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In a recent report sum-frequency excitation of a Raman-active phonon was experimentally demon-
strated for the first time. This mechanism is the sibling of impulsive stimulated Raman scattering,
in which difference-frequency components of a light field excite a Raman-active mode. Here we
propose that also ionic Raman scattering analogously has a sum-frequency counterpart. We com-
pare the four Raman mechanisms, photonic and ionic difference- and sum-frequency excitation, for
three different example materials using a generalized oscillator model for which we calculate the
parameters with density functional theory. Sum-frequency ionic Raman scattering completes the
toolkit for controlling materials properties by means of selective excitation of lattice vibrations.

I. INTRODUCTION

Ultrashort electromagnetic pulses are an established
tool to control the electronic and structural phases of
matter. Intense laser pulses in the terahertz spectral
range provide direct access to the excitation of optical
phonons and have become practical only during the past
decade [1–4]. Highly excited optical phonons govern a
variety of physical phenomena, such as phase transitions
[5], induced or enhanced superconductivity [6–8], and
control of magnetic order [9, 10]. It is therefore nec-
essary to understand the fundamental mechanisms that
underly the excitation of coherent optical phonons with
light. Infrared-active phonons carry an electric dipole
moment and can therefore be excited directly by cou-
pling to the electric field component of electromagnetic
radiation. For Raman-active phonons, which do not pos-
sess an electric dipole moment, another, indirect way has
to be taken.

An established route is to disturb the electronic system
with an ultrashort light pulse, which then mediates en-
ergy to Raman-active phonons via electron-phonon inter-
action [11, 12]. For coherent, nonresonant excitation be-
low the band gap [13], the primary mechanism involved is
impulsive stimulated Raman scattering (ISRS), in which
a virtual electronic state serves as intermediate energy
level for the Raman scattering of the incident light by
the phonon, see figure 1(a) [14–16]. In this case, the
difference frequency of two photons from the light pulse
is resonant with a vibrational transition of the phonon
mode. We will in the following refer to this as a “pho-
tonic” Raman mechanism.

A second route to exciting Raman-active phonons is
via scattering with infrared-active phonons. This was
proposed nearly half a century ago as an ionic Ra-
man scattering process and has only been demonstrated
within this decade due to the advancement of intense
terahertz sources [17–20]. In this process, an infrared-
active phonon, which is coherently excited by light, serves
as the intermediate state for Raman scattering, see fig-
ure 1(b). This effect is mediated through anharmonic

phonon-phonon coupling rather than electron-phonon in-
teraction, and it is less dissipative than its photonic coun-
terpart due to the lower energy of the excitation [21, 22].
We will in the following refer to this specific mechanism
simply as ionic Raman scattering (IRS). Note that there
are also other types of ionic Raman scattering, which
involve higher-order processes in the electric-dipole or
phonon-phonon interaction [19].

In a recent experiment, a third route has been demon-
strated, in which the 40 THz Raman-active phonon of
diamond is excited by a terahertz pulse in a two-photon
absorption process, see figure 1(c) [23]. This is the sum-
frequency excitation (SFE) counterpart to ISRS, which
combines the possibility to excite phonons in compounds
that do not possess infrared-active phonons with the ad-
vantage of low-energy excitation by terahertz radiation.

The purpose of this theoretical study is two fold: First,
we complete the map of photonic and ionic difference-
and sum-frequency Raman mechanisms with the “miss-
ing” sum-frequency part of ionic Raman scattering (SF-
IRS) that is tantamount to a the absorption of two
coherently-excited infrared-active phonons by a Raman-
active phonon, see figure 1(d). Second, we compare the
four mechanisms for three different example materials:
Diamond, erbium ferrite (ErFeO3), and bismuth ferrite
(BiFeO3). This includes also the first theoretical con-
firmation and quantitative description of THz-SFE by
means of first principles calculations. Assuming realistic
experimental conditions, we show that sum-frequency ex-
citation, both photonic and ionic, are able to coherently
control Raman-active phonons in the electronic ground
state in a way that is complementary to previous nonlin-
ear phononics studies.
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FIG. 1. Map of photonic and ionic Raman mechanisms.
The difference- and sum-frequency components of a light
pulse, ω1±ω2, or a coherently-excited infrared-active phonon,
Ω1 ± Ω2, are resonant with a vibrational transition of a
Raman-active phonon, ΩR. (a) Impulsive stimulated Raman
scattering (ISRS). (b) Conventional ionic Raman scattering
(DF-IRS). The lattice potential of the Raman-active mode
shifts. (c) Terahertz sum-frequency excitation (THz-SFE).
(d) Proposed sum-frequency counterpart of ionic Raman scat-
tering (SF-IRS).

II. THEORETICAL MODEL

A. General equation of motion for the excitation of
phonons

To investigate the time evolution of a phonon mode we
numerically solve its equation of motion:

Q̈+ κQ̇+
∂

∂Q
V (Q) =

∑
i

ZiEi + ε0
∑
ij

RijEiEj , (1)

where Q is the normal mode coordinate (or amplitude) of
the phonon at the Brillouin-zone center in units of

√
µÅ,

with µ being the atomic mass unit. κ is the phonon
linewidth, and V (Q) is the (an)harmonic lattice potential
of the phonon. Ei is the electric field component of the
exciting electromagnetic pulse, and the indices i and j
run over the spatial coordinates. Zi =

(∑
n Z

∗
nun

)
i

is

the mode effective charge of the phonon with Z∗
n being

the Born effective charge tensor and un the displacement
vector of atom n, and the sum runs over all atoms in
the unit cell [24]. Rij = Vc∂Qχij is the Raman tensor,
which is given by the linear electric susceptibility, χij ,
and the volume of the unit cell, Vc. Phonon linewidths

lie in the range of κ ≈ Ω/10 to Ω/20 for the materials
that we consider here, where Ω is the eigenfrequency of
the phonon mode [9, 23, 25]. For a detailed derivation,
see for example reference [26]. We model the electric
field component of a light or terahertz pulse as E(t) =

E0exp(−(t−t0)2/(2(τ/2
√

2ln2)2)) cos(ω0t+ϕCEP), where
E0 is the peak electric field, ω0 is the center frequency,
ϕCEP is the carrier-envelope phase, and τ is the full width
at half maximum duration of the pulse.

B. Equations of motion for photonic and ionic
Raman scattering

For photonic Raman scattering we assume a harmonic
lattice potential, V (QR) = Ω2

RQ
2
R/2, as anharmonicities

are not important for the process. Furthermore in cen-
trosymmetric crystals Zi = 0 for Raman-active phonons,
and for a linearly polarized laser pulse, we can write equa-
tion (1) as

Q̈R + κRQ̇R + Ω2
RQR = ε0RE

2(t). (2)

In contrast, ionic Raman scattering is described by a
quadratic-linear coupling of an infrared-active with a
Raman-active phonon. The anharmonic lattice potential
in its simplest form can be expressed as V (QR, QIR) =
Ω2

RQ
2
R/2+Ω2

IRQ
2
IR/2+cQ2

IRQR, where c is the quadratic-
linear coupling coefficient given in meV/(

√
µÅ)3 [21]. We

have to solve the equations of motion for both phonons,
and equation (1) can be written respectively as

Q̈IR + κIRQ̇IR + (Ω2
IR + 2cQR)QIR = ZIRE(t), (3)

Q̈R + κRQ̇R + Ω2
RQR = cQ2

IR(t). (4)

The driving force of the Raman-active phonon in pho-
tonic Raman scattering is the square of the electric field,
E2(t), see equation (2), while in ionic Raman scattering
it is the square of the “phonon field” of the infrared-
active phonon, Q2

IR(t), see equation (4). In addition,
the Raman-active mode feedback affects the initially ex-
cited infrared-active mode by dynamically renormalizing
its frequency as Ω2

IR → Ω2
IR + 2cQR, see equation (3).

The two photonic processes, ISRS and THz-SFE, can
be described by the same equation of motion (2). The
two mechanisms are only distinguished by the duration
of the pulse and its center frequency, ω0, which is higher
than the phonon frequency in ISRS, ω0 > ΩR, and ide-
ally half the phonon frequency in THz-SFE, ω0 = ΩR/2.
We can draw an analogy for ionic Raman scattering here,
which has so far been always connected to the coupling
of a high-frequency infrared-active phonon with a low-
frequency Raman-active phonon, ΩIR > ΩR, in which
difference-frequency components of the phonon field Q2

IR
are responsible for the excitation of the Raman-active
phonon [20, 21, 27–34]. Here, we will show that this
mechanism can be extended to a sum-frequency counter-
part that fulfills ΩIR = ΩR/2 just analog to the photonic
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TABLE I. Summary of properties of the four mechanisms for the excitation of Raman-active phonons in insulators.

ISRS DF-IRS THz-SFE SF-IRS

Type of excitation photonic ionic photonic ionic

Driving force E2(t) Q2
IR(t) E2(t) Q2

IR(t)

Center frequency ω0 > ΩR ΩIR > ΩR ω0 = ΩR/2 ΩIR = ΩR/2

Frequency components difference difference sum sum

CEP sensitive no no yes yes

Impulsive yes yes no no

Raman processes [23]. A summary of the discussion in
this section is given in table I, in which also the results
for phase sensitivity and impulsiveness from the following
sections are shown.

C. Computational details

We calculated the phonon eigenfrequencies, eigen-
vectors, and the Raman tensors from first-principles
using the density functional theory formalism as im-
plemented in the Vienna ab-initio simulation package
(VASP) [35, 36], and the frozen-phonon method as im-
plemented in the phonopy package [37]. To calculate
the frequency-dependent Raman tensor we followed the
scheme of reference [38]. We used the default VASP PAW
pseudopotentials for every considered atom and con-
verged the Hellmann-Feynman forces to 10−5 eV/Å using
a plane-wave energy cut-off of 950 eV and a 9×9×9 k-
point Monkhorst-Pack mesh [39] to sample the Brillouin
zone for diamond and 850 eV, 6×6×6 for BiFeO3. For
the exchange-correlation functional, we chose the PBEsol
form of the generalized gradient approximation (GGA)
[40]. For BiFeO3 we found that an on-site Coulomb in-
teraction of 4 eV and a Hund’s exchange of 1 eV opti-
mally reproduce both the G-type antiferromagnetic or-
dering and lattice dynamical properties [41, 42]. Our
fully relaxed structures with lattice constants 3.55 Å for
diamond and 3.94 Å with pseudocubic angle 90.44◦ for
BiFeO3 fit reasonably well to common experimental val-
ues [43, 44], as do our calculated phonon frequencies.
Our calculated phonon eigenfrequency for the F2g mode
in diamond is 39.2 THz, though for simplicity we keep
referring to it as the “40 THz mode”. For the details on
ErFeO3, we refer the reader to the computational details
of reference [25].

III. RESULTS

A. THz-SFE versus ISRS in diamond

We begin by reproducing the experiments of references
[23] and [45], in which the 40 THz F2g Raman-active
phonon of diamond was excited via THz-SFE and ISRS,

respectively. Both mechanisms can be described by equa-
tion (2), for which we use the experimental excitation
pulses with a center frequency of ω0/2π = 20 THz and
pulse duration of τ = 0.2 ps for the terahertz pulse for
THz-SFE, and ω0/2π = 759 THz (395 nm) and τ = 10 fs
for the visible light pulse for ISRS. The electric field is ori-
ented along the Raman-active [110] direction with a peak
electric field of E0 = 8 MV/cm in both cases. The cal-
culated parameters for the equation of motion are given
in table II, and the eigenvector of the F2g mode is il-
lustrated in figure 2(a). Our first-principles calculations
allow us to determine the single independent component
of the Raman tensor for frequencies throughout and up
to slightly above the electronic band gap. Figure 2(b)
shows that for large band gap materials, the frequency-
dependence of the Raman tensor does not play a signif-
icant role when comparing Raman-effects in the visible-
and terahertz spectral range, setting ISRS and THz-SFE
on equal footing. Further, electronic excitations, which
are described by the imaginary part of the Raman ten-
sor, are negligible for the photon energies we use in the
examples here [16].

We show the resulting dynamics of the F2g mode for
the two different optical excitations as described by equa-
tion (2) in figure 2(c). For THz-SFE, the response shows
a gradual increase of the phonon amplitude with the
onset of the terahertz pulse, which illustrates that the
mechanism is nonimpulsive. The maximum phonon am-
plitude reaches Q = 0.28 × 10−2√µÅ, and the phase of
the oscillation is sensitive to the carrier-envelope phase of
the terahertz pulse, ϕCEP [46]. These results reproduce
the essential features of the experiment in reference [23]
and give a quantitative estimate of the THz-SFE induced
phonon amplitude for the first time. In contrast, the re-
sponse for ISRS shows an abrupt onset of the phonon
amplitude at t = 0, which is characteristic for the im-
pulsive nature of the mechanism. The maximum phonon
amplitude reaches Q = 0.04× 10−2√µÅ, and the phase
of the oscillation is independent of ϕCEP [46]. These re-
sults reproduce the essential features of the experiment
in reference [45] and agree well with the results of re-
cent time-dependent density functional theory studies for
ISRS [47, 48].

Despite the smaller value of the Raman tensor R(THz)
compared to R(VIS), see table II and figure 2(b), THz-
SFE is roughly one order of magnitude stronger than



4

FIG. 2. (a) Eigenvector of the 40 THz F2g mode of diamond. (b) Real and imaginary part of the single independent component
of the Raman tensor. Black arrows mark the energies of the terahertz (20 THz≡0.08 eV) and the visible light (395 nm≡3.14 eV)
pulse; solid black line marks the band gap of diamond at 5.5 eV. (c) Evolution of the F2g mode following THz-SFE and
ISRS by a terahertz and visible light pulse, respectively. The envelopes of the excitation pulses are shown schematically. (d)
Dependence of the normalized phonon amplitude, Q/Q0, on the duration of the terahertz and visible light pulse, τTHz-SFE and
τISRS. Q0 is the maximum phonon amplitude at τTHz-SFE = 0.2 ps and τISRS = 10 fs. We show two cases, one in which E0

is kept constant while changing τ (circles), and one in which the total pulse energy is kept constant while changing τ and E0

accordingly (triangles).

ISRS for a similar peak electric field, E0. This is because
the 40 THz frequency component of the driving force,
E2(t), resulting from the sum frequency of the 20 THz

TABLE II. Calculated phonon frequencies of the infrared- and
Raman-active modes, ΩIR and ΩR, mode effective charge of
the infrared-active mode, ZIR, Raman tensor at the respective
visible and terahertz frequencies of the laser pulses, R(ω), and
quadratic-linear coupling coefficient, c.

Quantity Diamond ErFeO3 BiFeO3

ΩIR | ΩR (THz) – | 39.2 16.5 | 3.2 7.4 | 15.3

ZIR (e/
√
µ) 0.67 0.82

R(VIS) (Å
2
/
√
µ) 70

R(THz) (Å
2
/
√
µ) 50 -9 -41

c (meV/(Å
√
µ)3) 7.8 8.0

pulse is roughly a factor of ten higher than that resulting
from the difference frequency of the 395 nm pulse. This
order-of-magnitude difference in excitation strength per-
sists for pulses throughout the visible spectrum [46].

To take into account the total pulse energy, we show
the dependence of the coherent phonon amplitude on the
duration of the pump pulse in figure 2(d) for two distinct
cases: (i) constant peak field, E0, and (ii) constant pulse
energy. In ISRS there is an optimal value of pulse du-
ration for constant E0 that corresponds to a bandwidth
of the pulse, for which the difference-frequency compo-
nents at 40 THz are maximal. When the energy of the
pulse is fixed, a shorter pulse will trade off for a higher
E0 and therefore increase the effect until the pulse gets
too short and approaches the single cycle regime. For
THz-SFE the situation is different: Due to its nonimpul-
sive nature, a longer duration of the pulse will continu-
ously increase the coherent phonon amplitude, when E0
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is kept constant. In this case, the amplitude will build
up until damping, κ, and excitation force are balanced.
In contrast, keeping the total pulse energy constant, a
longer pulse will trade off for a lower E0 and the effect
decreases. Note, that our model does not include ter-
ahertz absorption by multiphonon states or transitions
from these states, as they require higher-order scattering
processes in order to lead to observable coherent phonons
at the Brillouin zone center [44, 49].

B. THz-SFE versus ionic Raman scattering in
ErFeO3

We will now compare THz-SFE to the conventional,
difference-frequency type of ionic Raman scattering (DF-
IRS) at the example of ErFeO3. For orthorhombic
ErFeO3 with space group Pnma, experimental and theo-
retical studies are available that show the coupling of the
Raman-active 3.2 THz Ag mode, see figure 3(a), with the
infrared-active 16.5 THz B3u mode fulfilling the condi-
tion ΩIR > ΩR [9, 25]. Therefore, we model two different
terahertz pulses, one with ω0 = ΩR/2 for THz-SFE ac-
cording to equation (2), and the other to initially excite
the B3u mode for ionic Raman scattering according to
equations (3) and (4). The electric field for THz-SFE is
oriented along the Raman-active c direction with a cen-
ter frequency of ω0/2π = 1.6 THz and pulse duration of
τ = 1 ps; the electric field for DF-IRS is oriented along
the infrared-active a direction with ω0/2π = 16.5 THz
and τ = 0.2 ps. We assume a peak electric field of
E0 = 8 MV/cm in both cases. The calculated parameters
for the equations of motion are given in table II, and the
eigenvector of the Ag mode is illustrated in figure 3(a).

We show the resulting dynamics of the Ag mode after
each optical excitation as described by equations (2) –
(4) in figure 3(b). As in the case of diamond, the re-
sponse for THz-SFE shows a continuous increase of the
phonon amplitude with the onset of the pulse, reaching a
maximum of Q = 2.6×10−2√µÅ. The response for DF-
IRS shows an impulsive onset of the phonon amplitude at
t = 0 that is not sensitive to the carrier-envelope phase,
ϕCEP [46], as well as the typical displacive feature of non-
linear phononics [20, 21, 25]. In this case, the maximum
phonon amplitude reaches Q = 0.9× 10−2√µÅ.

The amplitude of the Ag mode induced by THz-SFE
is higher than the amplitude induced by DF-IRS by a
factor of three. The excitation mechanisms are funda-
mentally different however, and the decisive factors are
the values of the Raman tensor, R, arising from a change
in polarizability, and the coupling coefficient, c, arising
from an anharmonic phonon potential. The comparison
between the excitation strengths therefore has to be done
for each material and phonon mode. Note that DF-IRS
is mainly used because of its unipolar displacive feature.

FIG. 3. (a) Eigenvector of the 3.2 THz Ag mode in the ab-
plane of orthorhombic ErFeO3. The iron ions do not move in
this mode. (b) Evolution of the Ag mode following THz-SFE
and DF-IRS by a 1.6 THz and 16.5 THz pulse, respectively.
The envelopes of the excitation pulses are shown schemati-
cally.

C. Photonic and ionic sum-frequency excitation in
BiFeO3

In the previous sections we compared the recently
demonstrated THz-SFE with the commonly used ISRS
and DF-IRS. In this final step, we propose the so-far over-
looked sum-frequency counterpart of ionic Raman scat-
tering (SF-IRS) as depicted in figure 1(d). We demon-
strate this mechanism and compare it to THz-SFE using
the example of BiFeO3. In noncentrosymmetric rhombo-
hedral BiFeO3 with space group R3c, all fully symmet-
ric A1 modes are both infrared-active and Raman-active
along the [111] direction of the crystal. These modes
couple quadratic-linearly to each other, and two of them
lie at frequencies of 15.3 THz and 7.4 THz (in the fol-
lowing referred to as A1(15) and A1(7) modes, respec-
tively). Thus by exciting the system with a single pulse
with a center frequency of ω0/2π = 7.6 THz we expect
both THz-SFE and SF-IRS to occur at the same time:
The pulse directly excites the A1(7) mode via infrared
absorption, which then mediates energy to the A1(15)
mode via SF-IRS. Simultaneously, the pulse excites the
A1(15) mode via THz-SFE (but not via infrared absorp-
tion as the A1(15) phonon lies well outside the 2.9 THz



6

FIG. 4. (a) Schematic of the excitation by the terahertz pulse. (b) Eigenvectors of the coupled 15.3 THz (blue) and 7.4 THz
(green) A1 modes from a view along the [111] direction of rhombohedral BiFeO3. The motion of bismuth ions in these modes
is negligible. (b) Full evolution of the A1 modes following the excitation by a single 7.6 THz pulse. The A1(7) mode is excited
via infrared absorption. The A1(15) mode is excited simultaneously via THz-SFE and SF-IRS. Black arrows point to the beat
nodes of the A1(15) mode that correspond to maxima of the modulation of the A1(7) mode. (c) Evolution of the A1(15) mode
as in (b), but separating the effects of the two mechanisms. The marginal THz-SFE contribution is magnified by a factor of
ten for better visibility. The envelope of the excitation pulse is shown schematically.

bandwidth of the pulse). To make this process clearer,
we show a schematic of the excitations in figure 4(a).
Note that one could also drive the 15.3 THz mode directly
via infrared absorption. For consistency to the previ-
ous sections, we label the 7.4 THz mode as “IR” and the
15.3 THz mode as “R”, and both criteria, ω0 ≈ ΩR/2 and
ΩIR ≈ ΩR/2 are fulfilled. We model the terahertz pulse
with a center frequency of ω0/2π = 7.6 THz and a dura-
tion of τ = 0.3 ps. The electric field is oriented along the
Raman- and infrared-active [111] direction with a peak of
E0 = 8 MV/cm. The calculated parameters for the equa-
tions of motion are given in table II, and the eigenvectors
of the A1 modes are illustrated in figure 4(b).

We show the resulting dynamics of both A1 modes af-
ter the optical excitation as described by equations (2) –
(4) in figures 4(c),(d). The response for the simultaneous
excitation via THz-SFE and SF-IRS in figure 4(c) shows
a fundamentally different behavior from the other three
mechanisms: A beat signal arises and the phonon ampli-

tude reaches by far the highest value of all three exam-
ples, Q = 0.37

√
µÅ. We separate the effects of THz-SFE

and SF-IRS in figure 4(d). The response for SF-IRS en-
tirely captures the new feature, while the THz-SFE con-
tribution leads only to a negligible increase of the phonon
amplitude and phase shift. The beat signal is caused by
a mutual exchange of energy between the infrared-active
and Raman-active phonon, and the beat frequency is de-
termined by the strength of the anharmonic phonon cou-
pling, c, and through QR by the strength of the terahertz
pulse, see equation (3). A node of the beat signal of the
A1(15) mode corresponds to a maximum of the modula-
tion of the A1(7) mode, see black arrows in figure 4(c).
The maximum is mostly swallowed by the damping, how-
ever. Naturally, for sum-frequency excitation, the phase
of the response is sensitive to the carrier-envelope phase
of the terahertz pulse, ϕCEP [46]. Higher-order anhar-
monicities in the potential V (QR, QIR) affect the ampli-
tude, beat-frequency and even introduce new beats, how-
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ever to a much smaller degree than the quadratic-linear
coupling, Q2

IRQR [46].

IV. DISCUSSION

We completed the map of photonic and ionic Raman
scattering for the excitation of Raman-active phonons
in insulators with the missing sum-frequency part of
ionic Raman scattering, see figure 1(d). The difference-
frequency mechanisms are impulsive in nature and not
sensitive to the carrier-envelope phase of the driving field,
ϕCEP, whereas the sum-frequency mechanisms are non-
impulsive and therefore sensitive to ϕCEP. A summary
of the properties is shown in table I.

Among the investigated phonon excitations, the up-
conversion of frequency components of the driving force
is more efficient than the down-conversion. An increase
of the total pulse energy will only enhance difference-
frequency excitation if it is due to a higher peak elec-
tric field, E0, but not due to a longer pulse duration,
τ . In contrast, an increase of either E0 or τ leads to
a stronger sum-frequency excitation. This property is
particularly relevant for narrowband excitation pulses,
for example generated by accelerator-based mid-infrared
and terahertz sources [3, 50, 51]. The resulting frequency
components are weighted by the Raman tensor and an-
harmonic phonon coupling, which both depend on the
material properties.

For homonuclear materials that do not possess
infrared-active phonons, such as diamond, only pho-
tonic difference- and sum-frequency excitation is possi-
ble. Here the more efficient conversion of sum-frequency
components also leads to a higher selectivity for THz-
SFE compared to ISRS. Generally, the selectivity de-
pends on the symmetries and frequencies of the phonon
modes in the material. In the photonic Raman mech-
anisms the electric field has to be oriented along the
Raman-active direction of the target QR mode, while
in the ionic Raman mechanisms it has to be oriented

along the infrared-active direction of the coupling QIR

mode. Consequently, the selectivity depends on whether
“unwanted” phonon modes lie within the bandwidth and
polarization direction of the driving force E(t) (infrared-
active) or E2(t) (Raman-active) in addition to our tar-
get QIR and QR modes. For lattice driven phenomena in
the electronic ground state, all three terahertz excitation
mechanisms, THz-SFE, DF- and SF-IRS, are favorable
over commonly used visible-light or near-infrared ISRS
in order to avoid parasitic electronic excitations. The
sum-frequency processes provide an additional route to
excite optical phonons in the range of 5-15 THz, for which
powerful sources are only now becoming feasible [3, 52].
Recent advances in non-optical probing techniques, such
as ultrafast electron diffraction, and diffuse x-ray and
electron scattering [53–56] will further improve the anal-
ysis of coupled lattice dynamics, complementary to es-
tablished methods [57, 58].

With the increased availability of strong terahertz and
mid-infrared sources, we anticipate that the presented
map of photonic and ionic Raman mechanisms will serve
as guide for the selective excitation of crystal lattice vi-
brations in future. Specifically, we expect that strong
excitation of Raman-active phonons will complement the
effects arising from infrared-active phonons in the context
of spin-phonon and electron-phonon coupled phenomena.
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