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The search for problems where quantum adiabatic optimization might excel over classical optimization tech-
niques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasi-planar topolo-
gies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-
lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature
spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76,
4616 (1996)]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite
zero-temperature simulations [Phys. Rev. B 63, 094423 (2001)] suggesting the existence of a finite-temperature
spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations
can be dangerous when corrections to scaling are large.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

I. INTRODUCTION

The advent of analog quantum annealing machines1–14 and,
in particular, the D-Wave Inc.15 D-Wave 2X quantum an-
nealer has sparked a new interest in the study of (quasi-) pla-
nar Ising spin glasses16–19 with finite-temperature transitions.
While there have been multiple attempts to discern if the D-
Wave quantum annealers display an advantage over conven-
tional technologies20–40, to date there are only few “success
stories”34,41 where the analog quantum optimizers show an
advantage over current conventional silicon-based computers.
Recent results26,34 suggest that problems with a more complex
energy landscape are needed to discern if quantum annealers
can outperform current digital computers. In particular, the
search for salient features in the energy landscape34, the care-
ful construction of problems with particular features34,34,40,41,
as well as the attempt to induce a finite-temperature spin-glass
transition for lattices restricted to the quasi-two-dimensional
topologies of the quantum chips42 have gained considerable
attention. The quest for a finite-temperature spin-glass transi-
tion in quasi-two-dimensional topologies stems from the inter-
est in creating an energy landscape that becomes more com-
plex and rugged already at finite temperatures, such that ther-
mal (sequential) simulated annealing43 has a harder time in
determining the optimal solution to an Ising-spin-glass-like
optimization problem. On the other hand, quantum anneal-
ing should, in principle, be able to tunnel through barriers if
these are thin enough. We emphasize that the comparison be-
tween simulated annealing — a well-known poor optimizer —
and quantum annealing is based on the fact that both methods
are sequential in nature. Comparisons to state-of-the-art opti-
mization techniques44 have been performed and shed a more
complete light on the current situation.

Here we want to study the thermodynamic properties of a
model proposed by N. Lemke and I. A. Campbell45 — later
analyzed in much detail in Refs.46–48 — that might have the
desired finite-temperature spin-glass transition and, most im-
portantly, be of a mostly-planar topology that can easily be

constructed with current superconducting flux qubits. Our re-
sults show that, unfortunately, for large enough system sizes
the model is in a paramagnetic phase at finite temperatures
for a parameter range where it is predicted to be a spin
glass. We do note that this would have been surprising, be-
cause there is solid evidence that the lower critical dimen-
sions of spin glasses is believed to be between 2 and 3 space
dimensions49–51 – a value below which any phase transition to
a spin-glass state only occurs at zero temperature.

The paper is structured as follows: In Sec. II we describe
the model and numerical details, as well as the current under-
standing of its properties, followed by results and concluding
remarks in Sec. III.

II. MODEL AND NUMERICAL DETAILS

In their letter45, Lemke and Campbell argue that a finite-
temperature spin-glass transition can be induced in two-
dimensional planar topologies with next-nearest interactions.
To be precise, the model is a two-dimensional square-lattice
Ising spin glass with uniform ferromagnetic next-nearest in-
teractions of strength J , in addition to random bimodal
nearest-neighbor interactions of strength ±λJ . The Hamil-
tonian of the model is

H = −
∑
〈i,j〉

JijSiSj − J
∑

〈〈i,j〉〉

SiSj , (1)

where in Eq. (1) Si ∈ {±1} represent Ising spins on a square
lattice with N = L2 sites (L is the linear dimension of
the lattice). J = 1 are ferromagnetic interactions between
next-nearest neighbors (denoted by 〈〈i, j〉〉) and Jij = ±λJ
are nearest-neighbor bimodally-distributed spin-glass interac-
tions (denoted by 〈i, j〉). In our simulations we set J = 1.
Depending on the relative strength of the interactions, i.e., the
value of λ, Ref.45 states that a finite-temperature spin-glass
transition can be induced in two space dimensions. These re-
sults were further expanded in Ref.47: A freezing temperature
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FIG. 1: Binder cumulant gq for the spin-glass order parameter as a function of the temperature T for the model described in Ref.45 with
λ = 0.50 (a) and λ = 0.75 (b) and system sizes L > `. In both cases the data show no crossing at any finite temperature studied, thus
suggesting that there is no finite-temperature spin-glass phase. Square of the magnetization m2 as a function of T for different system sizes
for λ = 0.50 (c) and λ = 0.75 (d). The data decreases with increasing system size, i.e., the system is likely in a paramagnetic phase.

of Tc ∼ 2.1 exists for λ = 0.5, a “slightly lower” freezing
temperature for λ = 0.7, and a zero-temperature freezing for
λ = 1.5. We do emphasize, that these results were produced
by relatively small system sizes. Extensive numerical simula-
tions by Parisi et al.46 find a crossover in the critical behavior
for large enough system sizes. First, from a seemingly ordered
state to a spin-glass-like state, followed by a second crossover
to a (possibly) paramagnetic state. This means that the true
thermodynamic behavior can only be observed if the system
sizes exceed a certain break up length `.

However, a conclusive characterization of the critical be-
havior, as well as the λ-dependence of the break up length
` were not discussed in detail until the extensive zero-
temperature study by Hartmann and Campbell48. By comput-
ing ground-state configurations for intermediate system sizes
and estimating the stiffness exponent that describes the scal-
ing of energy excitations when a domain is introduced into
the system, they argue—based on zero-temperature estimates
of the spin stiffness—that there should be a finite-temperature
spin-glass transition for certain values of λ and linear system

sizes L that fulfill L > `. In particular, they estimate that
for λ > λ∞ = 0.27(8) no ferromagnetic order should be
present. Because the break up length ` is large for λ ∼ 0.5
(` & 45), Ref.48 suggests studying systems with λ = 0.7
where ` ≈ 10. On the other hand, for λ = 0.90, the stiff-
ness exponent θ = 0.09(5) is very close to zero. There-
fore, in this work we focus on the cases where (i) we can
simulate system sizes L � ` and (ii) the stiffness expo-
nent θ is clearly positive, thus implying a finite-temperature
phase, i.e., λ = 0.50 and 0.75. A summary of the proper-
ties of the model for these values of λ, as well as the simu-
lation parameters are listed in Table I. The simulations were
performed using parallel tempering Monte Carlo52 combined
with isoenergetic cluster updates53,54. Note that we determine
the estimated value of θ for λ = 0.75 by performing a lin-
ear fit to the data of Ref.48 (quality of fit ∼ 0.5855) and es-
timate θ(λ) ≈ 1.083(3) − 1.12(4)λ, valid in the window
λ ∈ [0.5, 1.1]. Furthermore, by inspecting Fig. 7 in Ref.48,
we estimate that the break up length for λ = 0.75 is approxi-
mately ` ≈ 9.
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FIG. 2: Finite-size scaling of the data shown in Fig. 1(b) for λ =
0.75 with Tc = 0.

TABLE I: Simulation parameters and estimates of the stiffness ex-
ponent θ and break up length ` for different values of λ. For both
values of λ we studied different system sizes L using parallel tem-
pering Monte Carlo. The lowest [highest] temperature simulated is
Tmin = 0.4 [Tmax = 2.8] with NT = 50 temperature steps. Ther-
malization is tested by a logarithmic binning; once the last three bins
agree within error bars we deem the system to be thermalized. For
all systems, this was the case after Nsw = 222 Monte Carlo sweeps.
Furthermore, Nsa samples were computed for each parameter com-
bination. Note that the estimate of θ for λ = 0.50 is taken from
Ref.48, whereas the value for λ = 0.75 is estimated from the pub-
lished data (see text for details).

λ θ ` L Nsw Tmin Tmax NT Nsa

0.50 0.59(8) 45 48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

96 222 0.4 2.8 50 104

128 222 0.4 2.8 50 104

0.75 0.23(1) 9 24 222 0.4 2.8 50 104

32 222 0.4 2.8 50 104

48 222 0.4 2.8 50 104

64 222 0.4 2.8 50 104

To detect the existence of a spin-glass transition, we mea-
sure the Binder cumulant g56 of the spin-glass order parameter
q via

gq =
1

2

(
3− [〈q4〉]av

[〈q2〉]2av

)
. (2)

In Eq. (2), 〈· · · 〉 represents a thermal average over Monte
Carlo steps and [· · · ]av an average over Nsa realizations of
the disorder (see Table I for details). The spin-glass order pa-
rameter q is given by

q =
1

N

N∑
i=1

Sαi S
β
i , (3)

where “α” and “β” represent two copies of the system with
the same disorder. The Binder cumulant is dimensionless and

scales as gq = G[L1/ν(T − Tc)]. Therefore, if T = Tc,
data for different system sizes cross. If, however, there is no
transition, data for different system sizes do not cross. To rule
out a transition at a temperature not simulated, a finite-size
scaling of the data can be used. Finally, we also measure the
average of the square of the magnetization m2 ≡ [〈m2〉]av
with

m =
1

N

N∑
i=1

Sαi . (4)

Note that we measure the square of the magnetization be-
cause, on average, m ≡ [〈m〉]av = 0. Furthermore, the mag-
netic susceptibility χm is related to m2 via χm = Nm2.

III. RESULTS AND CONCLUSIONS

We have performed large-scale Monte Carlo simulations
of the Hamiltonian in Eq. (1) for system sizes L � ` and
λ = 0.50 and 0.75. Our results for the Binder cumulant—
which should display a crossing if there is a finite-temperature
transition—are summarized in Fig. 1. The Binder cumulant
for the spin-glass order parameter gq does not show a crossing
down to low temperatures for both values of λ studied. In ad-
dition, a finite-size scaling of the data for λ = 0.75 shown in
Fig. 2 strongly suggests that Tc = 0. Furthermore, the mag-
netization m2 as a function of the temperature T decreases
with increasing system sizes for both values of λ studied (see
Fig. 1.). Based on these results, we conclude that the system
is in a paramagnetic state for both λ = 0.50 and 0.75 in the
thermodynamic limit.

Our results show that the model introduced in Ref.45 and
studied in detail in subsequent publications46–48 does not ex-
hibit a finite-temperature spin-glass transition in the thermo-
dynamic limit for values of the parameter λ where it is ex-
pected to show such behavior. In agreement with the results
of Ref.46, however for larger system sizes and and better statis-
tics, we show that, indeed, the thermodynamic limit is a para-
magnetic phase at finite temperature. This also means that
deducing a finite-temperature behavior from zero-temperature
simulations can be dangerous when the system sizes are not in
the thermodynamic limit48. Given recent interest in induc-
ing finite-temperature spin-glass transitions in quasi-planar
topologies26, we conjecture that adding any set of interactions
that do not grow with the system size to a nearest-neighbor
lattice will likely not result in a finite-temperature spin-glass
transition.
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