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We report on the design and experimental validation of a two-dimensional phononic elastic waveg-8

uide exhibiting topological Valley-Hall edge states. The lattice structure of the waveguide is inspired9

by diatomic graphene and it is imprinted in an initially flat plate by means of geometric indenta-10

tions. The indentations are distributed according to a hexagonal lattice structure which guarantees11

the existence of Dirac dispersion at the boundary of the Brillouin zone. Starting from this basic12

material, domain walls capable of supporting edge states can be obtained by contrasting waveguides13

having broken space inversion symmetry (SIS) achieved by using local resonant elements. Our the-14

oretical study shows that such material maps into the acoustic analog of the quantum valley Hall15

effect (QVHE) while numerical and experimental results confirm the existence of protected edge16

states traveling along the walls of topologically distinct domains.17

I. INTRODUCTION18

In recent years, the study of topological phases of19

matter1,2 has inspired researchers across the most di-20

verse fields of science and engineering. The possibility21

to design materials capable of achieving ideal levels of22

transmission even in presence of imperfections and de-23

fects would have a profound impact on many practical24

applications and open the way to the design of innova-25

tive devices. While this area of research originated in26

quantum physics, it recently expanded to include also27

the acoustic behavior of fluids and solids3–17.28

In solid state physics, one of the first implementations29

of topological materials was based on the use of the Quan-30

tum Hall Effect (QHE) which exploited an external mag-31

netic field to break time-reversal symmetry (TRS). While32

in electronic systems the application of a magnetic field is33

a rather simple way to achieve TRS breaking, in acoustics34

the process is more complicated due to the intrinsic re-35

ciprocal nature of acoustic waves. The first few attempts36

at breaking TRS in an acoustical system exploited the37

use of rotating inclusions (such as spinning rotors3,4 or38

fluids5–7). Later versions of topological acoustic systems39

were developed based on the acoustic analogue of the40

Quantum Spin Hall Effect (QSHE)8–10 which, contrarily41

to the QHE, required intact TRS. In this latter case, re-42

searchers were able to achieve unidirectional edge states43

topologically protected from back-scattering by creating44

acoustic pseudo-spins and pseudo-spin-dependent effec-45

tive fields.46

More recently, several studies have investigated the47

design of topological materials based on broken space-48

inversion symmetry (SIS). The creation of such edge49

states cannot be explained by the previously mentioned50

QHE or QSHE mechanisms. In fact, when only SIS is51

broken the lattice still possesses a trivial topology within52

the context of QHE1,18,19 and QSHE20,21. However, due53

to the large separation in k-space of the two valleys (i.e.54

the Dirac points occurring at the corners of the Brillouin55

zone, the K and K′ symmetry points), valley-dependent56

topological invariants can be defined and used to clas-57

sify the topological states of the different lattices. This58

approach, usually referred to as quantum valley-Hall ef-59

fect (QVHE), was recently investigated also for appli-60

cation to fluidic and elastic acoustic waveguides11–15.61

More recently, a few other approaches to realize unidirec-62

tional waves were proposed. These approaches exploited63

the analogue of strain-induced gauge field and the Lan-64

dau quantized levels achieved by using inhomogeneous65

patterning22–24.66

While most of the above studies have concentrated on67

electromagnetics and acoustics, the theoretical and ex-68

perimental observation of topologically protected edge69

states (TPES) in elastic media has been fairly limited70

due to the unique challenges occurring in these systems.71

Designs based on QHE need active components (e.g. gy-72

roscopes or fluid circulators) or the application of an ex-73

ternal field (e.g. magnetic field) to break time reversal74

symmetry. This approach makes the system very com-75

plex and often difficult to implement in practical appli-76

cations. On the contrary, QSHE-based designs employ77

fully passive mechanisms but often results in non-trivial78

geometric and/or material configurations in order to en-79

gineer the band structure that requires a finely tuned80

double Dirac cone9. The QVHE, however, relies only81

on breaking the space inversion symmetry, which is rel-82

ative easier to achieve in elastic systems of practical in-83

terest. Liu et al.15 proposed a theoretical and numerical84

study on topological elastic states achieved by impos-85

ing an elastic deformation of the initial truss-like lattice86

structure. Only recently Vila et al.13,14 reported the first87

experimental realization of TPES based on QVHE in an88

elastic medium14. Their design exploited a hexagonal89

truss-like lattice having local masses attached on selected90

locations in order to break the space inversion symme-91

try. No further experimental studies are reported in the92

current literature concerning the use of QVHE for the93

design of topological elastic waveguides. In particular,94

while Vila’s work [14] proved the feasibility of the QVHE95

for elastic media, the design and experimental valida-96
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tion concerned only truss-like lattices that are not well-1

suited for structural applications. Recent studies25–302

have suggested that thin-walled metastructures can have3

important applications to the control of vibrations and4

structure-radiated sound in lightweight structures, such5

as those of interest for aerospace applications or, more in6

general, for high-performance transportation systems. In7

order to be able to extend topological acoustic designs to8

this class of applications, the structural waveguides will9

have to be fully continuous so to be able to sustain dis-10

tributed loads such as those produced, for example, by11

aero- or hydrodynamic forces.12

In the present study, we explore and experimentally13

validate the design of a fully-continuous and load-bearing14

phononic structural waveguide based on QVHE and ca-15

pable of one-directional guided modes along the walls16

of topologically distinct domains. The fundamental de-17

sign leverages geometric indentations distributed in a18

graphene-like arrangement within an otherwise flat thin19

plate. The resulting lattice structure has a C3v symme-20

try that fully preserves SIS. The symmetry of the lattice21

can be lowered to C3 by introducing locally-resonant el-22

ements located at selected sites. This structure can be23

considered as an elastic analogue of a diatomic graphene,24

as shown in Fig. 1a. Depending on the location of the25

resonant elements, two configurations (later referred to26

as states) can be defined (Fig.1a and 1b). In the fol-27

lowing, we will show that these configurations (that are28

mirror images of each other) are topologically different29

and can be contrasted in order to create domain walls30

able to support topological modes.31

We will study the characteristics and behavior of this32

material via a combination of theoretical, numerical, and33

experimental results to show that 1) the evolution from34

one state to the other is accompanied by a topological35

phase transition, and that 2) edge states are supported36

along domain walls (DW), that is those interfaces be-37

tween adjacent phases. In contrast with previous studies,38

we analyze the dynamic behavior of the QVHE waveguide39

by using a fully continuum modeling approach which pro-40

vides a general methodology of analysis and allows map-41

ping the topological behavior to the fundamental mass-42

less Dirac equation. We present also an in-depth study43

of the edge states and of their coupling with both the44

background material and the states supported by differ-45

ent domain walls. Finally, we experimentally study the46

propagation of topologically protected edge states in a47

nearly lossless elastic system and the effect of short range48

disorder. This analysis would complement and expand49

the results from previous studies on lossy elastic media1450

where the higher damping levels does not allow a defini-51

tive assessment of the disorder-induced back-scattering.52

From a general perspective, we highlight that the pro-53

posed waveguide design fully preserves the structural54

integrity and the load-bearing capabilities of the host55

medium while, at the same time, it enables a high de-56

gree of flexibility in tailoring the topological properties.57

Such design will open up a broader spectrum of practical58

applications.59

II. NUMERICAL RESULTS60

A. Band Structure Analysis61

The fundamental diatomic graphene-like unit cells and62

their corresponding lattice structures are shown in Fig.1.63

The unit cell has lattice constant a = 27.07 mm, radius64

rout = 8.46 mm, and thickness inside the indentation65

ht = 3.045mm. The background medium, i.e. the plate,66

has thickness h0 = 4.06 mm. The units were assumed to67

be made out of aluminum having mass density ρ = 270068

kg/m3, Youngs modulus E = 70 GPa, and Poissons ratio69

ν= 0.33.70

In order to break the SIS, we alter one of the indenta-71

tion by adding a local mass in the form of a cylindrical72

pillar having radius rinner . In other terms, the initial73

blind circular hole becomes a blind ring with the same74

outer radius and thickness. The pillar can be added ei-75

ther to site A or B (see Fig. 1f), therefore forming two76

possible material states (see Fig. 1b and 1c) that have77

the same geometric configuration and are mirror images78

of each other.79

The dispersion relations were calculated using a com-80

mercial finite element solver (Comsol Multiphysics).81

Given the finite dimension of the unit cell in the thickness82

direction the dispersion curves are composed by symmet-83

ric (S), anti-symmetric (A), and shear horizontal (SH)84

guided Lamb modes. The resulting dispersion curves are85

shown in Fig.2 where different colors were used to identify86

the different wave types. Mode hybridization between A87

and S modes28 is clearly observed and it is due to the lack88

of symmetry of the unit cell with respect to the neutral89

plane. Although the presence of hybridization does not90

prevent achieving TPESs, we mention that its occurrence91

could be avoided by employing symmetric taper config-92

urations with respect to the neutral plane. We specifi-93

cally pursued a single-sided design for the taper because94

it yields more general configurations and illustrates how95

topological properties could be effectively obtained while96

maintaining a fully flat surface. This latter aspect has97

important implications in applications where the aero-98

dynamic character of the thin panel must be preserved.99

The analysis of the dispersion properties in Fig.2a re-100

veals the existence of a degeneracy at the K point from101

which locally linear and isotropic dispersion curves em-102

anate. In k−space the curves identify two cones that103

touch at their vertices at the frequency corresponding104

to the degeneracy. The cone-like dispersion structure is105

the Dirac Cone (DC) while the degeneracy is the Dirac106

Point (DP). This phenomenon is a direct consequence107

of the C3v lattice symmetry, therefore implying that the108

DC is protected by the lattice configuration. When the109

symmetry is lowered to C3 by introducing a resonant pil-110

lar (either at site A or B), the SIS is broken and the DP111

degeneracy is lifted giving rise to a complete bandgap for112

A modes. In this case, the A mode is a continuation of113

the A0 mode. This is visible once both the hybridization114

and the mode splitting at the zero group velocity point115

are factored in. However, considering that the present116
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FIG. 1. Schematic view of the fundamental unit cells and
corresponding lattice structures. (a) shows the reference crys-
tal structure which preserves space inversion symmetry. The
lattice configuration is imprinted by engraving blind circular
holes according to a graphene-like pattern on an initially flat
aluminium plate. (b) and (c) show the two possible states
achieved from the original lattice structure by breaking SIS.
These configurations are the elastic analogue of a diatomic
graphene lattice and are obtained by adding locally resonant
elements at selected sites. These configurations are classified
as A− or B−states depending on the site (A or B as shown
in (f)) the was modified. The black dashed box indicates the
primitive unit cell in each of the three lattice structures. (d)
and (e) show the isometric view of the unit cell of both the
unperturbed and the A−state lattices. (f) and (g) show the
top-view of the same unit cells and define basic geometric
parameters.

discussion on topological edge states applies to antisym-1

metric modes, in the following we will not specify and2

target any specific mode order. This mechanism is illus-3

trated in Fig. 2b that shows the band structure of the4

SIS-broken lattice (for either the A- or B-state). In these5

simulations, a radius rinner = 2.12 mm of the pillar was6

used. Note that the larger rinner the wider the topologi-7

cal bandgap that opens up at the degeneracy. It should8

be kept in mind that larger perturbations of the origi-9

nal geometry also result in stronger inter-valley mixing10

which ultimately deteriorates the immunity of the edge11

modes from backscattering. This specific aspect will be12

further addressed in later sections.13

FIG. 2. Phononic band structure of (a) the monoatomic
graphene-like lattice (Fig.1(a)), and of (b) the diatomic
graphene-like lattice (either A− or B−state). Different mode
types are identified by different colors, SH = shear horizontal
mode (red), A= antisymmetric mode (blue), and S = sym-
metric mode (black). A complete bandgap of the fundamental
flexural modes A0 opens up at the original Dirac point when
SIS is broken (see red dashed box).

B. Berry curvature and valley Chern number14

The A− and B−state lattices belong to different topo-15

logical phases15 and can be assembled together in a single16

lattice in order to enforce a topological phase transition17

along the wall separating them. In such case, when mov-18

ing across the transition from one state to the other the19

topological bandgap would first vanish and then reopen20

again when entering the opposite state. The topologi-21

cal nature of this transition can be characterized using a22

topological invariant known as the Chern number Cn.23

The parameter Cn is obtained by integrating the Berry24

curvature Ωn(k) = ∇k×〈un(k)|i∇k|un(k)〉 · ẑ of the nth
25

mode throughout the first Brillouin zone. For this sys-26

tem, Cn is expected to be zero due to an odd distribution27

of the Berry curvature in k-space, which should be ex-28

pected given that TRS is preserved1. It follows that these29

lattices are classified as topologically trivial in the con-30

text of QHE systems. Nevertheless, for perturbative SIS31

breaking the Berry curvature peaks in correspondence to32

the valleys (i.e. around the K and K
′ symmetry points),33

having the form31
34

Ω(q) = ±
1

2
mv2g(|q|

2v2g +m2)−
3

2 , (1)

where q = k−kK/K′ is the wavevector deviation form35

the corresponding valley point, vg is the group velocity36

at the valley point, and m indicates the strength of the37

SIS breaking (i.e. it is directly correlated to the size of38

the cylindrical pillar). The sign depends on the choice of39

the state, of the valley point, and of the mode emanating40

from the DC. The integral of the Berry curvature can be41

analytically calculated to be ±π, as the bounds of the42

integral extend to infinity. This value is independent of43

the parameters vg and m. In such case, it is possible to44

define another topological invariant defined in the neigh-45

borhood of the valley that is known as the valley Chern46

number Cv. The Cv of the nth band is defined as47

2πCv =

∫
Ωn(k)d

2k (2)
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where the integral bounds extend only to a limited48

area around the valley. When the SIS breaking term1

|m| is small, the Berry curvature is strongly localized2

around the valley and the integral converges quickly3

(i.e. in a small area around the valley) to a value4

Cv = ±1/2. This quantized value characterizes the5

bulk–edge correspondence32 while the difference ∆Cv =6

CA
v,up − CB

v,up between the valley Chern numbers of the7

upper (or lower) bands of two adjacent lattices indicates8

the number of gapless edge states expected at the domain9

wall. This analysis suggests that an edge state should be10

expected at the DW between adjacent A- and B-state lat-11

tices, because their corresponding Berry curvatures result12

in ∆Cv = 1.13

Using Eqn. (1), we carried out the numerical calcu-14

lation of the Berry curvature of the A-state lattice, for15

both the upper and lower mode. The calculation was16

performed over a finite squared area around the K point17

with qxa, qya ∈ (−1.67, 1.67), as shown in Fig. 3b, and18

the resulting Berry curvature was integrated to obtain19

the valley Chern numbers. The resulting valley Chern20

numbers are ± 0.35 for both the upper and lower mode,21

that is approximately 30% error from the theoretical22

quantized value Cv =1/2. The reason for this discrep-23

ancy is found in the relatively strong SIS-breaking that24

was applied to the lattice. In the case of strong symme-25

try breaking, |m| increases in Eqn. (1) which results in26

a broader (less localized) distribution of the Berry cur-27

vature function around the K point. It follows that,28

not only the integral of Ωn(q) converges slower, but29

the Berry curvature extends across the inter-valley cen-30

ter (M point). This over-extension of the Berry cur-31

vature cancels out the Berry curvature with opposite32

sign (associated with the neighboring valley) as shown33

in Fig. 4(a,b). In a 2D k-plane view, it is also observed34

that the Berry curvature contours evolve from circular-35

to triangular-shaped when moving from the valley cen-36

ters towards the bisectors of the valleys, where the Berry37

curvature vanishes. This analysis clarifies why the calcu-38

lated valley Chern number is always less than its expected39

quantized value and highlights that in presence of strong40

SIS-breaking the valley Chern number is not uniquely41

defined. Nevertheless, we note that the calculated value42

of Cv still provides useful insights with regards to the43

characterization of the lattice structure. The strong SIS-44

breaking also leads to edge states that do not cross com-45

pletely the topological band gap and that are subject to46

weak reflections when traveling along sharp corners (i.e.47

in conditions of high-disorder), as shown in later sections.48

C. Domain-wall edge states49

The analysis presented above indicates that by con-50

necting A- and B-state lattices along selected edges of51

the graphene-like lattice (i.e., zigzag, armchair, bearded)52

topologically protected edge states should be expected53

along the DW interface. In the following, we present the54

case of domain walls assembled from zigzag edges as an55

FIG. 3. (a) The dispersion surfaces of the flexural A0 modes
of the A-state lattice near the K valley. (b) and (c) show the
Berry curvatures of the upper and lower A0 modes once the
degeneracy at the DP is lifted.

k
x

k
y

K

K’

Γ

k
y

K

K’

Ω

k
y

Ω

K

K’

(a)

(b)

(c)

FIG. 4. (a) The Berry curvature functions at two neighboring
valleys in the case of large SIS-breaking. (b) The resulting
Berry curvature (i.e. the sum of the contributions from both
valleys) is zero around the inter-valley center. (c) The Berry
curvature contours on the k-plane. The contours evolve from
circular- to triangular-shaped while moving from the valley
centers towards the bisectors of the valleys, where the Berry
curvature vanishes.

example of possible topological lattices obtainable from56

the fundamental states.57

Figure 5a shows the schematic of an elastic waveguide58

assembled by connecting A- and B-state lattices along59

their zigzag edge. Two different types of domain walls60

are formed at the interface between the two states, as61

marked by the black dashed box. These two types of DW62

have different geometric configurations depending on the63

position of the A- and B-states with respect to the in-64

terface. For clarity, these two configurations are labeled65

DW1 (B-state is on the right of the A-state) and DW266

(A-state is on the right of the B-state). The schematic of67

the primitive supercell of the composite waveguide is pro-68

vided in Fig. 5a. This supercell was used in the numerical69

calculations in order to obtain the dispersion properties70

of the composite waveguide. More specifically, periodic71

boundary conditions were applied on the four sides of the72

supercell before solving for the system eigenvalues. Fig-73

ure 5b shows the dispersion relations of such waveguide in74

a frequency range around the topological bandgap (only75

the A0 modes are plotted).76

The appearance of the edge states at DW1 and DW277

can be easily identified in the dispersion results (Figure78

5b) where the bulk modes are marked in blue and the79
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FIG. 5. (a) Schematics of an elastic waveguide having A- and
B-state lattices connected along their zigzag edges. This con-
figuration gives rise to two different domain walls DW1 and
DW2, as marked by the dashed black boxes. The primitive
supercell of such waveguide is also shown. (b) The dispersion
relations of the waveguide clearly show the existence of edge
states in the topological band. For clarity, only the flexural
(A) modes are drawn in the dispersion plot. (c) Plots of the
eigenstates of the edge modes supported at the domain walls
DW1 and DW2. The plots illustrate different symmetry pat-
terns (either symmetric or antisymmetric) taking place with
respect to the interface plane (marked by dashed lines).

edge modes in red. The solid black vertical lines mark80

the projections of the valley points along the direction1

of the interface (K′ maps to 2/3 and K to 4/3). Note2

that the forward propagating mode supported by DW13

(DW2) emanates from the K (K′) valley while the back-4

ward propagating mode supported by DW1 (DW2) em-5

anates from the K
′ (K) valley. Such large separation6

in momentum space between the forward and backward7

traveling modes enables edge states that are almost com-8

pletely immune from back-scattering, at least in pres-9

ence of long range disorder. It is also worth observing10

that the two DW modes are partially gapped (i.e. they11

do not cross entirely the topological band) due to the12

large perturbation produced in the original lattice. Ex-13

amining the eigenstates associated to these edge modes14

(Fig.5c), we observe that they exhibit different symme-15

try with respect to the plane of the interface (indicated16

by the dashed lines in Fig.5c). In the following, we will17

show that this aspect leads to different coupling behavior18

when the edge states are excited by an external source.19

D. Full field numerical simulations20

In order to further characterize the propagation behav-21

ior of the egde modes, we performed full field numerical22

simulations on a flat plate having the QVHE topologi-23

cal lattice embedded in the center section. The lattice24

was excited from a source located in the flat part of the25

plate (hence external to the topological material) and26

generating a plane wave at normal incidence. This gen-27

eral configuration was used to investigate the dynamic28

behavior of different types of DW interfaces. The differ-29

ent interfaces are classified according to the edge-type of30

the graphene lattice used to assemble the domain wall.31

In particular, DW1 and DW2 are walls obtained be-32

tween zigzag edges, and DWA is a wall between armchair33

edges. Figure 6 provides a schematic view of these do-34

main wall configurations. Numerical results are shown in35

Fig.7 for the steady-state response due to an excitation36

at f =29.93 kHz. Perfectly matched layers were applied37

all around the structure to suppress the boundary reflec-38

tions. The inset in each sub-figure indicates the domain39

wall shape being investigated as well as the specific na-40

ture of the wall (DW1, DW2, or DWA).41

Figure 7a shows a Z-shape domain wall whose constitu-42

tive segments are all made of DW1 type (i.e. zigzag edge)43

and form two sharp corners having 120◦ bends. The nu-44

merical results show that the input wave (see white ar-45

row) generates an edge state that is concentrated near the46

DW and is effectively guided along the wall itself. The47

transmitted beam appears to have lower intensity com-48

pared to the incident beam due to the impedance mis-49

match between the topological lattice and the flat plate50

which produces some reflections at both the entrance and51

exit points. Figure 7b shows the case of a domain wall52

characterized by two 90◦ bends. This case is different53

from the former because the mid-segment of the domain54

wall has armchair edges which theoretically should sup-55

port a different edge state. This case was explored in56

order to understand if propagation along dissimilar and57

concatenated domain walls was possible. Results clearly58

illustrate the efficient coupling between the zigzag and59

the armchair edge states, as long as both modes are60

supported at the same excitation frequency. In Fig.7c61

and d, the domain wall is designed to perform a U-turn.62

Although, in this case, the individual segments are all63

of zigzag type, the design mixes DW1 and DW2 along64

the same interface. This aspect is important because it65

was previously shown that DW1 and DW2 support edge66
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FIG. 6. Schematics illustrating (a) the different edges of the
graphene-like lattice and (b) the geometric configurations of
different domain walls used to assemble the topological lattice.

modes having different symmetry with respect to the in-67

terface.1

When the interface is excited on the DW1 interface2

(Fig.7c), which supports symmetric eigenstates, the edge3

mode can be excited and propagate along the domain4

wall. On the contrary, when the excitation is applied5

at DW2 (Fig.7d), which supports antisymmetric eigen-6

states, the incident wave cannot enter the topological in-7

terface and it is entirely reflected. This behavior clearly8

shows the different levels of coupling existing between9

an external excitation and the different types of domain10

walls. It also offers a higher flexibility in the design of11

waveguides having preferential and one-way coupled di-12

rection of propagations.13

To further characterize the propagation behavior of the14

different edge states, we performed a time transient sim-15

ulation on the same structure used in Fig.7a. The main16

objective was to observe the back-scattering immune be-17

havior of the edge states. A 20-count wave burst hav-18

ing a center frequency of f =29.93 kHz was used as ex-19

citation. Figure 8 shows snapshots of the propagating20

wave at successive time instants. Results clearly illus-21

trate how the wave burst is capable of traveling around22

sharp bends while giving rise only to small amount of23

back-scattered waves. Note that this result is fully con-24

sistent with our previous theoretical analysis that showed25

a small but nonetheless non-negligible inter-valley mixing26

between the two counter-propagating edge modes.27

Note that this study focused on the analysis of edge28

states associated with antisymmetric modes. A-modes29

were selected because they typically dominate the re-30

sponse of thin-walled structural waveguides. Neverthe-31

less, the above design can be applied to the control of32

FIG. 7. Full field simulations in a flat waveguide integrating
an embedded slab of topological material. The system is ex-
cited by a plane wave at f =29.93 kHz and normal incidence.
The insets in each sub-figure provide a schematic view of the
different domain wall shapes and configurations, while the
white arrow indicates the direction of the incident wave. (a) A
Z-shaped domain wall whose individual segments are all DW1
(zigzag type). (b) A Z-shaped domain wall whose segments
are a combination of DW1 (zigzag) and DWA (armchair). (c)
and (d) show a U-shaped domain wall whose segments are a
combination of DW1 and DW2.

symmetric modes as well. A short discussion on the prop-33

agation of symmetric modes in the topological waveguide34

and on the corresponding S edge states is presented in35

Appendix A.36

III. EXPERIMENTAL RESULTS37

In order to validate our theoretical and numerical ap-38

proach to the design of topological waveguides, we per-39

formed an experimental validation of one of the designs40

discussed above. In particular, we selected the Z-shaped41

interface with segments aligned with the DW1 zigzag42

edges. The experimental sample was fabricated by CNC43

machining starting from an initially flat aluminum plate44

having a thickness of 4.06mm (Fig.9b). The experimen-45

tal sample was mounted vertically in an aluminum frame46

while viscoelastic tape was applied on the surrounding47

boundaries in order to minimize reflections and rever-48

beration (Fig.9a). An array of Micro Fiber Composite49

(MFC) patches (Fig.9b) was surface bonded on the plate50

in correspondence to the entrance of the zigzag edge and51

actuated to generate a quasi-planar flexural wave. The52
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FIG. 8. Full field transient simulations showing the propa-
gation of a 20-count wave burst at successive time instants.
The conditions for this simulation are identical to those used
in Fig. 7a. (a)-(d) snapshots of the wave field at successive
time instants showing that the burst is capable of traveling
along sharp bends while giving rise only to very limited back-
scattering.

number of MFC patches was selected in order to gener-53

ate a wavefront wide enough to excite the entire Z-shaped1

channel. The out-of-plane response of the plate was ac-2

quired using a Polytec PSV-500 scanning laser vibrome-3

ter on the flat side. Both steady-state and transient mea-4

surements were performed. The steady-state response5

was collected following a harmonic excitation at f = 29.26

kHz which belongs to the topological bandgap. The time7

transient measurement was obtained in response to a 15-8

count wave-burst excitation signal having a f = 29.2 kHz9

center frequency. In this experimental study, we selected10

a lower number of counts for the wave burst signal com-11

pared with the numerical simulations in order to reduce12

the length of the burst signal and therefore better visual-13

izing the propagation along the corners and any eventual14

backscattering.15

Figure 9c shows the experimental measurements under16

steady-state excitation. The topological edge state along17

the Z-shaped domain wall is clearly visible accompanied18

by a very limited penetration of energy into the bulk, as19

predicted by both theory and simulations. Following the20

same approach set in place for the numerical simulations,21

a time transient measurement was also performed in22

order to observe the possible presence of back-scattering23

at the sharp corners. Figure 9d-h show the flexural wave24

measured at successive time instants. Results clearly25

indicate that the wave burst is capable of traveling26

along the Z-shaped path while giving rise only to minor27

back-scattering. Note that the transient excitation28

tends to generate a wider spectrum of frequencies in the29

initial burst. Hence, in order to eliminate the initial30

broadband transient the measured data were bandpass31

filtered around the center frequency of the burst. As a32

general observation, these results are well consistent with33

the theoretical and numerical predictions and confirm34

the possibility to create fully-continuous, load-bearing35

structural waveguides exhibiting high-level topological36

properties.37

38

IV. CONCLUSIONS39

We presented the design and the experimental valida-40

tion of a fully-continuous and load-bearing thin-walled41

structural waveguide capable of topologically protected42

elastic modes. The waveguide was designed by ex-43

ploiting a concept that is the elastic analogue of the44

Quantum Valley Hall Effect (QVHE) achieved via a45

diatomic-graphene-inspired design implemented by using46

only geometric tapers. Such design preserves the struc-47

tural properties of the host waveguide while providing48

a largely increased design space capable of highly en-49

hanced tailoring of the energy propagation properties.50

The diatomic graphene design exhibits a C3 symme-51

try which breaks the mirror symmetry characteristic of52

monoatomic graphene C3v. The reduced symmetry guar-53

antees the existence of topologically protected edge waves54

at the interface between domains having different topo-55

logical charges. Despite the QVHE effect can only give56

rise to weak topological properties (because time reversal57

symmetry is still intact), topological edge states having58

a substantially reduced back-scattering can be achieved.59

This approach enables the design of simple and robust60

elastic topological waveguides that can be fully embedded61

in a host structure in order to achieve precise and (quasi)62

one-directional wave guiding. This approach holds great63

potential to control the propagation of acoustic waves64

within structural elements which is a critical capability65

to enable passive-adaptive vibration and structure-borne66

noise control in structural systems for high-performance67

applications.68
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Appendix A: TOPOLOGICAL STATES OF THE S073

MODE74

The analysis of the topological properties for symmet-75

ric modes follows the same conceptual path presented76
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above for the analysis of the antisymmetric states. In77

this regard, the first step requires the identification of1

Dirac dispersions. In order to facilitate the identifica-2

tion of the S−type Dirac cone, we rescaled the unit cell.3

The scaled unit cell has lattice constant a = 21 mm,4

radius rout = 6.5625 mm, and thickness inside the in-5

dentation ht = 3.293mm. The background medium, i.e.6

the plate, keeps the same thickness h0 = 4.06 mm. As7

a result, the previously found A−type Dirac cone shifts8

to 40 kHz while a S0 Dirac cone can be identified at9

approximately 160 kHz, as shown in Fig.10a. Then, SIS-10

breaking is achieved introducing resonant pillars hav-11

ing rinner = 0.9844 mm. Following the SIS perturba-12

tion, both the Dirac degeneracies associated with the13

A− and S−modes are lifted, hence giving rise to com-14

plete topological bandgaps for either the in-plane or the15

out-of-plane polarizations (see Fig.10b). Comparing the16

two topological bandgaps, the one associated with the17

S−modes is much less sensitive to the same level of SIS18

perturbation exhibiting a bandwidth of only 1.90 kHz (in19

contrast to the 4.27 kHz bandwidth for the A−modes).20

Similarly, we calculated the dispersion in presence of21

the domain wall in a frequency range around the S0 topo-22

logical bandgap. The numerical results are presented in23

Fig.11a where the two gapless edge states at DW1 and24

DW2 are well identified by the two linear dispersions25

crossing each other at the valley-projected points. Exam-26

ining the eigenstates associated with these edge modes27

(Fig.11b and c), we observe a characteristic symmetry28

with respect to the plane of the interface which is qualita-29

tively very similar to what observed for the A−type edge30

states. The major distinction between the two different31

polarizations consists in the much higher penetration of32

the S-modes into the bulk (Fig.11b and c). From the pre-33

vious consideration it follows that the guiding of S-type34

edge states along domain walls is still conceptually pos-35

sible. However, in order to reduce the penetration into36

the bulk and achieve more precise guiding and negligi-37

ble backscattering, much higher frequencies of actuation38

(i.e. shorter wavelengths) would be required. Hence, S-39

type actuation should be explored for cases where high40

frequencies can be employed for the specific application.41
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FIG. 9. Experimental setup and measurements. (a) Front view of the testbed consisting of a 4.06 mm thick aluminum plate
having a slab of QVHE topological material embedded in the center region. The red asterisk indicates where the excitations
source was located (on the back side). (b) shows the back side of the plate sample in order to illustrate the di-atomic graphene-
like lattice. An array of MFC patches was surface bonded right in front of the domain wall entrance and used to generate
the ultrasonic excitation. The inset provided a detailed zoomed-in view of the lattice structure. (c) Steady state response at
an excitation frequency of f = 29.26 kHz showing the measured transmitted A0 wave field (out-of-plane component) of the
test sample. The edge states are well concentrated near the DWs and are guided along the wall itself. (d)-(h) Time transient
response to a 20-count burst excitation having a center frequency f = 29.26 kHz showing the full wave field at successive time
instants. The edge state can successfully propagate through the bends while generating only minor reflections. The grey dashed
lines indicated the location of the zigzag domain walls
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FIG. 10. Band structure of the rescaled unit cell used to illustrate the behavior of the S-type edges states. The lower panels
cover the low frequency range where the A-mode DC occurs, while the upper panel covers the higher frequency range where
the S-mode DC occurs. The left panels (a) provide the dispersion for the unperturbed case while the right panels illustrate
the results for the perturbed (SIS-broken) case. The transition from DC degeneracy to a topological bandgap is well visible for
both modes. In all the plots, different mode types are identified by different colors in a way that is consistent with Fig.2; shear
horizontal mode are in red, antisymmetric mode are in blue, and symmetric mode are in black.
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FIG. 11. (a) The band structure for a supercell including both domain wall types. The edge states in the S0 topological band
are clearly visible. For clarity, flexural modes are marked in blue while S0 modes are marked in black. (b) and (c) show the
eigenstates of the edge modes supported at the domain walls DW1 and DW2, respectively.


