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Abstract

Ion beam irradiation has recently emerged as a versatile approach to functional materials design.

We show in this work that patterned defective regions generated by ion beam irradiation of silicon

can create a phonon glass electron crystal (PGEC), a longstanding goal of thermoelectrics. By

controlling the effective diameter of and spacing between the defective regions, molecular dynamics

simulations suggest a reduction of the thermal conductivity by a factor of ∼20 is achievable.

Boltzmann theory shows that the thermoelectric power factor remains largely intact in the damaged

material. To facilitate the Boltzmann theory, we derive an analytical model for electron scattering

with cylindrical defective regions based on partial wave analysis. Together we predict a figure

of merit of ZT ≈ 0.5 or more at room temperature for optimally patterned geometries of these

silicon metamaterials. These findings indicate that nanostructuring of patterned defective regions

in crystalline materials is a viable approach to realize a PGEC, and ion beam irradiation could be

a promising fabrication strategy.

PACS numbers: 05.60.-k, 63.20.-e, 66.70.-f, 68.65.Cd
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I. INTRODUCTION

Since their discovery, thermoelectric materials have attracted extensive interest for direct

conversion between heat and electrical energy via Seebeck/Peltier effects1–5. As opposed

to fossil fuels, thermoelectrics are pollution-free during operation, stable, and have decent

manufacturing scalability2,5. Nevertheless, the thermoelectric conversion efficiency must be

enhanced for large-scale future adoption1–5. The conversion efficiency is given by6

η = ηC

√
ZT + 1− 1√

ZT + 1 + TH/TC
, (1)

which, as the figure of merit ZT = σS2T/κ increases, approaches the Carnot efficiency ηC

of an engine operating between heat baths with temperatures TH and TC . Here σ is the

electrical conductivity, S the Seebeck coefficient, and κ the total thermal conductivity, which

aggregates contributions from electrons and phonons. Since σ, S, and κ are intrinsically

related material parameters, they must be carefully coordinated in order to achieve a high

ZT .

To this end, early efforts focused separately on either thermal or electrical properties6.

While κ can be reduced by phonon engineering7, the power factor S2σ can be enhanced

by doping and electron band structure engineering such as in low-dimensional materials

and nanostructures8,9. In 1990s, the separate approaches were merged culminating in the

notion of the phonon glass electron crystal (PGEC)10, in which a material is perceived as

glassy by phonons, but remains crystalline for electrons. To realize a phonon glass electron

crystal, several approaches have proven promising. First, scattering of phonons via disorder,

such as by alloying, rattler structures, and point defects, has been demonstrated. The

alloying approach recently has achieved a high ZT ≈ 2.3 for iodine-doped Cu2Se11. Second,

scattering of phonons through nanostructuring such as superlattices and nanowires can also

be effective. A ZT ≈ 2.4 was reported in p-type Bi2Te3/Sb2Te3 superlattices at room

temperature12,13. Third, complex crystals are now emerging14, including skutterudites15 and

half-Heusler alloys16. The κ of these compounds is often below 5 W/mK, comparable to

glasses, contributing to a ZT around unity14. If only material performance were relevant,

these recently reported examples would already be quite competitive.

However, for thermoelectric deployment at global scales, it is imperative to account for

material cost and scalability of manufacturing2,17. Most notable thermoelectric materials
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contain elements such as Bi, Te, Sb, Pb, and Ag, that are either expensive, toxic, or chal-

lenging for processing. By contrast, silicon, the most widely used material, is nowadays being

reconsidered as a promising candidate17–20. Due to its low cost and viable manufacturabil-

ity, investigations for thermoelectric applications21 in both bulk alloy and nanostructured

form17,19 have regained interest. For instance, bulk Si0.98Ge0.02 has an appealing ZT ∼ 0.32

at competitive price of 1.7 US$/Watt19.

In this work, we propose a silicon nanocomposite composed of regularly patterned de-

fective regions embedded in a crystalline host, as shown in Fig. 1(a), for thermoelectric

applications. In our recent work (Ref. [22]), we directly simulated the ion beam irradiation

process using molecular dynamics, and showed that the effective diameter of defective re-

gions D and the spacing between them L can be controlled varying the parameters of the ion

beam irradiation process, such as ion type, irradiation energy, fluence, beam diameter, and

beam incidence angle. The system considered here shares some features with other recently

proposed concepts for patterned silicon, such as nanoporous silicon20, holey silicon23, and

silicon nanomeshes24. Whereas most of these have concentrated on structuring at the scale

of several atomic spacings, the systems considered here extend to larger length scales that

lie between the mean free path of electrons and that of phonons. The physical justification

for the proposed metamaterial is illustrated conceptually in Fig. 1(b). Due to the long

phonon mean free paths Λp in silicon relative to the corresponding electron mean free paths

Λe, we expect that as the nanostructure feature size grows, the electronic conductivity will

increase and saturate more quickly than the thermal conductivity. If the inter-defective

region distance L falls within the length window spanned by the mean free path of electrons

Λe and that of phonons Λp, then κ can be reduced due to phonon scattering while σ is

largely retained, thereby ZT can be enhanced.

The purpose of the present work is to verify that the proposed metamaterial formed by

ion beam patterning of silicon can lead to a PGEC. Atomic simulations are performed to

determine the phonon transport and thermal conductivity, while the Boltzmann transport

theory is employed to estimate the electrical properties. Whereas Green-Kubo calculations

have been well established for obtaining thermal conductivity, the scattering model for

electrons with the cylindrical defective regions is currently not available in the literature. To

bridge this gap, we derive an analytical scattering model based on the partial wave approach

and gaskinetic theory, which combines quantum and classical transport theories (a similar
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model for scattering with quantum dots was proposed recently in Ref. 25). The scattering

model is based on perturbation theory and expected to be valid for low energy, independent

carrier scattering events. Using this scattering model, we demonstrate that it is possible

to achieve substantial reduction in κ without sacrificing electrical properties, and predict

that ZT ≈ 0.5 or greater is achievable. This compares well to other nanostructured silicon

systems reported in the literature such as silicon nanowires (ZT ≈ 1)18,26 and nanoporous

silicon (ZT ≈ 0.4)20,23, but practically has the advantage of ease of manufacturability via

ion beam irradiation.

II. COMPUTATIONAL METHODS AND THEORETICAL MODELS

To study the thermoelectric transport properties, we used different techniques for phonons

and electrons. For the prediction of thermal conductivity, we applied Green-Kubo formal-

ism implemented in equilibrium molecular dynamics simulations. Meanwhile, for electrical

properties, we resorted to Boltzmann theory and the relaxation time approximation.

A. Equilibrium molecular dynamics for κ

The ion beam irradiated materials are created by direct simulation of ion bombardments

using molecular dynamics simulations, as described in detail in our previous work22. The

impact location is randomly chosen from a two-dimensional normal distribution parame-

terized by beam diameter, which mimics a focused ion-beam apparatus. As annealing is

expected to be most prominent in the first few picoseconds after ion impact, we allow the

system to anneal for 70 ps at T = 300K between two consecutive ion impacts. An ensemble

of 50 independent irradiation processes are simulated to obtain satisfactory statistics. All

molecular dynamics calculations were performed using HOOMD-blue27. The interactions

between silicon atoms are described by the Tersoff potential28, and ion-Si interactions by

the Ziegler-Biersack-Littmark universal repulsive potential29. Figure 1(c) illustrates an ex-

ample of a sample irradiated by a 5 keV Xe ion beam oriented normal to the surface. The

damaged region is characterized by as a cylindrical region with diameter describing the ra-

dial extent and height describing the range of damage (see Fig. 1(c)). The corresponding

radial distribution function for varying degrees of disorder is shown in Fig. 1(d), where new
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peaks are generated due to the presence of disorder, which drift as the degree of disorder

increases.

The thermal conductivity κ of the irradiated samples is calculated using the Green-Kubo

formulism30, which relates κ to the fluctuation of heat flux,

κ =
1

kBV T 2

∫ ∞
0

〈J(t) · J(0)〉 dt (2)

based on the fluctuation-dissipation theorem. Here kB is the Boltzmann constant, V volume,

t time, and 〈J(t) · J(0)〉 the auto-correlation function of heat current J calculated from

molecular dynamics simulations. The integral is considered converged once the statistical

errors fall within 5%. All simulations were performed at T = 300 K with a time step of

0.5 fs. The system was equilibrated to the desired temperature for 20 ps with a Berendsen

thermostat, and then sampled in the microcanonical ensemble (NVE) for an additional 20

ps. The heat current was then recorded for a simulation time of 6 ns. For each value of

κ reported below, 10 independent micro-states are simulated, and κ is averaged over in-

plane directions κ = (κx + κy)/2. The calculated κ of pristine silicon at room temperature

is approximately 270 W/mK from this method, almost twice that of the experimentally

observed value of 150 W/mK31. However, this numerical value is consistent with other

molecular simulations using the same potential32.

B. Boltzmann theory for σ, S

For the electronic properties σ and S we have applied Boltzmann theory. We use the

relaxation time approximation and the parabolic bands approximation for the electronic dis-

persion. These approximations are sufficiently accurate for non-degenerately doped silicon,

since at typical thermoelectric operating temperatures (T = 300 K to T = 700 K) the filling

of the conduction bands is relatively small33,34. Within this framework the kinetic definitions

of σ and S are given by6

σ = −q2

∫
v(ε)2τ(ε)

∂f

∂ε
g(ε) dε , (3)

S =
1

qT

∫
v(ε)2τ(ε)∂f

∂ε
[ε− µ]g(ε) dε∫

v(ε)2τ(ε)∂f
∂ε
g(ε) dε

, (4)

where q is the elementary charge, ε the charge carrier energy, v(ε)2 = 2ε/m∗ the group

velocity squared, m∗ the carrier effective mass, τ(ε) the relaxation time, f(ε) = [e(ε−µ)/kBT +
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1]−1 the Fermi-Dirac distribution, µ the chemical potential, and g(ε) =
√

2π−2~−3(m∗)3/2ε1/2

the electronic density of states. A factor of 2 accounting for spins has been absorbed into

the density of states. We consider donor doping by phosphorous (activation energy 45 meV)

at a concentration of 3 × 1019 cm−3. The resulting carrier density and Fermi level are

determined self-consistently via a graphical iteration method (see Ref. 35 and Appendix A).

The relaxation time τ(ε) remains the only unknown to be determined.

To determine τ(ε), we consider intrinsic and extrinsic scattering processes, the latter aris-

ing here directly from the damaged regions created by ion beam irradiation. Matthiessen’s

law gives the overall scattering rate as

τ−1
0 (ε) = τ−1

i (ε) + τ−1
D (ε) , (5)

where τi(ε) denotes intrinsic and τD(ε) extrinsic scattering times. This amounts to assum-

ing that the defective regions act as isolated scattering centers. For τi(ε), we assume that

in the irradiated samples the intrinsic scattering mechanisms remain unchanged from pris-

tine silicon33, a commonly used assumption when studying nanotructured thermoelectric

metamaterials20. We incorporate descriptions of intrinsic electron scattering according to

the deformation potential of acoustic phonons and optical phonons; all the material param-

eters and models are summarized in Table I. Scattering rates for both acoustic and optical

phonons share the power-law form τi(ε) = τi0(ε/kBT )r, where the parameters τi0 and r can

be fitted to experimental measurements, and have previously been well characterized for

silicon36.

On the other hand, in order to determine τD(ε), we invoked the partial wave approach.

Partial wave analysis is a general method to calculate scattering cross-sections applicable

when the scattering potential is azimuthally symmetric,38 which is an approximate but

reasonable description of the ion beam damaged regions. This approach has been applied

recently to estimate the scattering time for electrons interacting with spherical quantum dots

embedded in a host matrix.25 In the following section, we adapt the method to cylindrical,

rather than spherical, defective regions of interest here. This theoretical scattering model

will also be applicable to other recently proposed planar-patterned nanomaterials39 and

two-dimensional nanoporous/holey metamaterials40,41.
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Table I. The scattering mechanisms and corresponding power-law models, τi(ε) = τi0x
ri , x =

ε/kBT , considered in this work. The dominant scattering mechanisms around and above room

temperature are deformation potential scattering with acoustic and optical phonons. The param-

eters are obtained by fitting experimental measurements:36,37 DA = 9.0 eV, Cl = (3C11 + 2C12 +

4C44)/5 = 1.895 × 107 Pa, θ = ~ωLO/kB = 731.1 K, m = 9.11 × 10−31 kg denotes the electron

mass, and m∗ = 0.26 m is the conductivity effective mass. Note that the unified power-law with

identical exponents ri largely simplify the analysis in this work.

Scattering mechanism (i) τi0 ri Refs.

Acoustic phonon

deformation potential

2.40× 10−19Cl
D2
AT

3/2

( m
m∗

)3/2 −1/2 [36, 37]

Optical phonon

deformation potential

4.83× 10−19Cl[exp(θ/T )− 1]

D2
AT

1/2θ

( m
m∗

)3/2 −1/2 [36, 37]

Cylindrical defective area π

4
√

2

L2

D

√
m∗

kBT
−1/2

Eqn. 12 in

this work

C. Relaxation time τD(ε) due to cylindrical defects

In the following we derive the scattering rate for electrons τD(ε) due to the presence of a

cylindrical barrier potential, as shown in Fig. 2(a),

V (r) =

V0, r ≤ a

0, r > a
(6)

where V0 > 0 is the barrier height. Assuming the scattering is elastic, kinetic theory42 gives

τD(ε)−1 = ND 〈v〉Dm , (7)

where ND is the density of defected regions, 〈v〉 the average carrier velocity, Dm =
√

4σm/π

is the scattering diameter, and σm denotes the momentum scattering cross-section defined

by

σm =

∫
σ(θ)(1− cos θ)dΩ = 2π

∫ π

0

σ(θ)(1− cos θ) sin θdθ , (8)

where σ(θ) = dσ
dΩ

is the differential scattering cross-section that measures the probability of

incident particles passing through an infinitesimal area dσ and then being scattered into solid
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angle dΩ. Here the differential cross-section is independent of azimuthal angle due to the

potential symmetry. The description based on kinetic theory here relies on the assumptions

that scattering events are independent and that carriers can be described as particles in the

classical limit.

A detailed derivation of the scattering cross section using partial wave analysis is provided

in Appendix B. In the limit of low energy elastic scattering process, the cross-section is

σm ≈ 4πa2

(
1− tanh(k0a)

k0a

)2

≈ 4πa2 , (9)

which is an approximate solution obtained by retaining only S-wave (l = 0) component of

the complete solution

σm =
4πa2

(ka)2

Nl→∞∑
l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h
(1)
l (ka)

∣∣∣∣∣
2

, (10)

where jl and h
(1)
l are the spherical Bessel and first-kind Hankel functions, k2 = 2mε/~2, and

k2
0 = 2mV0/~2. An a posteriori justification of the assumed S-wave scattering, with higher-

order terms neglected, is presented in Fig. 2(b). In the limit of an insulating, impermeable

defective region (V0 →∞), the boundary condition becomes ψ(a, θ) = 0. As seen from Fig.

2(b), the calculated cross-section converges quickly with the number of angular terms (Nl)

included. For instance when ka = 0.5 with only l = 0, an error of 1.91% is introduced.

Therefore, retaining the l = 0 term alone well represents low-energy scattering (ka� 1).

Before substituting Eqn. 9 into Eqn. 7 to obtain the scattering rate, the average velocity

of incident carriers must be found. Within the parabolic band description adopted here, the

carrier speed is related to the energy as v =
√

2ε/m∗. Due to the uniform distribution of

angles ϑ ∈ [−π/2, π/2] between the velocity vector and the longitudinal cylinder axis, the

average incident speed is

〈v〉 =

∫ π/2

−π/2
v cosϑΘ(ϑ)dϑ =

2v

π
, (11)

with the distribution density Θ(ϑ) = 1/π.

Combining Eqns. 7, 9, and 11, and letting ND = 1/L2 be the number density of the

defective areas, the momentum relaxation time can be written as

τD(ε)−1 = ND 〈v〉Dm =
4
√

2

π

D

L2

√
kBT

m∗
x1/2 , (12)

where x = ε/kBT . Ultimately, the external scattering rate due to the cylindrical defective

areas exhibits the power-law form τD(ε) = τD0(ε/kBT )r with exponent r = 1/2, which turns
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out to be the same scaling as all intrinsic models (See Table I). The unified power-law

scattering conveniently simplifies our analysis, allowing a unified calculation of electrical

properties. Substituting τ(ε) = (τi0 + τD0)(ε/kBT )r, r = 1/2 into Eqns. (3) and (4),

σ =
2q2τ0(3/2 + r)(kBT )3/2+rΓ(3/2 + r)

3
√

2π3/2Γ(3/2)
(m∗)1/2eη , (13)

S = −kB
q

(η − r − 5

2
) , (14)

where Γ denotes the gamma function and η = µ/(kBT ) the reduced chemical potential.

Although this model assumes that scattering events occur independently, we expect it to

capture the transport physics sufficiently. On one hand, the near-field detailed interactions

could be resolved by adding more components in the partial wave expansion. In principle,

the expansion could achieve arbitrary accuracy by introducing more terms. However, we

only take the s-wave component in our model which simplifies our analysis and provides

satisfactory accuracy (see Fig. 2). The assumption of independent scattering events would

break down if resonance effects, which would affect the carriers within a narrow modal

window, were to become dominant. It would also break down if higher order inelastic

scattering effects are significant, such as when electron energy and/or temperature is high.

The analysis here is therefore limited to low energy energy scattering.

It is also important to note that our model for electron scattering does not consider the

atomic details of the defective region, which may include dangling bonds and reconstruc-

tions. However, the approach is expected to be a reasonable approximation since, first, the

geometric parameters D and L are directly controllable through the ion beam irradiation

process. These two parameters are statistically obtained mean values from our atomistic

simulations. Fine structural features, such as reconstruction and dangling bonds, are higher

order perturbations to the defective region. Second, we model the limiting case where the

defective area is considered to be completely electrically insulating. Therefore it is likely

that the electronic conductivity reported here underestimates actual values. Although re-

construction and dangling bonds may affect the electrical conductivity in practice, the effect

would be small near the insulating limit considered here.

9



III. RESULTS & DISCUSSION

A. Thermoelectric properties of defective silicon metamaterials

Using the equilibrium molecular dynamics simulations, we predict κ as a function of the

geometric parameters D and L, as summarized in Fig. 3(a). The thermal conductivity of

the irradiated metamaterials is suppressed appreciably compared to pristine silicon. For

instance, with L = 11 nm and D = 5 nm, κ is reduced by a factor of 19 from 270 W/mK

for crystalline silicon. In our forthcoming work, combining lattice dynamics and molecular

dynamics, this reduction in κ is found to arise largely from hybridization, interactions, and

avoided crossings between bulk-like vibrational modes and modes confined to the defective

regions43. As L increases, κ is expected to approach the numerical value of 270 W/mK for

bulk silicon. The lattice conductivity in Fig. 3(a) shows a large sensitivity to the interdefect

distance L, and is less sensitive to the defect diameter D (discussed further below).

The electrical properties σ and S are plotted similarly as functions of L and D in Fig.

3(b,c) from the closed form expressions in Eqs. (13) and (14). From Fig. 3(b), we notice

that σ is also more sensitive to L than D, similar to κ in Fig. 3(a). Furthermore, σ is

observed to increase sharply with L when L < 20 nm, but starts to saturate to the bulk

value for larger L. The contrast between the slow, smooth drop for κ in Fig. 3(a) across

the full range of L, and the sharper collapse for σ in Fig. 3(b) for L < 20 nm results in a

window where the PGEC concept of Fig. 1(b) can be realized. To better understand these

trends, we provide a scaling analysis of κ, σ with D,L in the following section. Meanwhile,

from Fig. 3(c) the Seebeck coefficient S is not affected by the variations of L and D in

the classical model used here. This can be understood from Eq. (14), which shows that S

depends only on the reduced Fermi level and the scattering mechanisms. Since r = −1/2 for

both electron-phonon and electron-defect scattering, for a given dopant concentration and

temperature, the reduced Fermi level is fixed and S is independent of the absolute scattering

time and thus the defect density.

When combined together, the thermal and electrical properties in Figs. 3(a-c) lead to

a figure of merit ZT as shown in Fig. 3(d). As L decreases, ZT can be enhanced 18 fold

compared to bulk silicon, reaching as high as ZT ≈ 0.5 for L ≈ 11 nm, D ≈ 5 nm. This

value may even underestimate the actual attainable ZT by nearly a factor of two, since κ is
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overestimated by the same amount using the Tersoff potential.

Even greater ZT can be achieved at higher temperatures with corresponding optimized

doping concentration. Such temperature effects and possible bipolar contributions may

be interesting considerations for future investigations. In the silicon metamaterial both

electrical and thermal conductivities are reduced by the patterned defective regions, but ZT

is set by the ratio of electrical to thermal properties, rather than their individual absolute

values. For small L, σ grows faster than κ and the material is more “crystalline” for electrons

than for phonons. Therefore, as surmised, the regularly patterned defects can achieve a

PGEC with Λe < L < Λp.

Another interesting aspect pertains to the ordered distribution of the defective regions,

and the possible effects of disrupting this order (were the damaged regions arranged in

a non-regular way). The effects of disordered structures were considered for nanoporous

silicon20,32, which suggested that disordered pores would not change thermal conductivity

appreciably, and also that an ordered arrangement of pores is not required to maintain

electronic conduction properties. This is consistent with our kinetic theory analysis, where

the defect sites do not need to be ordered, as long as the mean spacing between defective

areas falls into the length window between the mean free path of electrons and that of

phonons.

B. Sensitivity of thermoelectric properties to L and D

In this section, we present a scaling analysis to understand both the greater sensitivity

of κ and σ to L than D, and the more rapid recovery of σ than κ as L increases. Both κ

and σ can be written as a function of D and L,

ζ(D,L) = b(D,L)Λ(D,L) , (15)

where ζ = κ or σ, b(D,L) accounts for the changes in band structure for both phonons and

electrons, and Λ(D,L) is the mean free path. In the following, we assume the band function

b(D,L) is constant, insensitive to D and L, which is accurate when D � L, or D and L

vary in a narrow range, as considered in this work.

Therefore, the sensitivity can be defined as

∂ζ

∂(D,L)
=
∂ζ

∂Λ

∂Λ

∂(D,L)
, (16)
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where ∂(D,L) denotes partial derivative with respect to D or L. Similar to Eq. 5,

Matthiessen’s law for mean free path can be written as

Λ(D,L) =
ΛiΛD(D,L)

Λi + ΛD(D,L)
. (17)

Note that Λi represents the intrinsic mean free path in pristine silicon and is assumed

insensitive to (D,L). Substituting Eq. 17 into Eq. 16,

∂ζ

∂(D,L)
=

(
Λi

Λi + ΛD

)2
∂ΛD

∂(D,L)
. (18)

Applying Eq. 12 of the main text for τD,

∂ζ

∂D
∼
(

Λi

Λi + L2/2D

)2
L2

2D2
, (19)

∂ζ

∂L
∼
(

Λi

Λi + L2/2D

)2
L

D
. (20)

These scaling forms and corresponding sensitivity are shown in Fig. 4. Two sets of

results are shown, for intrinsic mean free paths Λ0 = 10 nm and Λ0 = 1000 nm. The former

represents Λe, while the latter Λp, in silicon. In the relevant ranges of D and L, we observe

similar sensitivity of σ and κ to L and D. This scaling analysis also recovers the early

saturation in σ for L > 20 nm compared to κ. These trends are consistent with those in

Fig. 3(a,b).

IV. CONCLUSION

We showed that regularly patterned nanoscale defects formed by ion beam irradiation in

silicon can be used to realize a phonon glass electron crystal, of interest for thermoelectric

applications. When the distance between the patterned defects lies within the length window

of electron and phonon mean free paths, the thermal conductivity can be reduced without

substantial detriment to the electrical properties. Using the Green-Kubo relations and

equilibrium molecular dynamics, we predict a 19 fold reduction in κ. Meanwhile, with

Boltzmann theory the electrical power factor is shown to retain more than 80% of its value

in crystalline silicon. To apply Boltzmann theory we use partial wave analysis to derive

a scattering model for electrons in a cylindrical potential. Combining these predictions,

we obtain a ZT ≈ 0.5 or greater at room temperature. In consideration of economic and
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manufacturing aspects, silicon has been chosen as a representative material. However the

physical trends observed may apply to other materials as well, particularly those with longer

phonon mean free paths.
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Figure 1. (a) Schematic of silicon metamaterial for thermoelectric applications, where the dark

areas denote damaged domains patterned by ion beam irradiation. (b) The rationale for the

patterned system, in which electrical properties are expected to increase towards the bulk values

faster than thermal properties with increasing feature size as a result of the different phonon and

electron mean free paths. If the feature size is larger than electron mean free path Λe and smaller

than the phonon mean free path Λp, ZT can be enhanced. (c) A representative super-cell for (a)

in atomic view, with disordered regions generated by ion beam irradiation, obtained by molecular

dynamics simulations. (d) The radial distribution function for the specimens shown in (a,c). New

peaks and fine shifts can be observed as the degree of disorder ρ increases.
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Figure 3. (a) Thermal conductivity κ, (b) electrical conductivity σ, (c) Seebeck coefficient S,

and (d) figure of merit ZT as function of D and L for n-type silicon doped at a concentration

of 3 × 1019 cm−3 at room temperature. Both σ and κ are more sensitive to L than D. Electron

conductivity σ grows quickly and saturates sooner than thermal conductivity κ with L, which

allows the patterned metamaterial to be more crystalline for electrons than for phonons. For

T = 300K at the given dopant concentration, ZT can be enhanced to around ZT ≈ 0.5 for optimal

L ≈ 11 nm, D ≈ 5 nm. The thick blue lines correspond to L = D; the region to the left of the

lines are geometrically unphysical.
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Figure 4. Scaling of ζ = κ or σ as functions of (a) L and (b) D based on kinetic arguments

for different intrinsic mean free paths Λ0. While Λ0 = 10 nm represents the scaling of electron

conductivity, Λ0 = 1000 nm approximates the trend of phonon conductivity. For direct comparison

the values of L and D are given with dimensions. The shaded areas signify the parameter ranges

considered in this work. (c, d) Sensitivity to L and D. In the range of L, κ keeps increasing

and σ saturates earlier. Meanwhile, for the considered range of D, the conductivities are similarly

sensitive to D and L. These results are consistent with the trends in Fig. 3(a,b).
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Appendix A: Graphical approach for Fermi level and charge density
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Figure 5. The graphical iteration method for the determination of Fermi level. The charge-

neutrality point is indicated by the red circle in the figure. This approach gives carrier density and

Fermi level simultaneously. In this case, electron density is 7.5 × 15 cm−3 and Fermi level is 34

meV below CBM.

We employed the graphical iteration method to determine the Fermi level and carrier

density for bulk silicon.35 This method is based on the principle of charge neutrality, n− =

n+, where n−=ne + n−a is the sum of electron and ionized acceptor concentration, and

n+ = nh + n+
d is the total of hole and ionized donor concentration. Fermi-Dirac statistics

gives

n−a = na/(1 + 2 exp
Ea − µ
kBT

)

and

n+
d = na/(1 + 2 exp

µ− Ed
kBT

)

where Ea and Ed are ionization energy, and ne and nh are intrinsic carrier densities, defined

by

ne = 2(m∗ekBT/2π~2)3/2 exp
µ− Ec
kBT
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and

nh = 2(m∗hkBT/2π~2)3/2 exp
Ev − µ
kBT

where Ec and Ev are conduction band minimum and valence band maximum. The graphical

method searches for the charge neutrality point graphically considering all these contribu-

tions to the charge density. In Fig. 5, we give the case of T=300K and phosphorous doping

at concentration of nP = 3 × 16 cm−3 and nAl = 1 × 9 cm−3. The ionization energies of

phosphorous and aluminum in silicon are 45 meV and 57 meV, respectively. Notice that this

approach gives two important quantities simultaneously: carrier density and Fermi level. In

this case, electron density is 7.5× 15 cm−3 and Fermi level is 34 meV below CBM.

Appendix B: Scattering cross-section from partial wave analysis

For the azimuthally symmetric potential in Eqn. 6, an incident plane wave ψi(z) =

A exp (ik · r) is expected to be scattered into a spherical wave (see, for example, [38]),

ψS(r) = Af(k, θ)
exp(ikr)

r
, (B1)

where f(k, θ) is the scattering amplitude, and a composite wave field

ψ(r) = ψi(r) + ψS(r) (B2)

should be sought as the solution to the Schrödinger equation[
∇2 + k2 − 2m

~2
V (r)

]
ψ(r) = 0 , (B3)

where k2 = 2mε/~2. The time-independent form is employed since the scattering is assumed

to be elastic and thus energy remains unchanged during scattering.

The probability of the incident particle with speed v passing through an infinitesimal

area dσ in time dt is dP = |A|2 v dt dσ, which is equal to the probability of scattering into

the corresponding solid angle dΩ, dP = |A|2 |f(k, θ)|2 v dt r2 dΩ. Thus, by definition the

differential scattering cross-section is

σm(θ) = |f(k, θ)|2 . (B4)

Therefore, to determine the scattering rate τ−1
D in Eqn. 7, we need only to calculate the

scattering amplitude f(k, θ) in Eqn. B1. For this, two possible methods are partial wave
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analysis and the Born approximation. However, the latter assumes a small scattering po-

tential so that the scattering field is only slightly changed from the incident wave field.

Since the ion beam patterned regions are expected to introduce substantial scattering, it is

necessary to consider large scattering barriers for which the Born approximation becomes

singular. Therefore, we derive the scattering cross-section and momentum relaxation using

partial wave expansion which remains valid.

The partial wave method decomposes the incident and scattered wavefunctions into par-

tial spherical waves, and then imposes boundary conditions to determine the partial wave

magnitudes or phase shifts for each (see, for example, Ref. [38]). Based on partial wave

analysis for the azimuthally symmetric potential, the differential cross-section is formulated

as

σ(θ) =
1

k2

∣∣∣∣∣
∞∑
l=0

(2l + 1)eiδl sin δlPl(cos θ)

∣∣∣∣∣
2

, (B5)

where δl is the phase shift between incident and scattered waves, and Pl is the lth Legendre

polynomial. The scattering process can be completely determined if the phase shifts δl are

known for all partial waves. However, this method is particularly useful when dealing with

low-energy scattering (ka � 1), where only the first term (l = 0, the so-called S-wave)

dominates. We consider in this work S-wave scattering, which is also consistent with the

assumption of isotropic scattering as required by Boltzmann theory.36,37 In other words,

based on the definition in Eqn. 8,

σm =
4π

k2
sin2 δ0 . (B6)

The solution of the Schödinger equation (Eqn. B3) thus formulated is separable, and the

radial components of the equation are
du2

dr2
+ (k2 − k2

0)u = 0, r ≤ a

du2

dr2
+ k2u = 0, r > a

, (B7)

where k2 = 2mε/~2 and k2
0 = 2mV0/~2. The solutions are

u(r) =

A sinh(k1r), r ≤ a

B sin(kr + δ0), r > a
, (B8)
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where k2
1 = k2

0−k2. Imposing the continuity of wave functions and their derivatives at r = a

gives

A sinh(k1a) = B sin(kr + δ0) , (B9a)

Ak1 cosh(k1a) = Bk cos(kr + δ0) . (B9b)

Dividing the two equations above, we obtain

tan δ0 =
k tanh(k1a)− k1 tan(ka)

k1 + k tan(ka) tanh(k1a)
. (B10)

Using Eqns. B6 and B10, the scattering cross-section can be determined as

σm =
4πa2

(ka)2

Nl→∞∑
l=0

(2l + 1)

∣∣∣∣∣ jl(ka)

h
(1)
l (ka)

∣∣∣∣∣
2

, (B11)

where jl and h
(1)
l are the spherical Bessel and first-kind Hankel functions. In the limits of

low carrier energy ka � 1 and high barrier k1a � 1, we have k1a ≈ k0a and the above

equation can be simplified to

tan δ0 ≈ δ0 ≈ k

(
tanh(k0a)− k0a

k0

)
≈ −ka , (B12)

and

σm ≈ 4πa2

(
1− tanh(k0a)

k0a

)2

≈ 4πa2 , (B13)

which is Eqn. 9 in the main text.
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