parameter first
occurs.

Superconducting fluctuations: The red dotted line
represents a (not precisely defined) crossover to a vortex
liquid. Under the assumption that the primary way mag-
netic fields couple to CDW order is indirectly, through
its effect on the SC order, the portion of this curve that
lies within the CDW ordered phase can be inferred in-
directly from the field-dependence of the CDW order:
Below the dashed curve, the strength of the CDW order
is an increasing function of H, while above the dashed
curve (where by some measure SC order has been suffi-
ciently suppressed) the strength of the CDW is essentially
field independent. While there is ample evidence that SC
fluctuations survive at low fields to temperatures much
farther above the zero field Tc than in any conventional
superconductor, there is considerable controversy about
exactly how broad a range, and on how to define the ap-
propriate crossover scale. We do not attempt to resolve
this issue here. However, this is likely a place where the
existence of a slightly subdominant PDW order parame-
ter plays a significant role in a broader range of the phase
diagram than that in which actual PDW order occurs.
Precisely because PDW order arises in the vortex core,
the vortex core energy is much less than it would oth-
erwise be, leading to precisely the “large” and “cheap”
vortices that are required to produce a large fluctuational
regime.

Comparison with the theory in Ref. 48: Com-
pared with the phase diagram proposed in Ref. 48, our
phase diagram shown in Fig. 7 differs in several important
aspects. First, in our phase diagram, the PDW phase is
always subdominant to the uniform d-wave SC, and it
only appears in the vortex phases below Hc2. In Refs. 7
and 48 it has been proposed that PDW order survives to
a higher magnetic field than uniform SC does. However,
the microscopic justification of this scenario is unclear,

particularly given that at zero field uniform SC is clearly
the dominant order. Second, in Refs. 48 it is assumed
that the PDW order is bi-directional. This is not a major
difference from a theoretical perspective – the difference
between the two cases is encoded in the sign of γ in Eq.
(2.4). However, the experimental data from STM and
X-ray suggests that the zero field CDW order is unidi-
rectional. While the interpretation of the patterns in the
vortex cores is still unsettled, this observation certainly
is suggestive of a tendency to uni-directional PDW or-
der. (Notice, that disorder always blurs the distinction
between unidirectional and bidirectional charge order78).
Third, as already discussed, our proposed phase diagram
assumes that there are two microscopically distinct forms
of CDW ordering — one with primarily a d-wave form
factor and the other with primarily a s-wave form factor.

The case of the dominant PDW: Given that PDW
and SC are found to be very close in energy in numerical
studies of t−J ,12–14 it is also plausible to consider a phase
diagram in which PDW order is slightly dominant to the
uniform SC order. Indeed, in La2−xBaxCuO4 near 1/8
doping and in underdoped La2−xSrxCuO4 in magnetic
fields, a dominant PDW order can naturally explain the
dynamical layer decoupling in transport properties.6,15,16

In this case it would be interesting to consider the vor-
tex states with uniform SC component in the halo of half
vortices or full vortices of PDW order. More generally,
in a magnetic field, evidence of an induced PDW super-
conductor has been observed in various members of the
LCO (214) family of cuprates. This case is discussed in
some detail in Ref. 6.

Still more exotic phases: Going back to the lower
edge of the phase diagram, we have argued that when the
vortices are far separated, the superconducting phase as-
sociated with the PDW will generically be disordered.
However, as the vortex halos approach each other, one
could imagine a phase in which long-range PDW order
coexists with long-range SC order. Here, there would be
a two-component vortex lattice – one set of vortices asso-
ciated with the usual d-wave SC and the other with the
PDW superconductor. Indeed, if the PDW were bidi-
rectional, still more complex phases could be imagined.
These phases would have a rich variety of novel Gold-
stone modes and topological excitations. (Some of this
has been discussed in Ref. 68.) Then, of course, with
all these order parameters, the possibility of phases with
various forms of vestigial or composite order is combi-
natorially large. Finally, we note that sometime ago Li
and coworkers79 found evidence of diamagnetism above
Tc at zero external magnetic field in magnetic torque ex-
periments in several high Tc materials, which two of us80

suggested could be regarded as evidence of a possible
PDW state.
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VI. SUMMARY

In this paper we have developed an effective model for
SC and PDW orders, in which the intertwining of these
order parameters gives rise to different types of charge
density modulations. We solved the effective theory in
the vicinity of a SC vortex, and found that the PDW
order is locally enhanced in a vortex halo. The induced
charge modulations have both period ∼ 4a0 and ∼ 8a0
components. While the ∼ 4a0 charge order has been
ubiquitously discovered in cuprate HTSC’s, direct detec-
tion of the ∼ 8a0 near SC vortex halos provides strong
evidence for the elusive PDW order.

The following additional features of the solution are
largely independent of microscopic details. The ∼ 8a0
charge modulation near a vortex core has a larger spatial
profile than that of the ∼ 4a0 one. The ∼ 8a0 charge
modulation has a predominantly s-wave form factor. For
an isolated SC vortex, the ∼ 8a0 charge stripe exhibits a
π-phase shift across the vortex center.

We connected our results on vortex PDW states to
a putative phase diagram for an underdoped cuprate in
an external magnetic field. In the region where PDW
coexists with SC in the vortices, in addition to the on-
going STM measurements already mentioned,49 it would
be extremely illuminating to look for a related subhar-
monic CDW peak in X-ray diffraction at intermediate
fields less than but comparable to Hc2, where the STM
results suggest that uniform SC and PDW orders coexist
in an inhomogeneous fashion.

Note added: After this work was completed, we re-
ceived an advanced draft of a paper by M. R. Norman
that discusses the possible connection between the PDW
and quantum oscillation experiments.81 After completion
of this work we have also received a draft paper82 from
Patrick A. Lee that analyzes a similar problem. We thank
the authors for sharing their unpublished work with us.
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FIG. 8. Numerical solution to the meron-like configuration of
the order parameters near a vortex halo in the case in which
the phases of PDW and SC order parameters are locked and
both wind by 2π. We have used κ̄ = 0.5κ, and λ = 0.5ρ. The
magnitudes of ρ̃Q and ρ̃2Q are computed from Eqs. (2.5) and
(2.6) with coefficients B1 = B2 = 1.

Appendix A: Phase-locked solution in a vortex halo

In this Appendix we search for solutions of the saddle
point equation with phase locking between ∆ and ∆±Q,
i.e. when there are coincident vortices in both the uni-
form SC and the PDW components of the order. We
restrict our attention to the case in which ρ > λ; this
is a necessary condition to insure that the global, vortex
free minimum of the effective free energy corresponds to
a uniform SC state with no PDW component.

To proceed, we still use the parametrization |∆| =
sinα and |∆±Q| = 1√

2
cosα, (0 < α < π/2), while their

phases are fixed by the boundary condition and phase
locking condition. In this configuration the effective free
energy becomes

SI[α]

=πκ

∫
rdr

[(
dα

dr

)2

+
1

r2
− λ

κ
sin2 α cos2 α+

ρ

κ
cos2 α

]
,

(A1)

where the 1/r2 term comes from the 2π phase winding
of both the PDW and SC components. This free energy
is clearly minimized by an r-independent solution with

α =
π

2
, (A2)

i.e., the solution is a bare SC vortex with no PDW com-
ponent. From this result, the meron solution is clearly
more energetically favorable.

However, after a closer look, the complete absence of
PDW component in our solution is an artifact of setting
δκ = 0 and κ̃ = 0 in Eq. (2.4). Indeed, if the super-
fluid density for PDW order is lower than that for SC,
(which is likely to be true in realistic cases), then it is
energetically more favorable to have a PDW component
in a region near the vortex core. In this case, we again
expect a meron-like solution, only now the PDW phase
is locked to the SC phase and also winds.

To verify this, we have numerically minimized the cor-
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FIG. 9. Same as in Fig. 6, but with the global phase choice
φcdw = π/2 and φpdw = π/2. The lower panel shows the local
density along the two cuts shown in the upper panel.

responding effective free energy that includes δκ,

SI[α] =πκ

∫
rdr

[(
dα

dr

)2

+
1 + (δκ/κ) sin2 α

r2

− λ

κ
sin2 α cos2 α+

ρ

κ
cos2 α

]
, (A3)

again by mapping it to a classical mechanics problem,
and have indeed found such a solution. The size of the
vortex halo r̃0 is a given by

r̃0 = r0f

(
λ

ρ
,
δκ

κ

)
, (A4)

where f(x, y) is a non-universal function. For specific
values δκ = 0.5κ, and λ = 0.5ρ, we show a representa-
tive plot of the solution and their induced charge density
modulations in Fig. 8. The magnitudes of PDW and
SC components behave qualitatively the same as those
shown in Fig. 1, however their phases are locked and
both wind by 2π.

Since the PDW configurations with or without a phase
winding have distinct topology, they cannot smoothly de-
form to each other. To determine the optimal configura-
tion, one just needs to compare their respective energies.

For the phase-locked solution, the vortex halo reduces the

FIG. 10. Same as in Fig. 6, but with the global phase choice
φcdw = 0 and φpdw = 0. The lower panel shows the local
density along the two cuts shown in the upper panel.

vortex core energy by, to leading order in the ultraviolet
cutoff,

∆E′ = −πδκ ln(r̃0/a). (A5)

On the other hand, including a nonzero δκ does not
alter the behavior of the meron solution with a uniform
PDW phase much; to leading order the only change is Eq.
(3.11) becomes ∆E = −π(κ+ δκ) ln(r0/a). Since κ > 0,
comparing the energies of the vortex halo, it remains true
that the meron solution with a uniform PDW phase is
optimal.

Appendix B: Local density of states for different
choices of φcdw and φpdw

In Fig. 9, we show the LDOS for φcdw = π/2, and
φpdw = π/2, while keeping all other parameters the same
as those in Sec. IV. In the lower panel Fig. 9, we show the
local density long two cuts at y = ±20a0. They indeed
differ by a phase difference π, just as we argued in Sec.
IV A.

The same data is shown in Fig. 10, only for φcdw = 0,
and φpdw = 0. We show the phase difference of π across
the vortex center in the lower panel.
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15 Q. Li, M. Hücker, G. D. Gu, A. M. Tsvelik, and J. M.

Tranquada, Phys. Rev. Lett. 99, 067001 (2007).
16 J. M. Tranquada, G. D. Gu, M. Hücker, H. J. Kang,
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G. D. Gu, A. Revcolevschi, H. Zhang, Y.-J. Kim, J. Geck,
and D. G. Hawthorn, Science 351, 576 (2016).

37 H. Jang, W.-S. Lee, H. Nojiri, S. Matsuzawa, H. Yasumura,
L. Nie, A. V. Maharaj, S. Gerber, Y.-J. Liu, A. Mehta,
D. A. Bonn, R. Liang, W. N. Hardy, C. A. Burns, Z. Islam,
S. Song, J. Hastings, T. P. Devereaux, Z.-X. Shen, S. A.
Kivelson, C.-C. Kao, D. Zhu, and J.-S. Lee, Proceedings
of the National Academy of Sciences 113, 14645 (2016).

38 M. J. Lawler, K. Fujita, J. W. Lee, A. R. Schmidt,
Y. Kohsaka, C. K. Kim, H. Eisaki, S. Uchida, J. C. Davis,
J. P. Sethna, and E.-A. Kim, Nature 466, 347 (2010).

39 E. H. da Silva Neto, C. V. Parker, P. Aynajian, A. Pushp,
A. Yazdani, J. Wen, Z. Xu, and G. Gu, Phys. Rev. B 85,
104521 (2012).

40 K. Fujita, M. H. Hamidian, S. D. Edkins, C. K.
Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi,
H. Eisaki, S.-i. Uchida, A. Allais, M. J. Lawler, E.-A. Kim,
S. Sachdev, and J. Davis, Proceedings of the National
Academy of Sciences 111, E3026 (2014).

41 E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin,
E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch,
Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani,
Science 343, 393 (2014).

42 M. H. Hamidian, S. D. Edkins, K. Fujita, A. Kostin, A. P.

http://dx.doi.org/10.1103/PhysRevB.90.195207
http://dx.doi.org/ 10.1126/science.aan3438
http://dx.doi.org/ 10.1126/science.aan3438
http://dx.doi.org/ 10.1103/PhysRevB.92.174525
http://arxiv.org/abs/1801.02643
http://arxiv.org/abs/1801.02643
http://dx.doi.org/10.1038/nphys2833
http://dx.doi.org/ 10.1073/pnas.1406297111
http://dx.doi.org/ 10.1073/pnas.1406297111


14

Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim,
S. Sachdev, and J. C. S. Davis, “Magnetic-field Induced
Interconversion of Cooper Pairs and Density Wave States
within Cuprate Composite Order,” (2015), unpublished,
arXiv:1508.00620.

43 S. Vig, A. Kogar, M. Mitrano, A. A. Husain, V. Mishra,
M. S. Rak, L. Venema, P. D. Johnson, G. D. Gu, E. Frad-
kin, M. R. Norman, and P. Abbamonte, SciPost Phys. 3,
026 (2017).

44 A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian,
H. Eisaki, S.-i. Uchida, J. Davis, M. J. Lawler, and E.-
A. Kim, Proceedings of the National Academy of Sciences
113, 12661 (2016).

45 W. Tabis, Y. Li, M. L. Tacon, L. Braicovich, A. Kreyssig,
M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ra-
mazanoglu, A. I. Goldman, T. Schmitt, G. Ghiringhelli,
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