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We study a particle which propagates in a one dimensional strong random potential and is coupled to a
bosonic bath. We independently test various properties of bosons (hopping term, hard–core effects and generic
boson-boson interaction) and show that bosonic itineracy is the essential ingredient governing the dynamics of
the particle. Coupling of the particle to itinerant phonons or hard core bosons alike leads to delocalization of the
particle by virtue of a subdiffusive (or diffusive) spread from the initially localized state. Delocalization remains
in effect even when the boson frequency and the bandwidth of itinerant bosons remain an order of magnitude
smaller than the magnitude of the random potential. When the particle is coupled to localized bosons, its spread
remains logarithmic or even sub-logarithmic. The latter result together with the survival probability shows that
the particle remains localized despite being coupled to bosons.

PACS numbers: 71.23.-k,71.27.+a, 71.30.+h, 71.10.Fd

I. INTRODUCTION

The interplay between disorder and many-body interactions
is a long–standing problem which is important for the pres-
ence of the Anderson localization (AL)1 in realistic materi-
als. While the problem was recognized many years ago,2,3

recently there has been a significant progress in understand-
ing the physics of the many-body localization (MBL) which
extends the concept of AL by accounting for interactions
between the localized particles.4,5 The presence of MBL in
strongly disordered chains of spinless fermions (or equivalent
models) has consistently been confirmed by various theoreti-
cal investigations6–23 and a few experimental studies.24–29 The
many-body interaction is responsible for several distinctive
features of the MBL systems, in particular for the unusually
slow dynamics.30–48

The particle localization is not immune against arbitrary
many-body interaction and mechanisms which are known to
destroy the Anderson insulator may destroy the MBL as well.
In particular, the Anderson insulator may be destroyed by the
electron–phonon interaction via the so called phonon-assisted
hopping.49,50 However, the insulating state may still survive
in the low-temperature regime, as recently suggested in Refs.
51 and 52. The phonon-assisted hopping has been intensively
studied and is mostly understood for regular noninteracting
bosons.50 However, already the case of strictly dispersion-
less phonons may pose problems especially in one dimen-
sional (1D) systems.50 The role of other bosonic excitations
(e.g. magnons) or the boson-boson interaction remains un-
explored. In particular, it is an open problem whether cou-
pling between charge carriers and magnetic excitations47,53–58

may play the same role as the electron-phonon coupling. The
essential difference between both types of bosons is that the
energy density of the magnetic excitations is bounded from
above, whereas phonons can in principle absorb arbitrary en-
ergy.

Here, we study a single particle in a disordered chain which
is coupled to bosons. We aim to establish which properties of

the bosonic system are essential for preserving/destroying the
localized state. In particular, we study systems with regular
bosons (e.g. phonons) and hard-core (HC) bosons, whereby
the latter case should simulate spin excitations. We com-
pare results for itinerant and localized/dispersionless bosons
as well as interacting and noninteracting bosons. We find that
itineracy is essential for localization. We show that for suf-
ficiently strong disorder the particle is localized despite cou-
pling to localized hard-core bosons. However, even very small
bosonic dispersion destroys localization and leads to a subd-
iffusive hole propagation, which may eventually turn into the
diffusive transport at extremely long time–scale. In the sys-
tem of itinerant noninteracting bosons the particle and energy
transport is ballistic. In order to eliminate artifacts originat-
ing from this peculiarity of the bosonic subsystem we con-
sider also a generic case with boson–boson interaction when
the energy transport within the bosonic subsystem is diffusive.
It turns out that the latter interaction hardly influences prop-
agation of the coupled particle. Finally, the transport in the
strongly disordered Holstein model with dispersionless regu-
lar bosons is shown to be indeed singular since the particle
spreads out logarithmically or sub–logarithmically in time.

II. MODEL AND METHOD

We investigate the Aanderson localization in the one-
dimensional model with a single electron in a random poten-
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+ tb
∑
j

[
b†jbj+1 + h.c.

]
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∑
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j
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where nj = c†jcj represents the electron number operator, bj
represents either phonon or HC boson, and mj = b†jbj is the
boson number operator. The strength of electron-boson inter-
action is given by g, ω is the bosonic frequency. Dispersion of
otherwise localized bosonic degrees of freedom is introduced
via the overlap integral tb, while V1 and V2 represent nearest
and next nearest neighbor bosonic interaction strengths. We
separately consider standard bosons and the HC bosons. The
former case is relevant for systems where the quantum parti-
cle (ci) is coupled to optical phonons (bi) with frequency ω.
Then, [bi, b

†
j ] = δij and, in principle, the density of bosonic

excitations may be arbitrarily large. Choosing V1 = V2 = 0
one obtains the standard Holstein model. The results for HC
bosons simulate coupling to spin fluctuations. In this case, the
energy spectrum is bounded from above since there is at most
one HC boson per site, b†i b

†
i = 0. This restriction shows up

in specific commutation relations [bi, b
†
j ] = δij(1 − 2b†i bi)

for the latter operators. We perform calculations for one-
dimensional chains of various length sizes with open bound-
ary conditions. We perform time-evolution using Lanczos
based technique and use the limited functional Hilbert space
(LFHS) first developed in Ref. 59. In the Appendix A we
give a brief overview of the method. Such approach has suc-
cessfully been applied to studies on the real–time dynamics of
t–J and Holstein models.47,60–67 This method enabled calcu-
lations on larger chains with open boundary conditions where
the maximal distance between the electron and boson exci-
tation is given by Nh. When the numerical calculations are
carried out for systems of size L, the finite–size analysis usu-
ally consists in fitting the results by a function which is linear
in 1/L. In the present approach, we find the best fits which
are linear in 1/Nh and then we take the limitNh →∞ for the
fitting function.

III. NUMERICAL RESULTS

We start the time evolution from a random configuration of
bosonic degrees of freedom and well defined original position
of the coupled particle. We typically take 1400 realizations of
the disorder. In the case of HC boson (HCB) such choice of
the initial state represents propagation at infinite temperature.
This is not the case for the Holstein model due to unlimited
number of phonon degrees of freedom. In the later case the

temperature of bosonic subsystem is quite elevated but still
finite. In the Appendix B we discuss how results depend on
the initial state of the bosonic bath. We measure time in units
of [~/t0], in addition for simplicity we set in all cases t0 =
ω = g = 1.

In order to investigate the dynamics of the charge carrier we
calculate the particle density

ρj = 〈ψ(t)|nj |ψ(t)〉ave, (3)

where the index ”ave” signifies that expectation values have
been averaged over different random realisations of εj . Since
the density is normalized,

∑
j ρj = 1, we also define the mean

square deviation of the hole distribution68

σ2 =
∑
j

j2ρj −

∑
j

jρj

2

. (4)
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Figure 1. The mean square deviation σ2(t) for different values of tb
for the case when the particle is coupled to HCB’s using a) semi–log
plot and b) log–log plot; c) fitting exponents α vs. tb extracted from
σ2(t) = Atα. Fitting was performed in the long-time-limit; d) log–
log plot of σ2(t) of the HCB model using different values of nearest
and next nearest interaction V1 and V2, respectively. In all cases we
have used ω = g = 1, W = 12, and Nh = 20.

We start by presenting results for the HCB model. In Fig. 1
we present the time evolution of σ2 at large disorder W = 12.
In the case of localized HCB’s, i.e. when tb = 0, σ2(t) ap-
proaches a constant, indicating particle localization. In con-
trast, even a small value of dispersion tb > 0 already leads
to a power law behavior, i.e. σ2 ∝ tα, clearly demonstrated
as a straight line on the log–log plot, see Fig. 1(b). It is also
instructive to note that the time scale when the power law sets
in is roughly given by 1/tb as most clearly observed as a de-
viation from the straight line in Fig. 1(b). In Fig. 1(c) we
display extracted exponents α(tb). They appear to be non–
universal and characteristic of a subdiffusive spread of the ini-
tially localized particle. Moreover, in the whole range of tb
their values remain α(tb) < 0.5, which is far below α = 1
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that is distinctive for the diffusive spread. Moreover, from our
analysis we may extrapolate that α(tb > 0) > 0 suggesting
that the particle remains localized only in the dispersionless
limit when HCB’s are strictly localized, i.e. at tb = 0. This
is perhaps expected from the point of view of variable range
hopping theory69 and Fermi golden rule, which assumes that
the bosons created in the inelastic hopping process spread out
to infinity, hence the probability for the reabsorbtion by the
electron drops to zero. Nonzero tb lets bosons spread out. In
contrast, at zero tb they remain in the vicinity of the particle,
consequently an emitted boson can be reabsorbed to reverse
the hopping process.

So far we have shown that already a small amount of dis-
persion among HCB’s leads to a delocalization of a particle
in a one-dimensional random potential. This holds true even
when the magnitude of the random potentialW by far exceeds
the boson frequency ω and the bandwidth Γ = 4tb. Next we
investigate the influence of interactions between HCB’s. In
Fig. 1(d) we present results for a fixed value of disorder, at
finite value of tb but different choices of nearest and next–
nearest interactions, V1 and V2, respectively. We further fix
the value of V2 = V1/2. The reason for the choice of a
finite value of V2 is that at V2 = 0 the system of interact-
ing HCB’s with zero coupling to the particle is exactly solv-
able and shows ballistic energy transport. One expects that
the electron-phonon coupling alone is sufficient to restore the
normal diffusive transport in the bosonic subsystem, even for
V1 = V2 = 0. It is clearly the case for non-zero concentration
of particles. However, this mechanism may not be efficient
for the present case of a single particle which couples to much
larger bosonic bath since the relevant time–scale for the onset
of normal transport may be very long. In comparison to the
V1 = 0 case we observe a slight increase of σ2(t) at small
V1 = 2tb followed by a decrease with further increasing of V1
towards V1 = 10tb. In the latter case we also observe a small
decrease of α. Interactions among HCB’s have only a small
effect on the delocalization processes. The slight increase in
σ2(t) at small values of V1 can be due to lifting of the de-
generacy among many–body HCB states in the presence of
interactions. However, further increasing of V1 may lead to
slowing down of the propagation of excitations in the HCB
subspace that seem to be responsible for the delocalization of
the particle.

We have tested the validity of our findings with regard to
finite–size effects as well as regarding the effect of limited
functional Hilbert spaces used in our calculations. The size
of the LFHS exponentially depends on the parameter Nh. We
refer the reader for a more precise explanation of the meaning
of Nh to the Appendix A as well as to the original publication
in Ref. 59. Here we only note that Nh represents the maximal
length that the particle travels from its original position, while
the maximal number of HCB’s is given byNh/2. In Fig. 2 we
show results for two different values of disorder, obtained with
different Hilbert spaces. When HCB’s are localized, i.e. for
tb = 0, the particle also remains localized, see Figs. 2(a) and
(c), even after the finite–size analysis. In particular, at W = 8
we observe a logarithmic increase of σ2(t), characteristic for
MBL systems42,70, while at yet stronger disorder, W = 12,

we observe a tendency towards the saturation similar to the
case of noninteracting particle (see curve for g = 0). How-
ever, in contrast to the noninteracting system, strict saturation
does not arise within the accessible time–window and the ex-
tremely slow dynamics resembles the MBL systems, rather
than noninteracting AL.

In contrast, in the case of itinerant HCB’s, that is at finite
dispersion tb = 0.5, we observe subdiffusion, see Figs. 2(b)
and (d). Dashed lines in all cases represent results obtained
using finite–size scaling analysis. For finite dispersion, we
have obtained nearly perfect fits, presented with dotted lines,
to the analytical form σ2(t) = Atα. We have performed a
similar analysis as well for smaller values of W = 6 and 4,
not shown. In the inset of Fig. 2(b) we show extracted α’s that
are increasing towards α = 1 as the disorder decreases. Due
to increasing finite–size effects we were unable to reliably in-
vestigate systems with W < 4.
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Figure 2. Semi–log plots of σ2(t) of the HCB model for different
sizes of the Hilbert spaces generated by Nh. Cases with no disper-
sion, tb = 0, are presented in a) and c) for two distinct values of dis-
orderW = 12 and 8, respectively. Results for tb = 0.5 are shown as
well for two distinct values ofW in b) and d). Note also substantially
different scales used to present results with or without dispersion.
Dashed (red) lines represent results after finite–size scaling analysis.
Dotted line in c) represents a fit to the form σ2(t) = A + B log(t).
Dotted lines in b) and d) represent fit to the form σ2(t) = Atα. Thin
(violet in colour) line in a) and c) represents evolution of σ2(t) for
a free particle, i.e. g = 0, that is subject to Anderson’s localization.
Inset in b) displays exponents α (circles) extracted from finite–size
scaled results at different values of disorder W . A singular square
represents result for the Holstein model with identical parameters as
the HCB one. Other parameters of the model were ω = g = 1 and
V1 = V2 = 0.

We next present results for the Holstein model. Due to un-
limited phonon degrees of freedom we had to limit our calcu-
lations to a maximal number of phonons, given by Nh. Sim-
ilarly to the HCB model case, Nh represents also the max-
imal distance that the particle travels from the origin, while
Nh − 1 is the maximal distance between the particle and a
single phonon excitation. We start the time evolution from
an initial random configuration of phonon degrees of freedom
and well defined initial position of the particle. We present
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results in Fig. 3 for a single set of parameters, i.e. W = 12
as well as at fixed g = 1. The discussion of the influence of
increasing coupling constant from weak towards strong cou-
pling limit for the Holstein model is presented in Appendix C.
In the case of localized phonons, i.e. tb = 0, we observe slow,
logarithmic increase of σ2(t), see Fig. 3(a). Since we have
used identical parameters as in the HCB model, Figs. 2(a) and
3(a) provide direct comparison between the models. While
in the case of the HCB model σ2(t) shows signs of satura-
tion or at most sub–logarithmic growth, we observe a clear
logarithmic growth when the particle is coupled to regular
bosons (phonons). Moreover, its spread is enhanced in com-
parison to the HCB case and displays quantitatively distinct
behavior from the noninterracting case at g = 0. A similar
comparison is found as well in the case of finite dispersion.
Coupling to itinerant phonons again leads to a subdiffusive
growth of σ2(t), see Fig. 3(b) with an exponent α = 0.62 that
is about 10% larger than in the case of the HCB model, for
visual comparison see also the inset of Fig. 2(b). However,
one cannot exclude that in this model there exists small, albeit
nonzero diffusion constant. Then, the subdiffusion would be
a transient effect since the spread due to normal diffusion will
dominate at sufficiently long time. Suppression of transport
in the case when particle is coupled to marginally localized
phonons has recently been demonstrated in Ref. 71 for the
low–temperature regime.
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Figure 3. a) and b) σ2(t) of the Holstein model for different sizes
of the Hilbert spaces generated by Nh and W = 12. The cases
with no dispersion, tb = 0, are presented in a) while results for
tb = 0.5 are shown b). Dashed (red) lines represent results after
finite–size scaling analysis. Dotted line in a) represents a fit to the
form σ2(t) = A + B log(t). Dotted line in b) represent fit to the
form σ2(t) = Atα. Overlaps O are shown in c) (tb = 0) and d)
(tb = 0.5) for the Holstein model with full lines and the HCBM
with dashed lines. Thin lines (violet in colour) in a) and c) represent
evolution of σ2(t) and O, respectively, for a free particle, i.e. at
g = 0, that undergoes Anderson’s localization. The inset in d) shows
the same data as in d) but using log-log scale. Other parameters of
the model were in all cases ω = g = 1, W = 12, and V1 = V2 = 0.

Finally, we investigate the survival probability defined as
the overlap of the many–body wave function |ψ(t)〉 with the

initial one |ψ(0)〉.15,72,73 Namely, we compute

O(t) = |〈ψ(0)| exp(−iHt)|ψ(0)〉|2ave. (5)

It measures the probability for finding the system still in the
initial state |ψ(0)〉 at time t.15 In the case of localized bosons,
tb = 0 presented in Fig. 3(c), O(t) approaches a constant
in the long–time limit. In addition, well defined oscillations
with a frequency ω ∼ 2 are observed at moderate times that
are more pronounced in the HCBM case. They signal transi-
tions among only a few states. The specific value of the fre-
quency originates from the disorder–averaging and indicates
that the charge dynamics is well restricted to the neighboring
sites.43 In contrast, in the case of itinerant bosons, Fig. 3(d),
O(t → ∞) → 0 while oscillations are strongly overdamped.
The survival probability turned out to be very useful in the
studies concerning the many–body localization,15,73 where
O(t) decays exponentially with the system size L,73 O(t �
1) ∼ exp(−aL). The latter holds true in the MBL as well as
in the ergodic regimes, whereby the parameter a in the local-
ized system is much smaller than in the ergodic case. In the
present studies, we have found a clear exponential decay with
Nh (quantity equivalent to L) only for systems with itinerant
bosons, see the discussion in the Appendix D. In contrast, in
systems with localized bosons the dependence of O(t � 1)
on the system size is rather small. The survival probability is
constructed in terms of the many-body wave function of the
total system. Then, the finite value of O(t) in the long–time
limit and weak Nh–dependence do not only indicate localiza-
tion of the particle but also freezing of the initial distribution
of bosons with tb = 0.

IV. CONCLUSIONS

We have studied the time evolution of a particle in a strong
random potential coupled to localized or itinerant bosonic de-
grees of freedom. The study was based on a Holstein–like
model in one dimension. Two types of bosons, i.e. hard core
bosons and phonons were used in our study. The main mo-
tivation to study hard core bosons was on the one hand their
similarity to spin degrees o freedom and on the other their
limited degrees of freedom that allowed studying larger sys-
tem sizes. The coupling of the particle to itinerant bosons,
HCB’s and phonons alike, leads to delocalization by virtue of
a subdiffusive spread from the initially localized state. Even
more surprisingly, delocalization remains in effect even when
the boson frequency and the bandwidth of itinerant bosons re-
main an order of magnitude smaller than the magnitude of the
random potential. From among all the discussed properties of
the bosonic bath, the itineracy of bosons plays the crucial role
for the dynamics of the interacting particle.

We expect for dispersive standard bosons that the subd-
iffusive transport may be a long–lasting but still a transient
phenomena. On a very long time–scale, the particle dynam-
ics should be similar to that discussed in Ref. 19 where, in-
stead of phonons, the quantum particle is coupled to a clas-
sical noise. However for strongly disordered systems, the
time–scale corresponding to the onset of standard diffusion is
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beyond the reach of direct numerical calculations for many–
body quantum systems. Even more challenging question con-
cerns the asymptotic dynamics of particle coupled to the hard–
core bosons.
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Appendix A: Generator of Limited Functional Hilbert Space

We only give a short description of the main parts of the
method. More details can be found in the original work,
Ref. 59. We choose the generator of the Limited Functional
Hilbert Space (LFHS) that consists of two off-diagonal parts
of the Hamiltonian in Eq. (1) of the main text,

O1 =
∑
j

nj(b
†
j + bj) (A1)

O2 =
∑
j

c†jcj+1 + H.c. . (A2)

The generating algorithm starts from a particle at a given po-
sition, e.g. j = 0, in a vacuum state of boson excitations,
|ψ(0)〉 = c†0σ|0〉 where |0〉 represents vacuum for the particle
as well as boson excitations. We then apply the generator of
basis states Nh-times to generate the LFHS:{

|ψ(l)〉
}

= (O1 +O2)
l |ψ(0)〉, (A3)

for l = 0, ..., Nh. We thus generate a Limited Functional
Hilbert Space spanned by states of the following form

|ψ〉 = |j; . . . , nj−1, nj , nj+1, . . . 〉 (A4)

where j represents the particle coordinate, while there are nm
bosons on site m. In the HCB case, nj ∈ {0, 1} while for
phonons nj ∈ {0, . . . , Nh}. The limited functional Hilbert
space that we construct is not a standard one where bosonic
degrees of freedom would be distributed uniformly on the lat-
tice irrespective to the particle position. Our approach adds
basis states more efficiently than some other methods. In the
case of generating phonon degrees of freedom a basis state is
included if it can be reached using Nb phonon creation opera-
tors and Nt particle hops in any order with Nb + Nt ≤ Nh .
For a given Nh , there is a basis state with Nh phonon quanta
on the same site as the particle and no phonon excitations else-
where. The particle can hop maximally Nh sites away from
its original position, but then there is no boson nor phonon
quanta in the system. In the HCB case the maximal number
of boson quanta is Nh/2. It is achieved by successive process
where a HCB is created on site-j followed by a jump to site
j + 1. In the case of LFHS we impose open boundary condi-
tions. After completing generation of LFHS we time evolve

the wave function using the Hamiltonian in Eq. (1) of the main
text while taking advantage of the standard Lanczos-based di-
agonalization technique. Sizes of LFHS for the HCB model
span fromNst ∼ 103 forNh = 10 up to 2×105 for the largest
Nh = 20 used in our calculations. Sizes of LFHS for the Hol-
stein model span fromNst ∼ 103 forNh = 8 up to 5×105 for
the largest Nh = 16. To achieve sufficient accuracy of time
propagation, we have used time-step-size ∆t = 0.02 and per-
formed up to 2× 104 time steps. In addition we have sampled
over 103 different realizations of disorder εi.

The main advantage of LFHS over the exact diagonaliza-
tion approach is to significantly reduce the dimension of the
Hilbert space. The method has been successful in comput-
ing properties of the driven Holstein polaron,65 dissociation of
a driven bipolaron,74 relaxation dynamics and thermalization
properties of a highly excited polaron,64,66,67 as well as static
and dynamic properties63 and non-equilibrium dynamics60–62

of correlated electron systems.

Appendix B: Initial state of the bosonic bath
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Figure 4. σ2 vs. t for the Holstein model. Nph(0) the number of
phonon excitations at t = 0. Inset represents 〈Nph〉(t). In both cases
we have used ω = g = 1, tb = 0.5, and W = 8.

We test the dependence of σ2 on the initial state of the
bosonic bath in the case of the Holstein model. In Fig. 4
we present σ2(t) obtained by starting the time propagation
from random initial states characterized by different total
number of bosonic excitations 〈Nph〉 ∈ {0, 1, 2, 3}, where
Nph =

∑
j b
†
jbj . In the inset of Fig. 4 we also follow the

time evolution of 〈Nph〉(t). Different initial states in the long-
time evolve towards distinct bosonic states, nevertheless, the
spread of the initially localized particle σ2(t) remains nearly
independent on the state of the bosonic subspace.

In the case of thermal equilibrium, different values of 〈Nph〉
correspond to different temperatures. It should be noted, how-
ever, that the system under consideration is initially not in the
thermal state. Fig.1d in the main text shows that the spread
of the quantum particle in HCBM is weakly modified by the
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boson–boson interaction even for very strong potentials V1
and V2. Since the latter interaction should lead to a rather
fast thermalization of the bosonic bath we come to conclu-
sion that non–thermal initial state of the bosonic bath does not
influence the spread of particle, at least not on a qualitative
level.

Appendix C: Strong coupling limit

Here we explore the influence of the coupling constant g
on the dynamics of the particle. We first introduce the dimen-
sioneless coupling constant λ = g2/2ωt0. It is well known
that λ ∼ 1 represents the transition point between the weak-
coupling regime for λ . 1 and the strong coupling one λ & 1.
In the latter the polaron effective mass scales approximately
as m∗ ∝ exp(g2). The naive expectation is then that by
increasing λ the particle would become nearly localised due
to the exponentially increased m∗. In contrast, as shown in
Fig. 5, the increase of λ leads to a monotonous increase of
σ2. It should be noted that during the time evolution the sys-
tem evolves through highly excited states while the concept
of a polaron with a large effective mass is a ground state phe-
nomena. Emission and subsequent reabsorption of phonons
represents the main mechanism for delocalisation of the par-
ticle in a random potential. For comparison we also include
result for λ = 0 that shows Anderson’s localisation.
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Figure 5. σ2 vs. t for the Holstein model for different coupling
strengths λ. Inset represents 〈Nph〉(t). In both cases we have used
ω = 1, tb = 0.5, and W = 8.

Appendix D: Finite-size scaling of the survival probability

In Fig. 6 we present finite-size scaling of the survival prob-
abilityO(t), as defined in Eq. (5) of the main text, in the limit

of large disorder, W = 12. In the case of localized bosons,
i.e. at tb = 0, see Figs. 6(a) and (c), we observe near com-
plete overlap of results obtained using system sizes ranging
from 103 states in cases of Nh = 10 through 106 in the case
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Figure 6. O(t) as given in Eq. (5) of the main text using different
system sizes as given by Nh, for the HCBM in (a) and (b) and the
Holstein model in (b) and (d). In all cases we have used ω = g = 1,
W = 12.

of Nh = 16. In contrast, in the case of itinerant bosons,
for tb = 0.5, we observe a substantial Nh-dependence of
O(t >> 1) in both models, see Figs. 6(b) and (d). Note
also that in contrast to the previous case, latter results are pre-
sented on a log-log scale. Then, almost equally spaced flat
sections of O(t >> 1) obtained for Nh = 10, 12, 14, ... in-
dicate that the survival probability scales exponentially with
the system size L that is in our method given by L ∼ Nh, i.e.
O(t >> 1) ∝ exp(−aNh).

In order to obtain a more quantitative picture of the
above mentioned exponential scaling we present in Fig. 7
O(t) exp(aiNh) where i = 1, 2 for the two models under con-
sideration. A nearly perfect scaling is observed for t >> 1.

It is beneficial to stress two important properties of the lo-
calized state in systems with tb = 0. On the one hand, there is
an extremely long-time scale which governs the particle dy-
namics for t & 102 as it is clearly visible in Figures 2(a)
and 3(a) in the main text. Such slow dynamics is character-
istic for MBL systems,42,70 whereas it does not arise in the
Anderson insulators (g = 0) where the spreading of particle
saturates already at t ∼ 10. On the other hand, the survival
probability does not show any clear exponential decay with
the system size, as it is the case in the MBL.73 The survival
probability in the studied electron-phonon system with tb = 0
resembles rather the projection of single–particle wave func-
tions 〈ψsp(0)|ψsp(t)〉 in the Anderson insulators, which is for
the particle under consideration at zero electron-phonon cou-
pling presented in Fig. 3(c) of the main text.
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40 Marko Žnidarič, Antonello Scardicchio, and Vipin Kerala Varma,
“Diffusive and subdiffusive spin transport in the ergodic phase of
a many-body localizable system,” Phys. Rev. Lett. 117, 040601
(2016).
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