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We report a systematic investigation of dc magnetization and ac susceptibility, as well as
anisotropic magnetocaloric effect in bulk CrI3 single crystals. A second-stage magnetic transition
was observed just below the Curie temperature Tc, indicating a two-step magnetic ordering. The low
temperature thermal demagnetization could be well fitted by the spin-wave model rather than the
single-particle model, confirming its localized magnetism. The maximum magnetic entropy change
−∆Smax

M ∼ 5.65 J kg−1 K−1 and the corresponding adiabatic temperature change ∆Tad ∼ 2.34 K
are achieved from heat capacity analysis with the magnetic field up to 9 T. Anisotropy of ∆SM (T,H)
was further investigated by isothermal magnetization, showing that the difference of −∆Smax

M be-
tween the ab plane and the c axis reaches a maximum value ∼ 1.56 J kg−1 K−1 with the field change
of 5 T. With the scaling analysis of ∆SM , the rescaled ∆SM (T,H) curves collapse onto a universal
curve, indicating a second-order type of the magnetic transition. Furthermore, the −∆Smax

M follows
the power law of Hn with n = 0.64(1), and the relative cooling power RCP depends on Hm with
m = 1.12(1).

I. INTRODUCTION

Layered intrinsically ferromagnetic (FM) semiconduc-
tors hold great promise for both fundamental physics and
future applications in nano-spintronics.1–5 For instance,
Cr2X2Te6 (X = Si, Ge) and CrX3 (X = Cl, Br, I) have re-
cently attracted wide attention as promising candidates
for long-range magnetism in monolayer.5–7

Bulk Cr2X2Te6 (X = Si, Ge) shows FM order with the
Curie temperature (Tc) of 32 K for Cr2Si2Te6 and 61 K
for Cr2Ge2Te6, respectively.

8–12 Scanning magneto-optic
Kerr microscopy experiment shows that the Tc monoton-
ically decreases with decreasing thickness of Cr2Ge2Te6,
from bulk of 68 K to bilayer of 30 K.5 Similarly, bulk CrI3
shows FM with Tc of 61 K, and the magnetism can persist
in mechanically exfoliated monolayer with Tc of 45 K.3

The magnetism in CrI3 is intriguingly layer-dependent,
from FM in the monolayer, to antiferromagnetic (AFM)
in the bilayer, and back to FM in the trilayer,3 providing
great opportunities for designing magneto-optoelectronic
devices. A rich phase diagram, including in-plane AFM,
off-plane FM, and in-plane FM, is further predicted by
applying lateral strain and/or charge doping.13 Besides,
the magneto-transport measurement on the thin exfoli-
ated CrI3 reveals a tunneling magnetoresistance as large
as 10,000%, exhibiting multiple transitions to the dif-
ferent magnetic states.14,15 The magnetism in monolayer
and/or bilayer CrI3 can also be controlled by electrostatic
doping using a dual-gate field-effect device.16,17

Since the layered van der Waals magnetic materials
may exibit magnetocrystalline anisotropy, in this pa-
per, we study magnetocaloric effect by heat capacity and
magnetization measurements around Tc.

18,19 Isothermal
magnetic entropy change ∆SM (T,H) can be well scaled
into a universal curve independent on temperature and
field, indicating the magnetic transition is of a second-
order type. Moreover, the ∆SM (T,H) follows the power
law of Hn with n = dln | ∆SM | /dln(H). The tempera-

ture dependence of n values reaches minimum at T ∼ 60
K, at Tc of bulk CrI3.

II. EXPERIMENTAL DETAILS

Single crystals of CrI3 were grown by chemical vapor
transport (CVT) method and characterized as described
previously.20 The heat capacity was measured in Quan-
tum Design PPMS-9 system with field up to 9 T. Several
crystals with mass of 5.6 mg were used in heat capacity
measurement. The magnetization data as a function of
temperature and field were collected using Quantum De-
sign MPMS-XL5 system in temperature range from 10
to 100 K with a temperature step of 2 K around Tc and
field up to 5 T. One crystal with mass of 1.67 mg was
covered with scotch tape on both sides and used in mag-
netization measurement. The magnetic entropy change
−∆SM from the magnetization data was estimated using
a Maxwell relation.

III. RESULTS AND DISCUSSIONS

Figures 1(a) and 1(b) exhibit the temperature depen-
dences of zero-field cooling (ZFC) and field-cooling (FC)
magnetizationsM(T,H) for bulk CrI3 single crystal mea-
sured in the fields ranging from 0.05 to 5 T applied in the
ab plane and along the c axis, respectively. An apparent
increase in M(T,H) around Tc is observed, which corre-
sponds well to the reported paramagnetic (PM) to FM
transition.2 The Tc is roughly defined by the minima of
the dM/dT curves [insets in Figs. 1(a) and 1(b)], which
is about 61 K in low fields and increases to 74 K in 5 T.
The magnetization is nearly isotropic in 5 T, while in low
fields, significant magnetic anisotropy is observed at low
temperatures. An additional weak kink was observed be-
low Tc with field in the ab plane. Below Tc, the magneti-
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FIG. 1. (Color online). Typical temperature dependences
of zero-field cooling (ZFC) and field-cooling (FC) magnetiza-
tions, M(T,H), of CrI3 measured at the indicated magnetic
fields applied (a,c) in the ab plane and (b,d) along the c axis.
Insets are the dM/dT curves. Ac susceptibility real part χ′(T )
as a function of temperature measured with oscillated ac field
of 3.8 Oe and frequency of 499 Hz applied (e) in the ab plane
and (f) the c axis. Inset shows the enlargement region around
Tc.

zation measured along the c axis saturates at a relatively
low field, indicating that the moments are aligned in this
direction. As shown in Figs. 1(c) and 1(d), the splitting
of ZFC and FC curves is observed at low field of H =
100 Oe, which originates from the anisotropic FM do-
main effect. The anomaly below the PM-FM transition
is clearly observed. In order to determine the accurate
transition temperatures, ac susceptibility was measured
at oscillated ac field of 3.8 Oe and frequency of 499 Hz.
Two distinct peaks in the real part χ′(T ) in the ab plane
[Fig. 1(e)], the PM-FM transition at 61 K and an ad-
ditional peak at 48 K, as well as the weak anomalies at
corresponding temperatures along the c axis [inset in Fig.
1(f)], confirm it is a two-step magnetic ordering. This is
in agreement with dχ(T )/dT data in Ref. 2 where addi-
tional anomaly was observed below bulk FM transition
at 61 K.

Figure 2 displays the low temperature thermal de-
magnetization analysis for CrI3 measured at H = 1 T
along the c axis using both spin-wave (SW) and single-
particle (SP, inset) models. For a localized moment, the
thermal demagnetization at low temperature is generally
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FIG. 2. (Color online). Temperature-dependent reduced
magnetization of CrI3 fitted using spin-wave (SW) model and
(inset) single-particle (SP) model.

explained with the spin-wave excitations which follows
Bloch equation:21,24,25

∆M

M(0)
=

M(0)−M(T )

M(0)
= AT 3/2 +BT 5/2 + ..., (1)

where A and B are the coefficients, M(0) is the magneti-
zation at 0 K. The T 3/2 term arises due to harmonic con-
tribution and the T 5/2 term originates from higher order
term in spin-wave dispersion relation. While in itinerant
or band magnetism where the net moment of system is
directly proportional to the displacement energy between
spin-up and spin-down subbands, the thermal demagne-
tization is realized as a result of excitation of electrons
from one subband to the other. The single-particle exci-
tation is generally expressed as,21

∆M

M(0)
=

M(0)−M(T )

M(0)
= CT 3/2exp

−∆

kBT
, (2)

where C is the coefficient, ∆ is the energy gap between
the top of full subband and the Fermi level and kB is the
Boltzmann constant. Usually the M(0) can be estimated
from extrapolation of M(T ) data. As shown in Fig. 2,
the SW model gives a better fitting result than the SP
model up to 0.9 Tc, suggesting localized magnetism of
insulating CrI3. The fitting yields A = 1.6(1) × 10−4

K−3/2, B = 1.21(3) × 10−5 K−5/2, C = 1.3(1) × 10−3

K−3/2 and ∆ = 2.4(2) meV. It is not surprising that
the SP model fails due to intermediate correlation in
CrI3. Therefore, a more accurate treatment would be
Moriya’s self-consistent renormalization theory.22 It fur-
ther gives that the magnetic anisotropy in CrI3 comes
predominantly from the anisotropic symmetric superex-
change via Cr-I-Cr with large spin-orbital coupling rather
than the single ion anisotropy.23

Temperature dependence of heat capacity Cp for CrI3
measured in various fields along the c axis is presented in
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FIG. 3. (Color online). Temperature dependence of (a) spe-
cific heat Cp and (b) specific heat change ∆Cp = Cp(T,H)−
Cp(T, 0) at the indicated magnetic fields.

Fig. 3(a). A clear λ-type peak that corresponds to the
PM-FM transition is determined to be at Tc = 61 K in
zero field, in line with the magnetization data [Figs. 1(e)
and 1(f)]. Its height is lowered, broadened and shifts
to higher temperatures with increase in magnetic field.
The estimated heat capacity change ∆Cp = Cp(T,H) −
Cp(T, 0) as a function of temperature in various fields is
plotted in Fig. 3(b). Obviously, ∆Cp < 0 for T < Tc

and ∆Cp > 0 for T > Tc, whilst, it changes sharply from
negative to positive at Tc, corresponding to the change
from FM to PM region. The entropy S(T,H) can be
calculated as:

S(T,H) =

∫ T

0

Cp(T,H)

T
dT. (3)

Assuming the electronic and lattice contributions are not
field dependent and in an adiabatic process of changing
the field, the magnetic entropy change ∆SM should be
∆SM (T,H) = SM (T,H)−SM (T, 0). The adiabatic tem-
perature change ∆Tad caused by the field change can be
indirectly determined, ∆Tad(T,H) = T (S,H)− T (S, 0),
where T (S,H) and T (S, 0) are the temperatures in the
field H 6= 0 and H = 0, respectively, at constant total
entropy S. Figures 4(a) and 4(b) exhibit the −∆SM and
∆Tad estimated from heat capacity data as a function of
temperature in various fields, both of which exhibit its
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FIG. 4. (Color online). Temperature dependences of (a) the
magnetic entropy change −∆SM and (b) the adiabatic tem-
perature change ∆Tad for CrI3 estimated from heat capacity
data in different magnetic fields.

maximum near the Curie temperature and increase with
increasing fields. The maxima of −∆SM and ∆Tad reach
the values of 5.65 J kg−1 K−1 and 2.34 K, respectively,
with the magnetic field of 9 T. Since there is a large mag-
netic anisotropy in CrI3, it is of interest to calculate the
individual magnetic entropy change for the two directions
respectively.
Figures 5(a) and 5(b) show the isothermal magnetiza-

tions with field up to 5 T applied in the ab plane and
along the c axis, respectively, from 10 to 100 K where
data were taken every 2 K around Tc. Below Tc, the
magnetization along the c axis saturates at a relatively
low field, however, it increases slowly at low fields in the
ab plane and is more harder to saturate, confirming its
large magnetic anisotropy and the easy c axis. The mag-
netic entropy change can be obtained as:26

∆SM (T,H) =

∫ H

0

[
∂S(T,H)

∂H
]T dH. (4)

With the Maxwell’s relation [∂S(T,H)
∂H ]T = [∂M(T,H)

∂T ]H , it

can be further written as:27

∆SM (T,H) =

∫ H

0

[
∂M(T,H)

∂T
]HdH. (5)
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FIG. 5. (Color online). Representative magnetization isother-
mals at various temperatures for (a) the ab plane and (b) the
c axis.

In the case of magnetization measured at small discrete
magnetic field and temperature intervals, ∆SM (T,H)
could be practically approximated as:

∆SM (T,H) =

∫ H

0 M(Ti+1, H)dH −
∫H

0 M(Ti, H)dH

Ti+1 − Ti
.

(6)
Figures 6(a) and 6(b) gives the calculated −∆SM as a
function of temperature in various fields up to 5 T ap-
plied in the ab plane and along the c axis, respectively.
All the −∆SM (T,H) curves present a pronounced peak
around Tc, similar to those obtained from heat capac-
ity data [Fig. 4(a)], and the peak broads asymmetrically
on both sides with increasing field. The maximum value
of −∆SM under 5 T reaches 2.68 J kg−1 K−1 in the ab
plane, which is 37 % smaller than that of 4.24 J kg−1 K−1

along the c axis. It is interesting to note that the values of
−∆SM for the ab plane are negative at low temperatures
in low fields, however, all the values are positive along
the c axis, indicating large anisotropy. Fig. 6(c) exhibits
the field dependence of −∆SM at low temperatures, in
which the sign change is clearly observed with the field
in the ab plane but not along the c axis. This originates
most likely from the competition of the temperature de-
pendence of magnetic anisotropy and the magnetization.
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FIG. 6. (Color online). Temperature dependence of isother-
mal magnetic entropy change −∆SM obtained from magneti-
zation measurements at various magnetic fields change (a) in
the ab plane and (b) along the c axis. Insets: the normalized
∆SM as a function of the rescaled temperature θ. (c) Field
dependence of −∆SM at low temperatures.

The anisotropy decreases with increasing temperature,
whereas the magnetization may exhibit opposite behav-
ior. At low fields, the magnetization at higher tempera-
ture could be larger than that at lower temperature [Figs.
1(a,c) and Fig. 5(a)], which gives a negative −∆SM . To
shed more light on the nature of magnetic transition, we
have further analyzed the magnetocaloric data following
a recently proposed scaling model.28 It is constructed by



5

0 24 48 72 960.0

0.4

0.8

1.2

1.6

1 2 3 4 5
1.0

1.2

1.4

1.6
-
S 

R M
 (J

 k
g-1

 K
-1

)

T (K)

 1 T
 2 T
 3 T
 4 T
 5 T

H (T)

 - S Rmax
M

FIG. 7. (Color online). Temperature dependence of magnetic
entropy change−∆SR

M obtained by rotating from the ab plane
to the c axis in various fields. Inset: the maximum −∆SRmax

M

as a function of field H .

normalizing all the −∆SM curves against the respective
maximum −∆Smax

M , namely, ∆SM/∆Smax
M by rescaling

the temperature θ below and above Tc as defined in the
following equations:

θ− = (Tpeak − T )/(Tr1 − Tpeak), T < Tpeak, (7)

θ+ = (T − Tpeak)/(Tr2 − Tpeak), T > Tpeak, (8)

where Tr1 and Tr2 are the temperatures of the two refer-
ence points that have been selected as those correspond-
ing to ∆SM (Tr1, Tr2) = 1

2∆Smax
M . As shown in the in-

sets of Figs. 6(a) and 6(b), all the −∆SM (T,H) curves
in various fields collapse into a single curve, indicating a
second-order magnetic transition for CrI3.
The rotating magnetic entropy change ∆SR

M induced
by rotating the applied magnetic field from the ab plane
into the c axis direction can be represented as:

∆SR
M (T,H) = SM (T,Hc)− SM (T,Hab)

= [SM (T,Hc)− SM (T, 0)]− [SM (T,Hab)− SM (T, 0)]

= ∆SM (T,Hc)−∆SM (T,Hab).
(9)

It illustrates that ∆SR
M is equal to the difference value

of the magnetic entropy change ∆SM for H//c and for
H//ab, as depicted in Fig. 7. The maximum −∆SRmax

M

and the width of the main peak increase with increasing
field. The field dependence of −∆SRmax

M is presented in
the inset of Fig. 7, changing from 0.94 J kg−1 K−1 for
1 T to 1.56 J kg−1 K−1 for 5 T. In addition, the tem-
perature corresponding to −∆SRmax

M shows weak field
dependence, however, an additional anomaly just below
that was also observed in line with the second-stage mag-
netic ordering at a fixed temperature of 48 K.
For a material displaying a second-order transition,29

the field dependence of the maximum magnetic entropy
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change shows a power law −∆Smax
M = aHn,30 where a is

a constant and the exponent n is related to the magnetic
order and depends on temperature and field as follows:31

n(T,H) = dln | ∆SM | /dln(H). (10)

For a FM system above Tc, the direct integration of the
Curie-Weiss law indicates that n = 2. Based on a mean
field approach, it becomes field independent at Tc and
corresponds to n = 2/3.29 However, recent experimental
results exhibit deviation from n = 2/3 in the case of some
soft magnetic amorphous alloys.30 In addition, there is a
relationship between the exponent n at Tc and the critical
exponents of the materials as follows:

n(Tc) = 1 + [
β − 1

β + γ
] = 1 +

1

δ
[1−

1

β
], (11)

where β, γ, and δ are related with the spontaneous mag-
netization Ms below Tc, the inverse initial susceptibility
χ−1
0 above Tc, and the isothermM(H) at Tc, respectively.

In the case of magnetic refrigerators there is another im-
portant parameter that evaluates its cooling efficiency of
the refrigerant is the relative cooling power (RCP):35

RCP = −∆Smax
M × δTFWHM , (12)
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TABLE I. Critical exponents of CrI3 compared with various theoretical models.

Material Theoretical model Reference Technique β γ δ n m

CrI3 This work −∆Smax
M = aHn 0.64(1)

This work RCP = bHm 1.12(1)
20 Modified Arrott plot 0.284(3) 1.146(11) 5.04(1) 0.500(2) 1.198(1)
20 Kouvel-Fisher plot 0.260(4) 1.136(6) 5.37(4) 0.470(1) 1.186(1)
20 Critical isotherm 5.32(2) 1.188(1)

Mean field 32 Theory 0.5 1.0 3.0 0.667 1.333

3D Heisenberg 33 Theory 0.365 1.386 4.8 0.637 1.208

3D XY 33 Theory 0.345 1.316 4.81 0.606 1.208

3D Ising 33 Theory 0.325 1.24 4.82 0.569 1.207

Tricritical mean field 34 Theory 0.25 1.0 5.0 0.4 1.20

where −∆Smax
M is the maximum entropy change near Tc

and δTFWHM is the full-width at half maxima. The RCP
corresponds to the amount of heat that can be trans-
ferred between the cold and hot parts of the refriger-
ator in an ideal thermodynamic cycle.36 Actually, the
RCP also depends on the magnetic field H with the rule
RCP = bHm, where m is related to the critical exponent
δ as follows

b = 1 +
1

δ
. (13)

Figure 8(a) summarized the field dependence of −∆Smax
M

and RCP with H//c. The value of RCP is calculated as
122.6 J kg−1 for the magnetic field change of 5 T for
CrI3, which is about one half of those in manganites and
one order of magnitude lower than in ferrites.37,38 Fit-
ting of the −∆Smax

M gives that n = 0.64(1) [Fig. 8(a)],
which deviates the value of n = 0.667 in the mean-field
theory and is close to that of n = 0.637 in the three-
dimensional (3D) Heisenberg model, in line with its lo-
calized magnetism nature. Fitting of the RCP generates
that m = 1.12(1) [Fig. 8(a)], which is close to the val-
ues estimated from the critical exponent δ. The obtained
critical exponents of CrI3 as well as the values of differ-
ent theoretical models are summarized in Table I.20,32–34

Figure 8(b) displays the temperature dependence of n
in various fields, giving a precise value of Tc = 60 K. It
could be found that with field change of 5 T the value of
n is 1.05 and 1.89 far below and above Tc, respectively,
consistent with the universal law of the n change.29 With

decreasing field, the value of n is nearly unchanged at Tc

and higher temperatures, however, it shows visible de-
viation at lower temperatures, which is most likely con-
tributed by its magnetic anisotropy effect.

IV. CONCLUSIONS

In summary, we have studied in detail the magnetism
and magnetocaloric effect of bulk CrI3 single crystal. The
second-stage magnetic transition was clearly observed at
T = 48 K, just below the Curie temperature Tc = 61
K, indicating two-step magnetic ordering and suggesting
that detailed neutron scattering measurements are of in-
terest to shed more light on its microscopic mechanism.
A second-order transition from the PM to FM phase
around Tc has been confirmed by the scaling analysis of
magnetic entropy change−∆SM . The −∆SM follows the
power law of Hn with n(T,H) = dln | ∆SM | /dln(H),
as well as the field dependence of RCP. The n values reach
the minimum at 60 K, i.e., its actual Tc. Considering its
ferromagnetism can be maintained upon exfoliating bulk
crystals down to a single layer, further investigation on
the size dependence of magnetocaloric effect is of interest.
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