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Three dimensional spin current density injected onto the surface of a topological insulator (TI) produces a
two dimensional charge current density on the surface of the TI, which is the so-called inverse Edelstein effect
(IEE). The ratio of the surface charge current density on the TI to the spin current density injected across the
interface defined as the IEE length was shown to be exactly equal to the mean free path in the TI determined
to be independent of the electron transmission rate across the interface [Phys. Rev. B 94, 184423 (2016)].
However, we find that the transmission rate across the interface gives a non-zero contribution to the transport
relaxation rate in the TI as well as to the effective IEE relaxation rate (over and above any surface hybridization
effects), and the IEE length is always less than the original mean free path in the TI without the interface.
We show that both the IEE relaxation time and the transport relaxation time in the TI are modified by the
interface transmission time. The correction becomes significant when the transmission time across the interface
becomes comparable to or less than the original momentum scattering time in the TI. This correction is similar
to experimental results in Rashba electron systems in which the IEE relaxation time was found shorter in case of
direct interface with metal in which the interface transmission rate will be much higher, compared to interfaces
incorporating insulating oxides. Our results indicate the continued importance of the interface to obtain a better
spin-to-charge current conversion and a limitation to the conversion efficiency due to the quality of the interface.

Manipulation of spin current by charge transport and vice
versa are the central goals of spintronics, where spin-orbit
coupling (SOC) plays an important role in connecting the
charge with spin degree of freedom1,2. Topological insula-
tors (TIs) have gained considerable attention as a strong SOC
material having an insulating bulk and metallic surface states
with a Dirac cone dispersion3. The spin and momentum of
the two dimensional (2D) surface states of a three dimensional
(3D) TI are helically locked in the Fermi contour. Because of
spin-momentum locking, a 3D spin current density injected
onto the surface of a TI will produce a 2D charge current den-
sity on the surface, which is known as the inverse Edelstein
effect (IEE)4. Recently, the IEE was shown experimentally by
spin pumping5,6, in which a spin current is produced by fer-
romagnetic resonance and is injected through a nonmagnetic
metal layer onto the surface of the TI, and a surface charge
current is obtained as shown in Fig. 1. The spin-charge con-
version efficiency is measured by the IEE length defined as the
ratio of the 2D charge current density on the surface of the TI
to the 3D spin current density injected through the interface.
In a theoretical paper by Zhang and Fert7, it was calculated
that the IEE length is exactly equal to the mean free path in
the TI independent of the transmission rate across the inter-
face. However, we find that the IEE length will be modified
due to the interface transmission rate, and define a modified
IEE relaxation rate that will be determined by the momentum
scattering rate and the interface transmission rate. We show
that the transport relaxation rate in the TI also is modified by
the interface transmission rate.

In this article, we calculate the transport in a TI/metal bi-
layer using the spinor Boltzmann equation following, Zhang
and Fert7, and solve the spinor distribution function for the
TI surface states. However, in this work we: (i) consider the
general Boltzmann equation incorporating an inhomogeneous
diffusion term to show a modification of the transport relax-
ation time due to the finite interface transmission time; (ii)
obtain the solution to the distribution function in the steady-

state homogeneous case showing a modification of the IEE re-
laxation time because of the finite interface transmission time
as well; (iii) derive the expression for the transmission time
across the interface considering both the case in which the in-
terface is smooth so that the in-plane momentum is conserved
during tunneling, and the case where the interface is rough
so that the tunneling is momentum randomizing; (iv) show
different dependencies of the spin current density across the
interface on the in-plane and the out-of-plane components of
the spin electrochemical potential in the metal even under the
same physical assumptions as Zhang and Fert7. Furthermore,
in the appendix, we provide an alternate approach based on
quantum kinetic equation using Keldysh Green’s function that
reproduces the results of the semi-classical Boltzmann equa-
tion. Our main result is a modification of the IEE relaxation
time in the presence of strong tunneling across the interface,
which is consistent with the experimental findings of IEE re-
laxation time on Rashba 2D electron gas (2DEG) with strong
SOC8–10, where the IEE relaxation time is found to be shorter
for an interface to a metal as compared to an oxide. This re-
sult shows the crucial importance of the interface in obtaining
a better spin-to-charge current conversion.

We start with the spinor Boltzmann equation for the surface
states of the TI in a TI/metal bilayer, given by

∂Tĝp+v·∇Rĝp =
∑

k

Γkp(f̂k−ĝp)+
∑

p′

∆pp′(ĝp′−ĝp), (1)

where f̂k and ĝp are the non-equilibrium spinor distribution
functions for metal and the TI surface states, respectively.
Here, k is the 3D momentum of the states in the metal and p
is the 2D momentum of the TI surface states. The velocity op-
erator for the surface states is v = (1/~)∂H/∂p = vF(σσσ× ẑ),
where H = ~vFp σσσ · (ẑ× p̂) is the Hamiltonian of the surface
states, vF is the Fermi velocity, ẑ is the unit vector along the
surface normal direction, σσσ is the vector consisting of three
Pauli spin matrices, p is the magnitude of p, and p̂ = p/p is
the unit vector along the momentum direction. The first term
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FIG. 1. Spin-to-charge current conversion on the surface of a TI by
spin-pumping experiment: a rotating magnetization M(t) around the
y-direction in the ferromagnetic metal (FM) produces a spin current
density Js in the z-direction injected to the nonmagnetic metal (NM)
with spins oriented along the y-direction. The injected spin current
density Js onto the surface of the TI from the NM through the in-
terface produces a charge current density Jc in the x-direction on the
surface of the TI due to the spin-momentum locking of the TI surface
states on the Fermi contour as shown on the right.

in the left hand side of Eq. (1) represents the time derivative
and the second term represents diffusion in the 2D surface of
the TI, where T is the time and R is the 2D position vector on
the TI surface.

Because we find the interface tunneling rate is crucial
in the transport, we will elaborate on the derivation of the
interface tunneling rate and the assumptions made therein.
The first term on the right hand side of Eq. (1) repre-
sents tunneling across the interface with the tunneling prob-
ability Γkp given from the Fermi’s Golden Rule as Γkp =
(2π/~)|Tkp|2δ(εk − εp), where Tkp is the tunneling matrix el-
ement between the metal and the TI surface states given by
|Tkp|2 = |〈ψk(r)χk|Vtun(r)|ψp(r)χp〉|2, where Vtun(r) is the
tunneling potential, and r is the 3D position vector. The or-
bital part of the wave functions are ψk,p(r), and the spin part
of the wave functions are χk,p. If the interface is considered
to be rough enough to randomize momentum and the tunnel-
ing potential is assumed to be spin-independent and step-like
in the surface normal direction, the interface potential can be
modeled by Vtun(r) = v0ΣNS

i=1δ(r‖ − RS
i )Vt(z), where the

roughness of the interface is modeled by NS randomly dis-
tributed short-range delta potentials at positions RS

i at the in-
terface, r‖ is the component of r parallel to the interface, and
Vt(z) is a step-like function along the z-direction. The or-
bital part of the wave functions are assumed to be of the form
ψk,p(r) = φk,p(r‖)ξk,p(z), where the φk,p(r‖)’s are consid-
ered to be plane waves. After an averaging over the random
distribution of the tunneling centers RS

i , we obtain

Γkp =
πv20nsCt

~A
[σ0 +σσσ · (ẑ× p̂)] δ(εk − εp), (2)

where ns = NS/A is the roughness defect density of the in-
terface, A is the surface area, and the overlap of the wave
functions of the surface state and the metal in the tunneling
region is Ct = |〈ξk(z)|Vt(z)|ξp(z)〉|2, which is presumed to
be independent of the momentum of the electrons tunneling

across the interface11. The tunneling potential is considered
to be spin independent, so the spinor dependent part in Eq. (2)
arises from the projection operator 1

2 [σ0 +σσσ · (ẑ× p̂)] which
projects states to the upper band of the TI Hamiltonian7.
The interface tunneling probability given by Eq. (2) is com-
pletely momentum randomizing, as considered by Zhang and
Fert7. Here, we further consider the case of a smooth in-
terface, in which the tunneling potential can be modeled by
Vtun(r) = vcVt(z) to be constant everywhere on the interface,
and the tunneling probability becomes

Γkp =
πv2cCt

~A
[σ0+σσσ·(ẑ×p̂)] (2π)2δ(k‖−p) δ(εk−εp), (3)

implying that the in-plane momentum k‖ is conserved in the
tunneling process. The rough and the smooth interface as-
sumed are the extreme limits of the interface roughness model
with a Gaussian distributed surface roughness potential. How-
ever, our main result is the modification of the transport scat-
tering time as well as the IEE relaxation time due to the finite
transmission time across the interface, which remains valid in
either case; only the interface transmission time depends on
the nature of the interface.

The second term on the right hand side of Eq. (1) de-
notes scattering between the state p and p′ of the TI surface
states due to defects or impurities close to the interface, with
the scattering probability ∆pp′ given by the Fermi’s Golden
Rule as ∆pp′ = (2π/~)|Upp′ |2δ(εp − εp′), where Upp′ is the
scattering matrix element between the state p and p′ given
by |Upp′ |2 = 〈|〈ψp(r)|Vdis(r)|ψp′(r)〉|2〉|〈χp|χp′〉|2. Here
we model a short range, spin-independent disorder potential
by Vdis(r) = u0ΣNI

j=1δ(r‖ − RI
j)Vd(z), where RI

j’s are the
position of the NI impurities in the direction parallel to the
surface, and Vd(z) represents an average value of the impu-
rity potential due to the impurities near the interface. Af-
ter averaging over the random impurity positions parallel to
the surface, the scattering matrix element is evaluated to be
|Upp′ |2 = (u20niCd/A) 1

2 (1 + p̂ · p̂′), where ni = NI/A is
the impurity concentration, Cd = |〈ξp(z)|Vd(z)|ξp′(z)〉|2, and
|〈χp|χp′〉|2 = 1

2 (1 + p̂ · p̂′) where χp satisfies σσσ · (ẑ× p̂)χp =
χp. So, we have

∆pp′ =
πu20niCd

~A
(1 + p̂ · p̂′)δ(εp − εp′). (4)

Because the band-structure of the surface states is isotropic in
the p-space within the considered energy range, the conserva-
tion of energy also implies conservation of the magnitude of
momentum in the scattering process.

The solution to Eq. (1) can be obtained by considering
f̂k = f̂0k + δf̂k and ĝp = ĝ0p + δĝp, wheref̂0k = fFD(εk)σ0

and ĝ0p = 1
2 [σ0 + σσσ · (ẑ× p̂)]fFD(εp) are the equilibrium dis-

tribution functions for the metal and the TI surface states, re-
spectively, where fFD is the Fermi-Dirac distribution. We can
write δf̂k = (f0σ0+f ·σσσ)δ(εk−εF) and δĝp = ĥ(θ)δ(εp−εF),
which amounts to considering quasi-particle excitations at the
Fermi energy εF. We consider f0 and f are independent of the
solid angle Ω in the Fermi surface of the metal, and ĥ(θ) is
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a function of the angle θ = tan−1(py/px) in the Fermi sur-
face of the TI surface state, reflecting the dispersion relations
of the metal and the TI, respectively. Performing the summa-
tions over momentum by the following integrations: Σk →
V
∫
Nk(εk)dεk

∫
dΩ/(4π) (where V = Ad is the volume of

the metal, A is the surface area of the bilayer, and d is the
thickness of the metal) and Σp → A

∫
Np(εp)dεp

∫
dθ/(2π)

(where Nk(εk) and Np(εp) are the per spin density of states
(DOS) of the metal and the TI surface states, respectively),
and an integration over εp of Eq. (1) gives

∂Tĥ(θ) + vF σσσ · (ẑ×∇Rĥ(θ))

=
1

τt
[σ0 +σσσ · (ẑ× p̂)](f0σ0 + f ·σσσ− ĥ(θ))

+
1

τp

〈
(1 + p̂ · p̂′)(ĥ(θ′)− ĥ(θ))

〉
θ′
.

(5)

Here 〈...〉θ denotes the average over the angle θ, τt is the in-
terface transmission time, and τp is the momentum scattering
time. In case of a rough interface with momentum randomiz-
ing tunneling, the interface transmission time is defined from
Eq. (2) as

1

τt
=
∑

k

πv20nsCt

~A
δ(εk − εF) = πv20nsCtN3Dd/~, (6)

with N3D being the 3D DOS of the metal at the Fermi level.
In case of a smooth interface, the interface transmission time
is redefined from Eq. (3) as

1

τt
=
∑

k

πv2cCt

~A
(2π)2δ(k‖ − pF)δ(εk − εF )

= πv2cCtN1Dd/~,
(7)

where pF is the Fermi momentum in the TI, and N1D is the
one-dimensional (1D) DOS of the metal at the Fermi level
with the condition that the in-plane momentum is conserved,
i.e., p2

F + k2z = k2
F, with kF being the Fermi momentum in

the metal. So, for a smooth interface, tunneling is possible if
the cross section of the 3D Fermi surface is larger than the 2D
Fermi surface, i.e., kF > pF. For large 2D Fermi surface, i.e.,
pF > kF, there will be no tunneling (1/τt = 0) if the interface
is smooth. From Eq. (4), we define the momentum scattering
time as

1

τp
=
∑

p

πu20niCd

~A
δ(εp − εF) = πu20niCdNF/~, (8)

where NF is the 2D DOS of the TI surface states at the Fermi
level.

The solution for ĥ(θ) is obtained by considering that the
non-equilibrium distribution function for the surface states has
a spinor form that is proportional to the upper band projec-
tion operator of the TI surface state Hamiltonian, i.e., ĥ(θ) =
h0(θ)[σ0 +σσσ · (ẑ× p̂)], where h0(θ) is a scalar function times
identity in spin space and can be written in terms of s- and
p-wave components, i.e., h0(θ) = hs + p̂ · ha, with hs and ha
being independent of θ. Taking trace of Eq. (5) in the spin

space and integrating out the s- and p-wave components, we
obtain

∂Ths +
vF

2
∇R · ha =

2

τt

(
f0
2
− hs

)
, (9a)

∂Tha + vF∇Rhs =
2

τt

(
f
2
× ẑ
)
−
(

2

τt
+

1

2τp

)
ha. (9b)

The charge density n and the current density Jc on the sur-
face of the TI are given by

n =
(−e)
A

∑
p

Tr(δĝp) = −2eNFhs, (10a)

Jc =
(−e)
A

∑
p

Tr(vδĝp) = −eNFvFha. (10b)

The charge density nM and the spin density sM (in the unit of
charge −e) in the metal are given by

nM =
(−e)
V

∑
k

Tr(δf̂k) = −2eN3Df0, (11a)

sM =
(−e)
V

∑
k

Tr(σσσδf̂k) = −2eN3Df. (11b)

We define the charge electrochemical potential µ0 in the metal
by the relation nM = 2e2N3Dµ0, where the factor of 2 is
for spin degeneracy (as N3D is the per spin DOS), and de-
fine the spin electrochemical potential µµµ by the relation sM =
e2N3Dµµµ. From Eq. (11) we obtain f0 = −µ0 and f = −eµµµ/2.
Using Eq. (10), the following diffusion equation in the TI is
obtained from Eq. (9a),

∂Tn+∇R · Jc =
2

τt
(e2NFµ0 − n). (12)

Fourier transforming Eq. 9(b) to the frequency domain (∂T →
−iω) gives the charge current density in the TI,

Jc =
1

(1− iωτtr)

[
− v

2
Fτtr

2
∇Rn+e2NFvF

τtr

τt

(µµµ
2
× ẑ
)]
, (13)

where τtr is the transport relaxation time defined as

1

τtr
=

1

2τp
+

2

τt
. (14)

(The factor of 2 in 2/τt could be absorbed in the definition of
τt in Eq. (6)and (7) by redefining the DOS of the metal consid-
ering both the spins.) In absence of tunneling from the metal,
the transport relaxation time in the TI is τ0tr = 2τp, where the
factor of 2 is due to the increasing attenuation of scattering
with increasing scattering angle because of the helical spin-
momentum locking in the TI, including elimination of direct
backscattering where the spin components of the initial and fi-
nal electronic states are orthogonal. The first term in the right
hand side of Eq. (13) represents diffusion, with the diffusion
constant D = v2Fτtr/2 being modified by the transmission rate
across the interface through the redefined transport relaxation
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time given by Eq. (14). The spin current density Js through
the interface (in the unit of charge current density) is given by

Js =
(−e)
A

∑
p,k

Tr
[
σσσΓkp(f̂k − ĝp)

]

=
2

vFτt

(
e2NFvF

µµµ

2
− ẑ× Jc

)
.

(15)

Now we solve the non-equilibrium distribution function for
the TI surface state under steady-state spatially-homogeneous
conditions as per Zhang and Fert. The assumption of a slowly
varying in position charge electrochemical potential in the
metal with respect to the electrochemical potential (or equiv-
alently the non-equilibrium charge density n) in the TI sur-
face is valid since the metal has much higher conductivity
than the TI surface. In the appendix, we show that under
the assumption of a homogeneous charge electrochemical po-
tential µ0 in the metal, the charge density n and the charge
current density Jc in the TI surface becomes homogeneous in
case of a short circuit between the two ends of the surface of
the TI if either the applied spin electrochemical potential µµµ
in the metal or the applied spin current density Js from the
metal to the TI surface through the interface is assumed to be
homogeneous. Under this homogeneous condition, we also
show (in the appendix) that the applied position-independent
charge electrochemical potential µ0 in the metal will be bal-
anced by a position-independent non-equilibrium charge den-
sity n = e2NFµ0 (i.e., a position-independent electrochem-
ical potential) in the TI. (Moreover, in case of spin pumping
experiments, a purely spin electrochemical potential is applied
in the metal, and both µ0 and, thus, n vanish. However, what
follows does not depend on these quantities vanishing.) The
charge current density Jc in the TI for a position-independent
non-equilibrium charge density becomes

Jc =
e2NFvFτp

4τp + τt
(µ‖µ‖µ‖ × ẑ), (16)

where µµµ = µ‖µ‖µ‖ + µ⊥ẑ, where µ⊥ = µµµ · ẑ. Substituting Eq.
(16) into Eq. (15), we find the spin current density Js through
the interface to be

Js =
e2NF

4τp + τt

(
1 +

2τp

τt

)
µ‖µ‖µ‖ +

e2NF

τt
µ⊥ẑ. (17)

We also have derived the diffusion equation in the TI, as well
as the expressions for the charge and spin current densities,
from a full quantum-mechanical kinetic equation based on
non-equilibrium Keldysh Green’s function, which is provided
in the appendix. We note that the expression for the spin cur-
rent density in Eq. (17) derived here differs from the one in the
previous work of Zhang and Fert7 on which we build, despite
the fact that we started with the same physical assumptions as
theirs. Equation (17) indicates that the spin current density is
induced by both the in-plane (µ‖µ‖µ‖) and out-of-plane (µ⊥) com-
ponents of the spin electrochemical potential. The coefficients
for both terms are different from each other. Furthermore, the
coefficient for the in-plane component in Eq. (17) differs from

that provided by Zhang and Fert7. This difference becomes
significant when the interface transmission time is compara-
ble to or smaller than the momentum scattering time. The
physical and practical significance of the difference will be
addressed as part of the discussion below.

Now we consider the physical meaning of the coefficients
in the expression of Js given in Eq. (17). It can be seen from
Eq. (17) that the spin current density across the interface is
directly proportional to the interface tunneling rate, 1/τt, if
we consider pure out-of-plane component of the spin electro-
chemical potential (i.e., µ‖µ‖µ‖ = 0). In addition, in case of a
pure in-plane component of the spin electrochemical potential
(i.e., µ⊥ = 0) in both limits of τp, τp � τt and τp � τt, the
spin current density across the interface also is proportional
to the interface tunneling rate and, thus, depends on the bar-
rier thickness, although the proportionality constant varies by
a factor of 2 between these two limits. The spin current to
charge current conversion efficiency is measured by the IEE
length defined as λIEE ≡ |Jc|/|Js|, which is found to be, in
case of a pure in-plane spin-electrochemical potential,

λIEE =
λmf(

1 +
2τp

τt

) , (18)

where λmf ≡ vFτp is the mean free path in the TI. If the orien-
tation of the spins in the spin current injected from the metal
to the TI surface is purely out-of-plane, i.e., µ‖µ‖µ‖ = 0, from
Eq. (16), there will be no charge current on the TI surface,
because the spins of the carriers on the TI surface can only
be oriented in-plane since we have assumed an ideal helical
Dirac Hamiltonian for the TI surface states with spins locked
to the momentum on the 2D surface. In a real TI system,
there will be hexagonal warping present, and in the thin film
of TI there can be an additional gap opening around the Dirac
point, which will provide a non-vanishing out-of-plane com-
ponent to the spins of the TI surface states. In these cases, the
charge current on the TI surface will be non-zero and will de-
pend on the degree of the non-idealities of the Hamiltonian if
the injected spins are out-of-plane. However, the ideal model
of linear Dirac cone dispersion for the TI surface states re-
mains valid if the Fermi level lies away from the bulk bands,
and away from the Dirac point in the thin TI films. In the ex-
periment, the orientation of the spins in injected spin current
through the interface is in-plane, so the IEE length is always
less than the mean free path, i.e., λIEE < λmf, because of the
correction factor (1 + 2τp/τt) in Eq. (18) with non-zero and
finite τp and τt. This correction factor can be viewed as a mod-
ification of the IEE relaxation time τIEE, which is defined by
λIEE ≡ vFτIEE. So, the IEE relaxation time can be written as

1

τIEE
=

1

τp
+

2

τt
. (19)

Physically, both Eq. (14) and Eq. (19) exhibit an additional
momentum and spin relaxation term in the helically locked
TI surface states due to exchange of electrons across the in-
terface, apart from scattering within the TI, that modifies the
transport relaxation time and the IEE relaxation time in the
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FIG. 2. Variation of normalized transport relaxation time and nor-
malized IEE relaxation time with the normalized transmission rate in
our calculation and as calculated by Zhang and Fert7.

TI, respectively. (The relaxation is a result of injection (ex-
traction) of electrons from (to) the TI with a tilted-in-p-space
Fermi level to (from) the flat-in-k-space spin electrochemical
potential µµµ in the metal, which promotes injection and extrac-
tion of electrons of opposite spin and momentum.) We find
that the effects of the interface on the relaxation times are di-
rectly related through the interface transmission rate as shown
in Fig. 2. In Fig. 2, we have plotted the variation of relax-
ation times normalized with respect to the momentum scatter-
ing time (i.e., the normalized transport relaxation time τtr/τp
and the normalized IEE relaxation time τIEE/τp) with the nor-
malized transmission rate τp/τt. It is clear from Eq. (12) that
the interface conductance is proportional to 2e2NF/τt, and, so
the variation of the relaxation times with the transmission rate
in Fig. 2 also shows the variation with the interface conduc-
tance. Zhang and Fert only pointed to a modification of the
IEE relaxation rate due to the hybridization of the states of the
TI and the metal (as well as the bulk of the TI) through mod-
ification of the momentum relaxation rate 1/τp (through the
overlap integralCd in Eq. (8)), which, of course, remains rele-
vant to this work as well. We find that such hybridization also
modifies the IEE relaxation rate through interface transmis-
sion characterized by the rate 1/τt (through the overlap inte-
gral Ct in Eq. (6) and (7)), with the resulting correction given
by Eq. (18) becoming significant when the interface trans-
mission rate 1/τt between the metal and the TI is comparable
to or greater than the momentum relaxation rate 1/τp. The
hybridization of the states depend on the thickness and qual-
ity of the tunnel barrier. Our finding is important because an
absence of a tunnel barrier between the TI and the metal will
lead to a higher interface transmission rate (limited only by the
Landauer-Buttikier formula in the case of an ideal interface12)
and, thus, a lower IEE relaxation time τIEE than when a tunnel
barrier is present at the interface. This result could explain the
experimental observation of a short τIEE at an interface with
a metal, such as in the interface between topological insula-

tor α-Sn/Ag or the Rashba 2DEG at Bi/Ag interface, but a
longer τIEE for Rashba 2DEG at STO/LAO oxide interface. In
a recent experiment on the Edelstein magnetoresistance of the
Rashba 2DEG at the Bi2O3/Cu interface13, a phenomenolog-
ical model is used for the total relaxation time of spin states
in the Rashba 2DEG/metal interface consisting of spin relax-
ation time at the interface and spin relaxation time out of the
interface into the metal. Our theory gives an explanation of
the phenomenological model that has been used to explain the
Edelstein magnetoresistance of the Rashba 2DEG, in which
the spin relaxation time at the interface is equivalent to the
momentum scattering time on the TI surface in our model.
(The momentum relaxation time is same as the spin relax-
ation time on the TI surface because of the spin-momentum
locking on the TI surface.) The spin relaxation time out of the
interface into the metal is equivalent to the interface tunneling
time across the interface. Further experiments on TI/oxide in-
terfaces compared to TI/metal interfaces will be of interest to
see the effect of the interface transmission rate in the spin to
charge current conversion efficiency on the TI surface.

In summary, we studied the spin-charge transport of a TI
surface state coupled to a metal through a tunnel barrier and
derived various parameters related to the transport, including
the transport relaxation time (τtr of Eq. (14)), the IEE relax-
ation time (τIEE of Eq. (19)) and the spin-to-charge conversion
efficiency (λIEE of Eq. (18)) of the bilayer when the metal has
a pure spin bias. We found that the interface transmission
rate plays a crucial role in determining the transport relax-
ation rate, the IEE relaxation rate, and the spin-to-charge con-
version efficiency. In particular, we found that reducing the
barrier thickness to the point that the interface transmission
and the momentum relaxation rates are comparable reduces
the spin-to-charge conversion efficiency. However, increasing
the barrier thickness reduces the absolute spin injection. Thus,
performance optimization will require careful barrier design.

This work was supported by the South-West Academy
of Nanoelectronics (SWAN) within the Nanoelectronics Re-
search Initiative (NRI) of the Semiconductor Research Corpo-
ration (SRC), and by the National Science Foundation (NSF)
through the Nanomanufacturing Systems for Mobile Comput-
ing and Mobile Energy Technologies (NASCENT) Engineer-
ing Research Center (ERC).

Appendix A: Derivation from quantum kinetic equation using
Keldysh Green’s function

The spin-charge dynamics of the TI surface states coupled
to the metal through a tunnel barrier can be obtained from
the quantum kinetic equation written in terms of the Keldysh
Green’s function. We follow the approach given by Kopnin et.
al.14 and Kopnin et. al.15. To start with, we consider the full
system Hamiltonian

Htot = HS +HD +HT +HM. (A1)

Here, the TI surface state Hamiltonian HS is given by

HS = λ

∫
d2R a†α(R)

[
εS(R)− εFσ0

]
αβ
aβ(R), (A2)
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where εS(R) = −i~vF σσσ·(ẑ×∇R), R is the 2D position vector
on the TI surface. a†α(R), aβ(R) are the creation and annihi-
lation operators on the TI surface with the spin index (α, β),
and these operators are normalized to the thickness λ of the TI
surface states such that the equal time anticommutator satis-
fies {aα(R), a†β(R′)} = λ−1δ(R−R′)δαβ , and repeated spin
indices will imply summation over them. The impurities on
the TI surface are modeled by the disorder Hamiltonian HD
which is

HD = λ

∫
d2R a†α(R)VD(R)aα(R), (A3)

where VD(R) = V0ΣNI
j=1δ(R − RI

j) represents short ranged
spin-independent disorder potential and the integration of the
envelope function of the surface state of the TI over the surface
normal direction is already included in the average value V0.
The coupling of the TI surface states to the metal through the
tunnel barrier is described by a tunneling Hamiltonian HT,
which captures the transmission of the electron in and out of
the TI surface states as

HT = λ

∫
d2R

∫
d3r
[
b†α(r)Tαβ(r,R)aβ(R)

+a†α(R)T †αβ(R, r)bβ(r)
]
,

(A4)

where b†α(r), bβ(r) are the creation and annihilation opera-
tors in the metal satisfying the equal time anticommutator
{bα(r), b†β(r′)} = δ(r − r′)δαβ , r is the 3D position vec-
tor in the metal, and the tunneling matrix obeys T †αβ(R, r) =

T ∗βα(r,R). The creation and the annihilation operators in the
metal and on the TI surface anticommutes with each other,
i.e. {aα(R), b†β(r′)} = 0. We consider the tunneling to
be instantaneous, and also we will assume a spin conserv-
ing and site-to-site (local) tunneling at the interface, in which
case the tunneling matrix can be written as Tαβ(r,R) =
t(R)δ(r‖−R)δ(z)δαβ , where t(R) already includes the over-
lap of the envelope functions in the metal and the surface state
of the TI. We consider the Hamiltonian in the metal given by

HM =

∫
d3r b†α(r)

[
εM(r)− εFσ0 + UM

]
αβ
bβ(r), (A5)

where εM(r) = [ 1
2m (−i~∇r)

2 + εb]σ0 with m being the ef-
fective mass of the conduction band in the metal and εb being
the band offset of the bottom of the conduction band in the
metal with respect to the Dirac point of the TI surface state,
and UM = U0σ0+Us ·σσσ where U0 is any applied electrochem-
ical potential in the metal and Us is an applied spin potential
in the metal.

We consider the following non-equilibrium Green’s func-
tion defined in the Schwinger-Keldysh time contour

i(GS)αβ(R1, τ1; R2, τ2) = 〈Tτaα(R1, τ1)a†β(R2, τ2)〉,

i(GT)αβ(r1, τ1; R2, τ2) = 〈Tτ bα(r1, τ1)a†β(R2, τ2)〉,

i(GM)αβ(r1, τ1; r2, τ2) = 〈Tτ bα(r1, τ1)b†β(r2, τ2)〉.
(A6)

Here GS is the Green’s function for the TI surface states, GT
is the mixed Green’s function for tunneling, and GM is the
Green’s function in the metal neglecting the back reaction of
the TI surface states, i.e. GM satisfies

(GM)−1αγ (r1, τ1)(GM)γβ(r1, τ1; r2, τ2)

= ~δ(r1 − r2)δ(τ1 − τ2)δαβ ,
(A7)

where (GM)−1(r, τ) = i~∂τ −εM(r)+UM. From the Heisen-
berg equation of motion for the creation and annihilation oper-
ators, the equation of motion for the mixed Green’s functions
can be derived as

(GM)−1αγ (r1, τ1)(GT)γβ(r1, τ1; R2, τ2)

= λ

∫
d2R′ Tαγ(r1,R′)(GS)γβ(R′, τ1; R2, τ2).

(A8)

Equation (A7) and (A8) gives

(GT)αβ(r1, τ1; R2, τ2) =
λ

~

∫
dτ ′d2R′d3r′

(GM)αµ(r1, τ1; r′, τ ′)Tµν(r′,R′)(GS)νβ(R′, τ ′; R2, τ2).

(A9)

The Dyson equation for the Green’s function of the TI sur-
face states can be written as

(GS)−1αγ (R1, τ1)(GS)γβ(R1, τ1; R2, τ2)

−
∫

d2R′dτ ′(ΣS)αγ(R1, τ1; R′, τ ′)(GS)γβ(R′, τ ′; R2, τ2)

=
~
λ
δ(R1 − R2)δ(τ1 − τ2)δαβ ,

(A10)

where (GS)−1(R, τ) = i~∂τ − εS(R) + εFσ0, and ΣS is the
self energy due to tunneling and disorder, i.e. ΣS = ΣT + ΣD.
The self-energy for tunneling will be given by

(ΣT)αβ(R1, τ1; R2, τ2) =
λ

~

∫
d3r′d3r′′

T †αµ(R1, r′)(GM)µν(r′, τ1; r′′, τ2)Tνβ(r′′,R2).

(A11)

For Tαβ(r,R) = t(R)δ(r‖ − R)δ(z)δαβ , we obtain

(ΣT)αβ(R1, τ1; R2, τ2)

=
λ

~
t(R1)(GM)αβ(R1, z1 = 0, τ1; R2, z2 = 0, τ2)t(R2).

(A12)

The self energy for disorder is given by

(ΣD)αβ(R1, τ1; R2, τ2)

=
λ

~
VD(R1)(GS)αβ(R1, τ1; R2, τ2)VD(R2).

(A13)

By analytical continuation from the Schwinger-Keldysh
time contour to the real time axis, Eq. (A7-A13) can be
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written in terms of Keldysh space Green’s functions Ǧi (i =
S,T,M) and self energies Σ̌j (j = S,T,D)

Ǧi =

(
GR

i GK
i

0 GA
i

)
, Σ̌j =

(
ΣR

j ΣK
j

0 ΣA
j

)
, (A14)

whereGR,A,K
i (ΣR,A,K

j ) are the retarded, advanced and Keldysh
Green’s functions (self energies), all of which are 2 × 2 ma-
trices in spin space with variables (R1, t1; R2, t2) with t1, t2
being real time variables. A function A(R1, t1; R2, t2) can be
Wigner transformed to Ã(R,T; p, ω) by doing a coordinate
transformation to the center-of-mass coordinates (R,T) and
relative coordinates (δR, δt), and performing Fourier trans-
forms of these relative coordinates to momentum and fre-
quency variable (p, ω). We define the modified Wigner trans-
formed function in terms of momentum and energy (p, ε =

~ω) by A(R,T; p, ε) = ~Ã(R,T; p, ω), which is related to
A(R1, t1; R2, t2) by

A(R1, t1; R2, t2) =

∫
dε
2π

d2p
(2π)2

A(R,T; p, ε)ei(p·δR− ε
~ δt).

(A15)
We use the lowest order gradient expansion to express the
Wigner transform of a product function to the product of
Wigner transformed function, which gives the following re-
lation for the modified Wigner transformed functions

(AB)(R,T; p, ε) = ~A(R,T; p, ε)B(R,T; p, ε). (A16)

The Keldysh component of the the Wigner transformed left-
right subtracted Dyson equation, written in terms of the mod-
ified Wigner transformed Green’s function and self energy,
gives the quantum kinetic equation

∂TG
K
S +

1

2

{
v · ∇R, G

K
S

}
+
i

~
[
εS(p), GK

S

]
= −i

[ (
ΣR

SG
K
S −GK

S ΣA
S

)
−
(
GR

S ΣK
S − ΣK

SG
A
S

) ]
,

(A17)

where εS(p) = ~vFσσσ · (ẑ× p) and v = vF (σσσ× ẑ).
The self energy is due to disorder and tunneling from the

metal. For the disorder potential VD(R) = V0ΣNI
j=1δ(R −

RI
j), from Eq. (A13) the disorder self energy becomes, after

impurity averaging,

Σ̌D(R1, t1; R2, t2) =
λV 2

0 ni

~
δ(R1 − R2)ǦS(R1, t1; R2, t2),

(A18)
and the Wigner transformed disorder self energy reads

Σ̌D(R,T; p, ε) =
λV 2

0 ni

~

∫
d2p′

(2π)2
ǦS(R,T; p′, ε). (A19)

We introduce the 2D quasi-classical Green’s functions for the
TI surface states defined as

ǧS(R,T; pFp̂, ε) =
iλ

π

∫
dξS ǦS(R,T; p, ε), (A20)

where ξS = ~vFp−εF, and the ξS integration is performed near
the Fermi surface. As the quasi-classical Green’s function is
peaked at the Fermi energy, the following ansatz holds

ǦS(R,T; p, ε) = − iπ
λ
ǧS(R,T; pFp̂, ε)δ(ξS). (A21)

The disorder self-energy now can be written as

Σ̌D(R,T; p, ε) = − i

τp
〈ǧS(R,T; pFp̂, ε)〉, (A22)

where 〈...〉 denotes angular averaging in the p space and we
define 1/τp = πV 2

0 niNF/~.
To calculate the tunneling self energy, we first consider the

interface being rough which can be modeled by a random dis-
tribution of tunneling centers RS

i with t(R) = t0ΣNS
i=1δ(R −

RS
i ). Then, averaging over the tunneling centers, the tunneling

self energy is given by

Σ̌T(R1, t1; R2, t2) =

λt20ns

~
δ(R1 − R2)ǦM(R1, z1 = 0, t1; R2, z2 = 0, t2),

(A23)

and after the Wigner transform it becomes

Σ̌T(R,T; p, ε) =
λt20ns

~

∫
d3k′

(2π)3
ǦM(R, z = 0,T; k′, ε),

(A24)
where ǦM(r‖, z,T; k, ε) is the Wigner transform with respect
to the 3D position and time coordinates. Now, we consider
the 3D quasi-classical Green’s functions for the metal defined
as

ǧM(r,T; kFk̂, ε) =
i

π

∫
dξM ǦM(r,T; k, ε), (A25)

where ξM = ~2k2/(2m)+εb−εF, kF is the Fermi momentum
in the metal and the ξM integration is performed near the Fermi
surface. Since the quasi-classical Green’s function is peaked
at the Fermi energy, the Green’s function satisfies following
ansatz

ǦM(r,T; k, ε) = −iπǧM(r,T; kFk̂, ε)δ(ξM). (A26)

So the tunneling self-energy can be written as

Σ̌T(R,T; p, ε) = − i

τt
〈ǧM(R, z = 0,T; kFk̂, ε)〉, (A27)

where 〈...〉 denotes angular averaging in the k space and we
define 1/τt = πt20nsN3Dλ/~.

In case of a smooth interface, the tunneling can be mod-
eled by t(R) = tc being constant, and the Wigner transform
tunneling self energy will be

Σ̌T(R,T; p, ε) =
λt2c
~

∫
dk′z
2π

ǦM(R, z = 0,T; p, k′z, ε)

=
λt2c
~

∫
d3k′

(2π)3
ǦM(R, z = 0,T; k′‖, k

′
z, ε)(2π)2δ(k′‖ − p),

(A28)

where the in-plane momentum conservation holds. Using the
ansatz Eq. (A26) for the Green’s function and assuming that
the 3D quasi-classical Green’s function is isotropic in the k
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space, i.e. independent of the solid angle in the k space, be-
cause of the isotropy of the Fermi surface in the metal, we ob-
tain same relation for the tunneling self energy as Eq. (A27)
with a redefined tunneling time given by 1/τt = πt2cN1Dλ/~.

In the quasi-classical limit, the Fermi energy is the largest
energy scale, so the lowest order solution to the Green’s func-
tionGK

S is given by the one that commutes with the term εS(R)
in the commutator in Eq. (A17). Also, the normalization con-
dition satisfied by the Keldysh Green’s function ǦS allows one
to write the retarded/advanced Green’s functions of the TI sur-
face states to be obtained from the upper band projector of the
surface state Hamiltonian16, i.e.

GR,A
S (p, ε) =

1

2λ

σ0 +σσσ · (ẑ× p̂)

ε− ξS ± i0+
. (A29)

The retarded/advanced quasi-classical Green’s functions and
the disorder self energies are then given by,

gR,A
S = ±1

2
[σ0 +σσσ · (ẑ× p̂)], ΣR,A

D = ∓ i

2τp
σ0. (A30)

We consider the following ansatz for the Keldysh component
gK

S (p̂, ε) = g′S(p̂, ε)[σ0 + σσσ · (ẑ × p̂)], which means that the
spin and momentum is locked for the TI surface states even
in the non-equilibrium situation. In the diffusive limit, we can
expand g′S(p̂, ε) in spherical harmonics16,17, i.e., g′S(p̂, ε) =
gs(ε) + p̂ · ga(ε), and solve the kinetic equation Eq. (A17).
The charge density n on the surface of the TI will be obtained
from gK

S (p̂, ε) by18

n =
eNF

2

∫
dε

Tr
2

[〈gK(p̂, ε)〉] =
eNF

2

∫
dε gs(ε), (A31)

and the current density Jc is given by

Jc =
eNF

2

∫
dε

Tr
2

[〈vgK(p̂, ε)〉] =
eNF

2

∫
dε
vF

2
ga(ε).

(A32)
The retarded/advanced Green’s functions of the metal is

given by

GR,A
M (k, ε) =

1

ε− ξM ± i0+
σ0, (A33)

so the retarded/advanced quasi-classical Green’s functions
and the tunneling self energies are obtained to be

gR,A
M = ±σ0, ΣR,A

D = ∓ i

τt
σ0. (A34)

We consider the effect of the applied charge and the spin po-
tential in the metal through the Keldysh component of the
Green’s function in the metal gK

M(k̂, ε), which is considered
to be independent of solid angle in the k space because of the
isotropy of the Fermi surface in the metal. From Eq. (A27),
the tunneling self energy only depends on gK

M(z = 0, k̂, ε),
so we only consider gK

M(k̂, ε) at the interface z = 0, but
will write gK

M(k̂, ε) instead for brevity. The Keldysh compo-
nent of the Green’s function in the metal can be written as

gK
M(k̂, ε) = [g0M(ε)σ0 + σσσ · gM(ε)]. Further, the quantities

charge and spin densities in the metal, and the corresponding
charge and spin electrochemical potential in the metal will re-
fer to the values at the interface and not be explicitly written
afterwards. The charge density nM in the metal is given by

nM =
eN3D

2

∫
dε

Tr
2

[〈gK
M(k̂, ε)〉] =

eN3D

2

∫
dε g0M(ε),

(A35)
and the spin density sM (in the unit of charge −e) is obtained
from

sM =
eN3D

2

∫
dε

Tr
2

[〈σσσgK
M(k̂, ε)〉] =

eN3D

2

∫
dε gM(ε).

(A36)
As we have defined in the main text, the charge electrochem-
ical potential µ0 and the spin electrochemical potential µµµ in
the metal are given by nM = 2e2N3Dµ0 and sM = e2N3Dµµµ.
So, we obtain the following relations for µ0 and µµµ in terms of
the quasi-classical Green’s functions

µ0 =
1

4e

∫
dε g0M(ε), µµµ =

1

2e

∫
dε gM(ε). (A37)

After doing ξS integration of the Eq. (A17), and using Eqs.
(A27) and Eq. (A30), we obtain

∂Tg
K
S +

1

2
vF
{
σσσ× ẑ · ∇R, g

K
S

}
+ ivFpF[σσσ · (ẑ× p̂), gK

S ]

=− gK
S

τp
+
〈gK

S 〉
τp

+
1

2τp

{
σσσ · (ẑ× p̂), 〈gK

S 〉
}

− 2gK
S

τt
+

1

2τt

{
σ0 +σσσ · (ẑ× p̂), 〈gK

M〉
}
.

(A38)

Now using the ansatz for gK
S , after taking trace of Eq. (A.38)

and integrating out the s- and p-wave components, we obtain

∂Tgs +
1

2
vF∇R · ga =

2

τt

(
g0

M

2
− gs

)
, (A39a)

∂Tga + vF∇Rgs =
2

τt

(
gM

2
× ẑ
)
−
(

2

τt
+

1

2τp

)
ga, (A39b)

which is equivalent to Eq. (9) in the main text. After ε in-
tegration of Eq. (A39a) and using the Eq. (A31), (A32) and
(A37), we obtain the diffusion equation in the TI i.e. Eq. (12)
in the main text. Similarly, after ε integration of Eq. (A39b),
the current density Jc is obtained to be the same as Eq. (13) in
the main text.

The spin current density across the interface (in the unit of
electron charge per unit area per unit time) will be given by
Js = −eλds/dt = −eλ(i/~)[HT, s] by the Heisenberg equa-
tion of motion, where s = 〈a†α(R, t)σσσαβaβ(R, t)〉. Applying
the equation of motion to the operators, we obtain

Js =
−eλ
~

∫
d3r Tr

[
σσσ
(
G<Tc(R, t; r, t)T (r,R)

− T †(R, r)G<T (r, t; R, t)
)]
.

(A40)
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Here, the complex conjugate tunneling Green’s function
(GTc)αβ(R, t1; r, t2) = (GT)∗βα(r, t2; R, t1), and G<Tc, G

<
T

are the corresponding lesser Green’s function. From Eq. (A9),
we obtain for the complex conjugate tunneling Green’s func-
tion

(GTc)αβ(R1, τ1; r2, τ2) =
λ

~

∫
dτ ′d2R′d3r′

(GS)αµ(R1, τ1; R′, τ ′)T †µν(R′, r′)(GM)νβ(r′, τ ′; r2, τ2).

(A41)

We write Eq. (A9), (A41) and (A11) in a simpler form as
GT = λ

~GMTGS, GTc = λ
~GST

†GM and ΣT = λ
~T
†GMT ,

where the integrations over the internal variables are implicit.
Then, from Eq. (A40), Js can be written as

Js =
−eλ
~

Tr
[
σσσ
(
G<TcT − T †G<T

)]
. (A42)

By using Langreth rule19 for the lesser function of product of
three functions, which is given by

(ABC)< = ARBRC< +ARB<CA +A<BACA, (A43)

G<Tc, G
<
T can be written as

G<T =
λ

~

[
GRMTG

<
S +G<MTG

A
S

]
, (A44a)

G<Tc =
λ

~

[
GRS T

†G<M +G<S T
†GAM

]
. (A44b)

Here we have used the fact that the instantaneous tunneling
T is neither retarded nor advanced and diagonal in Keldysh
space, i.e. TR = TA = T and T< = T> = 0, and simi-
larly for T †. Inserting Eq. (A44a) and (A44b), and using the
relation for ΣT, Eq. (A42) is written as

Js =
−eλ
~

Tr
[
σσσ
(
GRS Σ<T +G<S ΣAT − ΣRT G

<
S − Σ<T G

A
S

)]
.

(A45)
Now the lesser functions in Eq. (A45) can be written in
terms of retarded, advanced and Keldysh component asG<S =
1
2 [GKS − GRS + GAS ] and Σ<T = 1

2 [ΣKT − ΣRT + ΣAT ]. In the
calculation of non-equilibrium quantities, only the Keldysh
component is important18, so Js is given by

Js =
−eλ
~

Tr
2

[
σσσ
(
GRS ΣKT +GKS ΣAT − ΣRT G

K
S − ΣKT G

A
S

)]
.

(A46)
The above equation Eq. (A46) is written in coordinate rep-
resentation and the product of two functions implies integra-
tion over the internal coordinate. The Eq. (A46) can be writ-
ten in terms of the modified Wigner transformed function in
which the transformation of the product of two functions will
be given by Eq. (A16). So, in terms of the modified Wigner
transformed functions, Js can be written as

Js = −eλ
∫

dε
2π

d2p
(2π)2

Tr
2

[
σσσ
(
GRS ΣKT +GKS ΣAT

− ΣRT G
K
S − ΣKT G

A
S

)]
.

(A47)

Using Eqs. (A21), (A27), (A30) and (A34), the above equa-
tion Eq. (A48) can be written in terms of the quasi-classical
Green’s functions as

Js =
eNF

2

∫
dε
∫

dθ
2π

Tr
2

[
σσσ
(
− 2gK

S

τt

+
1

2τt

{
σ0 +σσσ · (ẑ× p̂), 〈gK

M〉
})]
(A48)

It is clear from Eq. (A48) that the spin current density across
the interface will be obtained from taking trace over the spin
Pauli matrices of the tunneling term, i.e. the last two terms in
Eq. (A38). Now, using the ansatz for gK

S and gK
M, and using

the definitions for Jc and µµµ from Eqs. (A32) and (A37), we
get the same equation for Js, i.e. Eq. (15) in the main text.

Appendix B: Solution of diffusion equation in the TI with
different boundary conditions in the metal

We consider an one-dimensional problem to solve the dif-
fusion equation in the TI analytically. The transport direction
is taken to be in the x direction, while we consider an in-plane
spin electrochemical potential in the metal with only the y
component of spin, i.e. µµµ = µy ŷ. Then the charge current
density on the TI surface is given by Jc = Jcx̂, and the spin
current density across the interface will have only y compo-
nent, i.e. Js = Jsŷ. The continuity equation in the TI, i.e. Eq.
(12) becomes

∂Tn+ ∂xJc =
2

τt
(e2NFµ0 − n), (B1)

and from Eq. (13) we obtain the charge current density Jc in
the TI to be

Jc =
1

(1− iωτtr)

[
− v2Fτtr

2
∂xn+ e2NFvF

τtr

τt

µy

2

]
. (B2)

Then, from Eq. (15), the spin current density Js is given by

Js =
2

vFτt

(
e2NFvF

µy

2
− Jc

)
. (B3)

We assume that µ0 and µy in the metal to be homoge-
neous. In the steady state, Eq. (B1) and (B2) give the dif-
ferential equation ∂2xn

′ = n′/l2 for the new variable n′ =
(n − e2NFµ0), where the characteristic length l is given by
l = vF

√
τtrτt/2. The solution to n′ is given by n′(x) =

A+e
x/l + A−e

−x/l. In case of a short circuit between the
two ends of the surface of the TI, we apply the boundary con-
dition that the electrochemical potential in the TI at the two
ends to be same, i.e. n′(+L/2) = n′(−L/2), and the cur-
rent going into the TI surface to be same as the current com-
ing out of the TI surface (as there is no current leaking out
through the metal), i.e. Jc(+L/2) = Jc(−L/2). The condition
n′(+L/2) = n′(−L/2) gives A+ = A− = A and the current
density Jc = −(v2Fτtr/2l)A(ex/l − e−x/l) + J0, where J0 =
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e2NFvFτtrµy/2τt. Now the condition Jc(+L/2) = Jc(−L/2)
is true only if A = 0, i.e. n′ = 0 which implies n = e2NFµ0.
So the charge density n in the TI becomes homogeneous and
balances any charge potential in the metal, and the charge cur-
rent density Jc in the TI becomes homogeneous and is given by
Jc = J0. As both µy and Jc are homogeneous, so the current
density Js through the interface also becomes homogeneous
and is given by Js = J0/vFτIEE.

Next we assume µ0 in the metal and Js across the inter-
face to be homogeneous. From Eq. (B1), (B2) and (B3),
we obtain a new differential equation ∂2xn

′ = n′/l′2, where
the length l′ is given by l′2 = 2l2τIEE/τtr (τIEE is given by
Eq. (19)). The solution to n′ will be given by n′(x) =

A+e
x/l′ +A−e

−x/l′ . As discussed in the previous paragraph,

for short circuit case the boundary condition n′(+L/2) =
n′(−L/2) gives A+ = A− = A and the current density
Jc = −(v2FτIEE/l

′)A(ex/l
′ − e−x/l′) + vFτIEEJs. As the spin

current density across the interface is assumed to be homo-
geneous, the condition Jc(+L/2) = Jc(−L/2) is true only if
A = 0, which implies n = e2NFµ0, so the charge density
n is homogeneous. The current density Jc in the TI becomes
homogeneous and is given by Jc = vFτIEEJs. As both Jc and
Js are homogeneous, the spin electrochemical potential µy in
the metal turns out to be constant as well. Hence, either with
a homogeneous condition for µy or Js, the solution for short
circuit condition gives a homogeneous solution for n and Jc in
the TI.
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