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Magnetic field-induced evolution of intertwined orders in the Kitaev magnet β-Li2IrO3

Ioannis Rousochatzakis and Natalia B. Perkins
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55116, USA

Recent scattering experiments in the 3D Kitaev magnet β-Li2IrO3 have shown that a relatively weak magnetic
field along the crystallographic b-axis drives the system from its incommensurate counter-rotating order to
a correlated magnet, with a significant uniform ‘zigzag’ component superimposing the magnetization along
the field. Here it is shown that the zigzag order is not emerging from its linear coupling to the field (via a
staggered, off-diagonal element of the g-tensor), but from its intertwining with the incommensurate order and
the longitudinal magnetization. The emerging picture explains all qualitative experimental findings at zero
and finite fields, including the rapid decline of the incommensurate order with field and the so-called intensity
sum rule. The latter are shown to be independent signatures of the smallness of the Heisenberg exchange J ,
compared to the Kitaev coupling K and the off-diagonal anisotropy Γ. Remarkably, in the regime of interest,
the field H∗ at which the incommensurate component vanishes, depends essentially only on J , which allows to
extract an estimate of J'4 Kelvin from reported measurements ofH∗. We also comment on recent experiments
in pressurized β-Li2IrO3 and conclude that J decreases with pressure.

I. Introduction

The realization1,2 that certain correlated materials based on
4d and 5d transition metals, like Ir4+ or Ru3+, host the key
microscopic ingredients for the so-called Kitaev spin liquid3

has spurred tremendous experimental and theoretical inter-
est in the last decade4–9. A recurring theme in this research
is that the predicted quantum spin liquids3,10–12 are fragile
against various realistic perturbations2,13–19 and are preempted
by magnetic order at low enough temperatures20–29. Neverthe-
less, there is overwhelming evidence that external perturba-
tions, such as magnetic field30–42, chemical substitution43,44,
or pressure29,37,45–52, can drive these materials to various types
of correlated phases, including spin liquids. To go forward, it
is therefore crucial to map out the most relevant instabilities,
and identify their distinctive experimental fingerprints.

In this vein, we study the enigmatic magnetic-field induced
instability reported recently by Ruiz et al36 in the 3D hyper-
honeycomb iridate β-Li2IrO3

28,29. At zero field, this magnet
was known28 to develop (below TN = 37 Kelvin) a counter-
rotating incommensurate (IC) modulation, similar with those
in the 3D stripy-honeycomb γ-Li2IrO3

26,27 and the layered
honeycomb α-Li2IrO3

25. The new findings from the magnetic
resonant X-ray scattering data under a finite field are the fol-
lowing36: (i) The IC order of β-Li2IrO3 is very fragile against
a magnetic field along the crystallographic b-axis, and dis-
appears completely at a characteristic field H∗. (ii) The sys-
tem develops a significant uniform ‘zigzag’ component along
a (superimposing the magnetization along b), similar to the
zigzag order of Na2IrO3

20–22,53–55 and α-RuCl323,24,56–59. (iii)
The zigzag component grows linearly with field until it shows
a kink at H∗, but is otherwise undetectable at zero field, con-
sistent with the experiments of Biffin et al28. (iv) Quite sur-
prisingly, the sum of the intensities of the Bragg peaks asso-
ciated with the IC and the uniform components (rescaled by
some factor) remains constant up to a field slightly larger than
H∗.

One way to rationalize the appearance of the zigzag com-
ponent is to build on the insight that a field along b couples
linearly not only to the uniform magnetization along b, but
also to the zigzag component along a, by virtue of the off-

diagonal element gab of the g-tensor.36 This would explain
the growth of the zigzag component (besides the magnetiza-
tion along b) at the expense of the IC order. However, this
picture of a field-induced zigzag order cannot readily explain
the significant zigzag amplitude at H∗, the intensity sum rule
(point (iv) above), as well as the T -dependence of the inten-
sity of the zigzag component, which is very similar to that of
an order parameter36.

The results presented below reveal that a more consistent
scenario is that the IC counter-rotating component, the zigzag
component along a and the magnetization along b are inter-
twined components of the same order. It is shown in particu-
lar, that the significant growth of the zigzag component with
field occurs even in the absence of the off-diagonal element
gab. This demonstrates that the zigzag component does not
originate in its linear coupling to the field, but rather in an in-
trinsic coupling with the IC order and the magnetization along
b. In fact, as shown in Ref. [60], both the zigzag compo-
nent and the magnetization along b are already present at zero
field, albeit with an amplitude that is too weak to be detected.

The emerging picture explains all the qualitative experi-
mental results at both zero28 and finite fields36. First, the
weak zigzag amplitude at zero-field, the rapid decline of the
IC order with field, and the intensity sum rule are all facets
of the same fact. Namely, that the Heisenberg coupling J
is much weaker than both the Kitaev interaction K and the
off-diagonal exchange anisotropy Γ. Second, the character-
istic field H∗ is essentially independent of the dominant in-
teractions K and Γ and scales linearly with J . This allows
to deduce an estimate of J ' 4 Kelvin from reported data of
H∗. Furthermore, a comparison with recent experiments un-
der pressure37 suggests that J decreases (below 4 Kelvin) with
pressure.

The present work builds on the recent study by Ducatman
et al60, which is based on the intuitive idea that the observed
IC order28 can be thought of as a long-wavelength twisting
of a nearby commensurate order, called the ‘K-state’ [see
Fig. 1 (a)], with the same qualitative features. Namely, the
same propagation vector (with periodicity very close to the
experimental value 0.57), the same irreducible representa-
tion, the counter-rotating moments, and non-coplanarity. The
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present study essentially addresses the fate of this K-state un-
der a field along the b-axis. But first, let us repeat the most
important aspects of the system and the zero-field K-state.60

II. Lattice structure and microscopic spin model

The lattice structure of β-Li2IrO3 has been discussed in de-
tail elsewhere.28,36,60–62 The Ir ions form interwoven networks
of two types of ‘zig-zag’ chains, one propagating along â+b̂
and the other along â-b̂. The first type of chains comprise the
nearest-neighbor (NN) bonds denoted by x and y in Fig. 1 (b),
while the second type comprise the NN bonds denoted by x′

and y′. We shall refer to these as xy- and x′y′-chains, re-
spectively. Finally, the two chain types are connected via NN
bonds that are oriented along the ĉ-axis and are denoted by z
in Fig. 1 (b).

The microscopic J-K-Γ model, introduced by Lee et
al,61,62 features three types of NN interactions, the Heisenberg
exchange J , the Kitaev anisotropy K and the off-diagonal
symmetric anisotropy Γ. For a given bond of type t, between
NN sites i and j, the total interaction takes the form

H(t)
ij = JSi ·Sj +KSαt

i Sαt
j +σtΓ(Sβt

i S
γt
j +Sγti S

βt

j ) , (1)

where (αt, βt, γt) = (x, y, z) for t ∈ {x, x′}, (y, z, x) for t ∈
{y, y′}, and (z, x, y) for t=z. The prefactor σt of the Γ terms
is +1 for t∈{x, z, y′} and−1 for t∈{y, x′}. This modulation
of the prefactors is tied to the following convention for the
relation between the crystallographic axes {â, b̂, ĉ} and the
Cartesian axes {x̂, ŷ, ẑ}63:

x̂ = â+ĉ√
2
, ŷ = ĉ−â√

2
, ẑ = −b̂. (2)

The total Hamiltonian in a field H takes the form

H =
∑
t

∑
〈ij〉∈tH

(t)
ij − µBH ·

∑
i gi · Si , (3)

where µB is the Bohr magneton and gi is the electronic
g-tensor at site i. In the following, we work in units of√
J2+K2+Γ2 =1 and use the parametrization60–62:

J = sin r cosφ, K = sin r sinφ, Γ = − cos r , (4)

where φ ∈ [0, 2π), r ∈ [0, π/2]. In particular, we shall fo-
cus on the ‘K-region’ of Fig. 1 (a). As argued in Ref.60, the
actual IC order inside this region can be thought of as a long-
wavelength twisting of a nearby commensurate state, called
the ‘K-state’. This state is a local minimum of the energy, ex-
cept at φ= 3π/2 where it is one of the global minima (which
form an S2 manifold), and probably survives as such in a
small finite window of φ above 3π/2 due to the lattice cut-
off.60 Nevertheless, this state has all qualitative features of the
experimentally observed IC order at zero field60.

III. Main aspects of the zero-field K-state

The detailed structure of the K-state is discussed in Ref.60.
A schematic representation is shown in Fig. 1 (b). Let us
repeat here the main features that are needed for our pur-
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FIG. 1. (a) The relevant parameter space in (r, φ) [see Eq. (4)],
along with the K- and Γ-regions proposed in Ref. [60]. The points
A and B, referred to in subsequent figures, correspond to (r, φ) =
(0.32π, 1.52π) and (0.32π, 1.625π). (b-c) The structure of the K-
state at low (H≤H∗) and high (H≥H∗) fields. The solid (dashed)
green and red bonds depict the xy (x′y′) chains running along â+b̂
(â-b̂). The blue vertical segments point along the c-axis and depict
the z-bonds. The Cartesian components of the spins are shown in
the side panels. Both states respect the combined operation ΘC2c,
where Θ is time reversal and C2c is the two-fold rotation around c.
The high-field K-state is qualitatively similar to the state ‘FM-SZFM’
of Ref. [61], which is stabilized in a finite region with φ<3π/2.

poses. The K-state features six spin sublattices, three (A,
B, C) along the xy-chains and three (A′, B′, C′) along the
x′y′-chains. The corresponding Cartesian components are
given in the side panels of Fig. 1 (b), where S = 1/2 is the
classical spin length, while the numbers x1, y1, z1, x2 and
z2 are all positive (at zero field), and obey the constraints
x2

1 + y2
1 + z2

1 =1 and 2x2
2 + z2

2 =1.
The sublattices {A,B,C} (and likewise the sublattices

{A′,B′,C′}) form an almost ideal 120◦-pattern. The
counter-rotating modulation of the moments can be seen in
Fig. 1 (b) by noticing that, along the xy-chains (similarly
for the x′y′-chains), the odd sites (gray circles) modulate
in a ABCAB · · · pattern, while the even sites (white cir-
cles) show a CBACB · · · pattern. This modulation shows
up in the Fourier component of the static structure factor at
Q = 2â/3, which takes the characteristic form MQ=2â/3 =
(iMaA, iMbC,McF ), along a, b and c. Here, A, C and F
denote, respectively, the Néel, stripy and FM basis vectors of
the 4-site unit cell28,60. The amplitudes Ma, Mb and Mc are
given by60

Ma = i2S(x1 + 2x2 − y1), Mb = −i2S(z1 + z2),

Mc = i2S
√

3(x1 + y1) .
(5)

The counter-rotating modulation is however not the only com-
ponent of the K-state, because there are two types of devia-
tions from the ideal 120◦-pattern when φ > 3π/2: i) an in-
plane canting of the zigzag type, whose direction alternates
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between a and −a for xy- and x′y′-chains, respectively, and
ii) an out-of-plane ferromagnetic (FM) canting along b. Both
of these cantings are uniform from one unit cell to another,
and show up directly in the Q = 0 Fourier component of
the static spin structure factor, along a and b. Specifically,
MQ=0 = (M ′aG,M

′
bF, 0), where G and F denote, respec-

tively, the zigzag and FM basis vectors of the 4-site primitive
unit cell28,60. The amplitudes M ′a and M ′b are64

M ′a = −4S(x1 − y1 − x2), M ′b = 2S(2z1 − z2) . (6)

These amplitudes vanish when J → 0+, because in this limit
{A,B,C} and {A′,B′,C′} reach their ideal 120◦-patterns.

IV. Total Energy of the K-state in a field

We now move to the main part of this study and analyze the
fate of the K-state under a field H along the b-axis. As dis-
cussed in detail in Ref.36, the total polarization along b cou-
ples to the field via the diagonal element gbb of the g-tensor,
while the uniform zigzag canting along a (i.e., the staggered
magnetization from xy- to x′y′-chains), couples to the field
via the off-diagonal element gab, whose sign alternates be-
tween xy and x′y′ chains due to the two-fold symmetry C2a

that passes through the middle of the z bonds. So, a magnetic
field along b couples linearly to both M ′a and M ′b. Further-
more, such a field does not break the symmetry ΘC2c obeyed
by the K-state, see Fig. 1 (b). These arguments suggest that
we can use the K-state ansatz [side panel of Fig. 1 (b)], but
now the coefficients x1, y1, etc will change with the field. To
find these coefficients we must minimize the total energy,

E/N=S2
{
K
[
3− 2(y1 − x2)2

]
+2Γ

[
1− z2

1 + x2
2 + 2(y1 + x2)z1 + 2x1z2

]
+J

[
1 + 2(z1 − z2)2 − 4x1x2 + 4(x1 + x2)y1

] }
/6

−µBHS
[√

2gab(x1 − x2 − y1) + gbb(−2z1 + z2)
]
/3 ,

(7)

(N is the total number of sites) for given H , J , K, Γ, gbb,
and gab. From x1, y1, etc we can then deduce the various
components of the structure factor using Eqs. (5) and (6).

The anisotropy of the local g-tensors is set by the local en-
vironment of the iridium-oxygen octrahedra, and in particu-
lar the trigonal distortion and the rotation of the octahedra.
However, both of these are very small in β-Li2IrO3, see e.g.,
Fig. 1(b) in Ref. [29] and Supplemental Material of Ref. [36].
So, in the following we shall take gbb = 2 and gab = ±0.1.
We will in fact show in Sec. VII that the evolution of the mag-
netization is almost the same with that for gab = 0.

V. Main results

Let us first highlight the results that are directly related to
the reported experiments. For demonstration, we have taken
gbb = 2 and gab = 0.1 (we shall address the role of gab sep-
arately below). Figs. 2 (a) and (b) show the magnitudes of
the various Fourier components, at the points A and B of
Fig. 1 (a). The results show that the Q = 2â/3 components,
Ma,Mb andMc, decline with the field, and vanish completely
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FIG. 2. Evolution of the various Fourier components of the static
structure factor of the K-state with a magnetic field H along b, for
the points A (panel a) and B (panel b) in Fig. 1 (a).

at (and above) a characteristic field H∗. At the same time, the
Q= 0 components, M ′a and M ′b, grow linearly with the field,
and they show a kink at H∗. These results are consistent with
the data reported in Ref. [36].

We can also see an important feature of the Q= 0 compo-
nents, which is related to the zero-field scattering experiments
of Biffin et al28. Namely, that both |M ′a(0)| and |M ′b(0)| are
very small when φ is close to 3π/2 [see Fig. 2 (a)], where both
the zigzag and the FM canting become small. As we move
away from the line φ = 3π/2, the zigzag amplitude M ′a(0),
in particular, is not small any longer, see Fig. 2 (b). So, the
absence of the Q=0 Bragg peaks from the zero-field scatter-
ing experiments of Biffin et al.28 is the first evidence that φ is
close to 3π/2, i.e., that J is much weaker than both K and Γ.

The next qualitative experimental result that we would like
to address is the intensity sum rule of Ref. [36], i.e. the finding
that the sum of a certain combination of the intensities corre-
sponding to zero- and finite-Q Bragg peaks, remains almost
constant even slightly above H∗. To this end, we will need to
understand the behavior of the coefficients x1, y1, etc first.

From Eqs. (5-6) we find that the simultaneous vanishing of
Ma, Mb and Mc for H≥H∗ imply that

H ≥ H∗ : x1 = −y1 = −x2, z2 = −z1 . (8)

These relations are indeed satisfied as we see in Fig. 3. In
particular, while all coefficients are positive at zero field, the
coefficients y1, x2 and z1 change sign at some intermediate
field, and eventually satisfy (8) for H ≥ H∗.

The explanation of the intensity sum rule reported in
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FIG. 3. Evolution of the coefficients x1, y1, etc with a magnetif field
H along b, for the points A (panel a) and B (panel b) in Fig. 1 (a)

Ref. [36] stems from another aspect of Fig. 3 (a), namely, that

H≤H∗,
φ→

(
3π
2

)+ :

{
z2 ' x1, x2 ' z1 ' y1,

x1(0) '
√

2/3, y1(0) ' 1/
√

6.
(9)

Remarkably, these approximate relations hold all the way
down to zero field, where they stem from the special struc-
ture of the ground state manifold along φ = 3π/2, and the
concomitant lifting of the degeneracy by an infinitesimal pos-
itive J .60 For larger J , the approximations in Eq. (9) become
progressively worse as shown in Fig. 3 (b).

Now, to see how Eq. (9) leads to the intensity sum rule, we
take the following combinations of the Bragg peak intensities,

II = |Ma|2+|Mb|2+|Mc|2, IV = |M ′a|2+|M ′b|2 . (10)

Fig. 4 shows the behavior of the quantities II/II(0),
αIV /II(0) and Itot ≡ (II + αIV )/II(0), where the constant
α ≡ II(0)/IV (H∗) fixes Itot(H

∗) = 1. We first discuss the
results shown in Fig. 4 (a), which are obtained at the point A
of Fig. 1 (a). As expected, the intensity associated with the
counter-rotating component of the order, II , declines quickly
with field, while the intensity associated with the uniform
components, IV , grows quadratically with field up to H∗. At
the same time, the total intensity Itot remains extremely close
to 1 from zero field all the way up toH∗. This behavior is fully
consistent with the intensity sum rule of Fig. 4 (a) of Ref. [36].

Importantly, while it is not clear which exact combinations
of the zero- and finite-Q intensities are involved in the sum
rule reported in Ref. [36], we can show that this does not mat-
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FIG. 4. Evolution of the combinations II , IV and Itot [see Eq. (10)]
with a magnetic field H along b, for the points A (panel a) and B
(panel b) of Fig. 1 (a). In (a), α' 0.503 [very close to the expected
value of 1/2 when φ→(3π/2)+, see text], while in (b), α'0.535.

ter as long as we are close to the line φ = 3π/2, where the
approximate relations (9) hold. Indeed, these relations give:

H≤H∗,
φ→

(
3π
2

)+ :

{
|Ma|2'|Mb|2' 1

3 |Mc|2'(x1+y1)2,
|M ′b|2' 1

4 |M
′
a|2'(x1−2y1)2.

(11)
This implies that any linear combination among {|Ma|2,
|Mb|2, |Mc|2, |M ′a|2, |M ′b|2} will always be of the form
(x1+y1)2+β(x1−2y1)2, which, in turn, becomes independent
of H if we choose β = 1/2 (using the spin length constraint
1=x2

1+y2
1 +z2

1'x2
1+2y2

1). This value is consistent with the
limiting value of α defined above when φ→(3π/2)+.

The intensity sum rule is no longer satisfied as we go further
away from φ = 3π/2. This can be seen in Fig. 4 (b), which
shows II , IV and Itot computed at the point B of Fig. 1 (a).
The total intensity Itot deviates from the value 1 in the entire
region between H = 0 and H =H∗, except at H∗ where it is
fixed to 1 by definition. We also see that Itot shows a fast drop
below 1 at H > H∗, in contrast to the experimental data,36

but also in contrast to the data of Fig. 4 (a), where the corre-
sponding drop at H >H∗ is much slower. Note also that the
overall deviation from the sum rule could be even worse for
linear combinations of {|Ma|2, |Mb|2, |Mc|2, |M ′a|2, |M ′b|2}
other that the ones involved in II and IV . We can therefore
safely conclude that the experimental observation of the sum
rule is an independent signature of the smallness of J .
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VI. Nature of the high-field state (H ≥ H∗)

Based on Eq. (8), the Cartesian components of the various
spin sublattices for H≥H∗ are:

H ≥ H∗ :

{
A = B = C = S[x1,−x1, z1],
A′ = B′ = C′ = S[−x1, x1, z1],

(12)

see Fig. 1 (c). So the xy- and x′y′-chains form two separate
FM subsystems, which give a total FM moment along −z=b
[z1(H∗) is negative] and a staggered, zigzag moment along
x−y√

2
= a [see Eq. (2)]. This state is qualitatively the same

with the state ‘FM-SZFM’ reported by Lee et al61,62 for φ <
3π/2, see Fig. 1 (a). The only difference is that in that state
x1 = 1√

3
, while here x1 in general deviates from this value

and depends on the field. However, x1 becomes very close to
1√
3

precisely at H =H∗ when φ→ (3π/2)+, see Fig. 3 (a).
So, the effect of the field is to suppress the counter-rotating
component of the state and, at the same time, effectively drive
the system towards the state that is stabilized for negative J .
Intuitively then, the field plays the role of a FM Heisenberg
coupling that counteracts the effect of J (which is positive).
This also tells us that the field H∗ required to achieve this
must be proportional to J , and we will confirm this below.

Now, the approximate relation x1(H∗) ≈ 1√
3

for φ →
(2π/3)+ gives, based on Eq. (6), M ′a(H∗) ≈ −2

√
3 and

M ′b(H
∗) ≈ −

√
3, see Fig. 2 (a). Remarkably, these values

are independent of the ratio K/Γ, as long as we are inside
the K-region of Fig. 1 (a) and close to the line φ = 3π/2.
Furtermore, imposing (8) to (7) and minimizing the resulting
expression for E/N gives an implicit relation for x1(H):

H ≥ H∗ : µBH = 2S
Γ(4x2

1−1)+(2J−Γ)x1

√
1−2x2

1

2gbbx1−
√

2gab

√
1−2x2

1

. (13)

Note that K does not appear explicitly in this relation, which
can give the wrong impression thatH∗ does not depend onK.
This is however not true, because H∗ and x1(H∗) cannot be
both determined solely by Eq. (13).

Eq. (13) gives the large-field behavior of M ′a and M ′b,

H ≥ H∗ : M ′a = −12Sx1, M
′
b = −6S

√
1− 2x2

1 . (14)

The large-field behavior of x1, |M ′a| and |M ′b| are shown in
Figs. 7 and 8. In the infinite-field limit, in particular,

H→∞ : M ′a→−
6gab√

2
√
g2ab+g2bb

, M ′b→−
3gbb√
g2ab+g2bb

. (15)

With gab� gbb we get M ′a ' 0, M ′b '−3, x1 ' 0, z1 '−1,
and A=B=C=A′=B′=C′=Sb̂, as expected.

VII. The role of gab and the origin of the zigzag component

As announced in the Introduction, the significant growth of
the zigzag component under the field along b does not origi-
nate in the linear coupling between the zigzag component and
the field, via gab. This is shown in Fig. 5 where we compare

!Ma!
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" !

!M
b

"
!
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3.5

gab=0.1

gab=0

gab=-0.1

FIG. 5. Effect of gab on the evolution of the various components of
the structure factor. Data are taken at the point A of Fig. 1 (a), with
gbb = 2 and gab = 0.1 [dotted lines, same as in Fig. 2 (a)], 0 (solid)
and −0.1 (long-dashed).

the response shown already in Fig. 2 (a) for gab = 0.1, with
the response for gab = 0 and gab = −0.1. The comparison
of the various components of the structure factor computed at
gab = 0.1 and gab = 0 shows that, while H∗ shifts to slightly
higher value for gab = 0, the large size of the zigzag com-
ponent at H∗ remains robust. A further comparison to the
case of gab =−0.1 shows that even the choice of the sign of
gab, which has been arbitrarily considered to be positive so
far [i.e., positive (negative) on the xy (x′y′) bonds], does not
alter the large magnitude of |M ′a(H∗)|. Taken together, these
results show that, although M ′a couples linearly to the field
via gab, its significant growth is not related to gab but to an
inherent tendency of the system to reach the state described
by Eq. (12). This state has already a finite component at zero-
field, although its amplitude is undetectable for weak J .

VIII. Dependence of H∗ on model parameters

We now turn to the important question of the dependence
of the characteristic field H∗ on the coupling parameters. To
address this question we have calculated H∗ for various paths
in parameter space and the results are shown in Fig. 6. Panel
(a) shows the evolution of H∗ with K, for fixed Γ =−1 and
various values of J , while panel (b) shows the evolution of
H∗ with Γ for fixed K =−1 and the same set of J values as
in panel (a). The results from panels (a) and (b) can be sum-
marized as follows. (i) H∗ tends to decrease with increasing
|K| and |Γ|. (ii) The rate of this decrease is almost zero at
small J and then increases with increasing J . (iii) H∗ has a
much stronger dependence on J compared to its dependence
on K and Γ. In particular, H∗ grows with increasing J , with
an almost constant rate.

These features can also be seen in panel (c), which shows
the data collected from (a) and (b), with J on the horizontal
axis. This figure shows explicitly that for small enough J ,
H∗ is essentially independent of K and Γ [point (ii) above]
and grows linearly with J [point (iii) above]. It also shows
that the deviation from this linear growth becomes larger for
larger J , where a dependence on K and Γ shows up.
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FIG. 6. (a) Evolution of H∗ as a function of K for fixed Γ =−1
and various values of J . (b) Evolution of H∗ as a function of Γ for
fixed K =−1 and various values of J . (c) Collected data shown in
panels (a) and (b), with J on the horizontal axis. The line shown in a
guide to the eye. For all cases we have taken gab =0.1 and gbb =2.

IX. Discussion

The results presented here provide a consistent interpreta-
tion of the recent scattering experiments by Ruiz et al36. First,
the analysis confirms the linear growth of a uniform zigzag
component along a, the rapid decline of the IC order, and the
intensity sum rule. The latter two observations are signatures
of the smallness of J compared to K and Γ.

Second, the significant growth of the zigzag component un-
der the field does not stem from their linear coupling, as the
zigzag amplitude at H∗ remains almost the same in the ab-
sence of this coupling (i.e., for gab = 0). This shows a strong
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FIG. 7. Same as in Fig. 3 but now we show the behavior up to fields
much higher than H∗. Panels (a) and (b) correspond again to the
parameter points A and B, respectively, of Fig. 1 (a).

intertwining of the zigzag component to both the IC counter-
rotating component and the longitudinal magnetization, which
is the one most directly driven by the field. Moreover, the
zigzag component is already present at zero field (the same is
true for the magnetization along b) but, for weak J , its ampli-
tude is too weak to be observed, consistent with Ref. [28].

Third, the field acts effectively as a FM Heisenberg cou-
pling that counteracts the effect of J , and the state reached at
H∗ is qualitatively the same as the state stabilized by a neg-
ative J at zero field. An immediate ramification is that H∗

grows linearly with J , which is demonstrated numerically in
the relevant regime of interest. Accordingly, the rapid decline
of the IC component is another signature of the smallness of J .
In particular, the curve shown in Fig. 6 (c) gives J '4 Kelvin
for the experimental value of H∗= 2.8 T36 (assuming gbb= 2
and gab=0.1; the latter does not affect H∗ as strongly as gbb),
which is indeed much smaller65 than the reported ab initio
values of K and Γ37,49,66.

Given this, the recent report37 that H∗ decreases with pres-
sure is direct evidence (within the J-K-Γ framework) that J
decreases under pressure. However, the behavior of H∗ alone
cannot tell us what happens to K and Γ, because H∗ shows a
weak dependence on these couplings only at larger J ; There is
however independent evidence from µSR37 and ab initio cal-
culations37,49 showing that pressure increases the ratio |Γ/K|,
with the system approaching the correlated classical spin liq-
uid regime of the large-Γ model67.

An experimental result that is not readily captured by the
present classical description is the reported value of the mag-
netization at H∗ per Ir site, m/µB ' 0.3136, which is about
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two times smaller than the value z1(H∗)gbbS' 1√
3

(for weak
J and gab = 2), deduced from the above analysis. Given that
the IC component disappears at H∗, the discommensurations
that are missed by the K-state ansatz at zero field60 are not
present any longer. Therefore, the above large disagreement
in the magnetic moment m should be attributed to the reduc-
tion of the spin length by quantum fluctuations. Such an un-
usually68 large reduction can only be expected close to the
frustrated region φ∼ 3π/2, which is in line with the remain-
ing evidence above. A standard 1/S expansion around the

K-state at H∗ should confirm this picture, but this is out of
the scope of the present study.

We should note here that while the actual system deviates
from the symmetric, nearest-neighbor (NN), J-K-Γ model
that we use here, the agreement with the reported experiments
gives strong confidence that this minimal model provides an
excellent starting point, and that additional perturbations are
too weak to play a qualitative role. Physically, this is related
to the stability of the ‘K-state’ against these perturbations.

The broader emerging picture, taken together with the ev-
idence from the zero-field study of Ref. [60], gives also con-
fidence to the intuitive hypothesis made in60, that the actual
zero-field IC phase of β-Li2IrO3 is a long-wavelength twist-
ing of a nearby commensurate state (the K-state). This route
can be useful in analyzing related materials with analogous IC
orders, such as α-Li2IrO3 and γ-Li2IrO3

19,21,25–27, and thus
shed light to the delicate interplay between the various micro-
scopic interactions, and map out the most relevant instabilities
and their distinctive experimental fingerprints.

Note added after submission to preprint server – The coex-
istence of the zero- and finite-Q components below H∗ and
the connection of the large-field phase to the FM-SZFM phase
of [61, 62] is consistent with a classical simulated-annealing
study by Tomonari Mizoguchi and Yong Baek Kim, which
was reported in a talk at the conference on Frustrated Mag-
netism and Topology, held in Kloster Nimbschen in Septem-
ber 2016. We thank Yong Baek Kim for bringing this to our
attention. However, our interpretation for the nature of the IC
component of the phase differs from the phase identified as
SPa− in Refs. [61, 62], see discussion in [60].
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for a Field-Induced Quantum Spin Liquid in α-RuCl3,” Phys.
Rev. Lett. 119, 037201 (2017).

31 R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto,
J. van den Brink, and L. Hozoi, “Kitaev exchange and field-
induced quantum spin-liquid states in honeycomb α-RuCl3,” Sci
Rep. 6, 37925 (2016).

32 J. A. Sears, Y. Zhao, Z. Xu, J. W. Lynn, and Young-June Kim,
“Phase diagram of α− rucl3 in an in-plane magnetic field,” Phys.
Rev. B 95, 180411 (2017).

33 Jiacheng Zheng, Kejing Ran, Tianrun Li, Jinghui Wang, Peng-
shuai Wang, Bin Liu, Zhengxin Liu, B. Normand, Jinsheng Wen,
and Weiqiang Yu, “Gapless spin excitations in the field-induced
quantum spin liquid phase of alpha-rucl3,” arXiv:1703.08474
(2017).

34 Richard Hentrich, Anja U. B. Wolter, Xenophon Zotos, Wolfram
Brenig, Domenic Nowak, Anna Isaeva, Thomas Doert, Arnab
Banerjee, Paula Lampen-Kelley, David G. Mandrus, Stephen E.
Nagler, Jennifer Sears, Young-June Kim, Bernd Büchner, and
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