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We study the electronic waiting time distributions (WTDs) in a non-interacting quantum dot
spin valve by varying spin polarization and the noncollinear angle between the magnetizations of
the leads using scattering matrix approach. Since the quantum dot spin valve involves two channels
(spin up and down) in both the incoming and outgoing channels, we study three different kinds of
WTDs, which are two-channel WTD, spin-resolved single-channel WTD and cross-channel WTD.
We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different
spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two
spin channels and can be used to characterize the spin transfer torque process. We study the influence
of the earlier detection on the subsequent detection from the perspective of cross-channel WTD,
and define the influence degree quantity as the cumulative absolute difference between cross-channel
WTDs and first passage time distributions to quantitatively characterize the spin flip process. We
observe that influence degree versus spin transfer torque for different noncollinear angles as well as
different polarizations collapse into to a single curve showing universal behaviors. This demonstrates
cross-channel WTDs can be a new pathway to characterize spin correlation in spintronics system.

PACS numbers: 73.23.-b, 73.63.-b, 72.70.+m, 73.23.Hk, 72.25.-b, 85.75.-d

I. INTRODUCTION

Spintronics, which utilizes the spin degree of free-
dom to process and store information in nanostruc-
tured devices, has received intensive research in the past
decades1–3. In spintronics, the magnetic tunnel junction
(MTJ) is of particular interest, which typically consists of
two ferromagnetic leads separated by an insulating layer
such as Fe/MgO/Fe junction4–6. The spin-polarized cur-
rent varies with the spin polarization and the relative
directions of magnetization in the magnetic layers. In
general, the tunneling current of parallel configuration
of the two magnetic layers is much larger than that of
antiparallel configuration, and this is the so-called tun-
nel magnetoresistance (TMR)6–11. As predicted indepen-
dently by Slonczewski12 and Berger13 in 1996, spin cur-
rent is not conserved through the MTJ with noncollinear
magnetizations in the magnetic layers, which can induce
a spin transfer torque (STT) on the magnetization14–18.
STT has been applied on spintronic devices such as STT-
MRAM, which employs the STT instead of the magnetic
field to control the magnetization and hence has lower
power consumption19. Other investigations of MTJ in-
clude spin dependent Seebeck effect in the thermoelectric
engine20–24, angle dependent conductance25–27, adiabatic
pumping28,29, etc.. The quantum dot (QD) spin valve is
related to MTJ, and has both the TMR and STT effect
as well. If one tunes the QD levels far away from the
resonant condition, it can mimic the behaviors of MTJ
with insulating scattering region. Yu et al. has shown
that the off-resonant behaviors of the spin torque of QD
spin valve is the same as that of MTJ30.

Current and its fluctuation are typical characteriza-

tions of quantum transport properties in nano devices31.
A more general description beyond current and fluc-
tuation should resort to the formalism of full-counting
statistics (FCS), which can give a full scenery of prob-
ability distribution of transferred charges and all zero-
frequency cumulants at long times32–46. FCS of charge
and STT in MTJ and QD spin valve has received in-
tensive attentions29,39,47, and magnetization switching
probability can also be evaluated via FCS48. With the
rapid development of single-electron devices49–51, deeper
understanding of important information on short time
physics becomes possible. However, FCS usually deals
with collective behaviors of many electrons at long times
and the short-time particle dynamics is lost. As a
complement to FCS, electronic WTD has been devel-
oped to characterize the short-time correlation in meso-
scopic conductors, which is the probability density of
delay times between two subsequent charge transfers52.
WTDs have been studied for systems governed by ei-
ther Markovian53–60 or non-Markovian61 master equa-
tions. The scattering matrix formalism35 has been devel-
oped to calculate WTDs under both constant voltage62,63

and periodic drive64–66. A quantum theory of wait-
ing time clock has been developed in order to mea-
sure WTDs experimentally67. Generalization to multiple
channels68,69 has been made, and the formalism of joint
WTD69 which characterizes the correlation between sub-
sequent times has been established. Spin-averaged WTD
in a QD spin valve has been studied by B. Sothmann57.

Since spintronic phenomenon plays an indispensable
role in fundamental research and industrial application,
investigation of WTD in spintronic system is very im-
portant. Spin-resolved WTD of spintronic system, which
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involves at least two channels (spin up and down), is still
lack of study and the lacuna should be filled. We note
that QD spin valve or MTJ are earlier examples in the
family of spintronics. In this work, we employ multi-
channel WTD formalism and study WTDs and cross-
channel WTDs of the QD spin valve using scattering ma-
trix approach. The scattering matrix approach requires
the electronic reservoir to have a linear dispersion with
respect to the momentum in the transport window and
the system at zero temperature. We employ the nonequi-
librium Green’s function technique, which does not rely
on weak coupling strength between QD and electrodes,
to get the scattering amplitude. The behaviors of two
channel, spin-σ and cross-channel WTDs are numerically
calculated with respect to noncollinear angle and spin po-
larization, and their behaviors at initial short times are
identified and explained. The difference between cross-
channel WTD and corresponding first passage time dis-
tribution (FPTD) reveals the influence of the first detec-
tion on the subsequent one, and indicates the correlation
between spin channels. In order to characterize the corre-
lation strength between spin channels quantitatively, we
introduce the ’influence degree’ quantity as the cumula-
tive absolute difference between cross-channelWTDs and
FPTDs. We find that the influence degree vanishes for
collinear configurations, and reaches its maximum near
noncollinear angle θ = π/2 in which STT also achieves its
maximal value. Since spin correlation strength increases
with increasing spin polarization, influence degree is an
increasing function with respect to the spin polarization.
The paper is organized as follows. In Sec.II, the system

setup and theoretical formalism of two-channel WTD are
introduced. We also present spin-resolved waiting time
clock in this section. In Sec.III, we show the numerical
results of WTD by varying the spin polarization and the
angle between the magnetizations of the leads in detail,
accompanied with discussion and analysis. We finally
summarize our work in Sec. IV.

II. MODEL AND THEORETICAL FORMALISM

A. Magnetic tunnel junction

The spin valve we consider consists of a QD coupled to
its left and right ferromagnetic leads α = L,R, with the
magnetization of the left lead at a noncollinear angle of
θ to the magnetization of the right lead. We consider a
large QD so that the Coulomb interaction effect can be
neglected. The system Hamlitonian reads as

H = HS +
∑

α=L,R

(Hα +HαS). (1)

Here, the Hamiltonian of the non-interacting QD is ex-
pressed as

HS =
∑

σ

ǫσd
†
σdσ, (2)

M

FIG. 1. (Color online) Schematic illustration of a spin valve in
which a QD coupled to its left and right ferromagnetic leads
α = L,R through coupling strengths Γασ. The magnetization
of the right lead is along the z-axis, while that of the left lead is
along the z′-axis at a noncollinear angle of θ to the z-axis. The
transmitted electrons with spin σ are detected in the outgoing
channels (right lead) at different positions xσ ∈ [vF τ

s

σ, vF τ
e

σ].

where ǫ↑ and ǫ↓ can be different for a quantum spin Hall
(QSH) QD70–72 due to the Zeeman splitting in the pres-
ence of magnetic field. And Hα describes the Hamiltoni-
ans of the left and right leads in the local reference frame
with the form,

Hα =
∑

kσ

ǫkασc
†
kασckασ, (3)

where ǫkασ is the energy of an electron with spin σ and
wave number k in the α ferromagnetic lead. The coupling
Hamiltonians between QD and the left and right leads
are27

HLC =
∑

k

c†kLtLRd+H.c.,

HRC =
∑

k

c†kRtRd+H.c., (4)

respectively, where we used the abbreviations c†kα =

(c†kα↑, c
†
kα↓), and d† = (d†↑, d

†
↓). Here, tα = diag(tα↑, tα↓)

is the hopping matrix elements between the QD and the
spin σ electronic states in the lead α when θ = 0. The
rotation matrix R from the Bogoliubov transformation
is applied to diagonalize the Hamiltonian of the left lead
and has the form39

R =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
. (5)

The coupling strength between the QD and leads in the
collinear configuration is described by Γασ = 2π|tα|

2ρασ,
and we set Γα = (Γα↑ + Γα↓)/2. ρασ is the density of
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states for the spin σ electrons in the lead α. The spin
polarization pα in the lead α is given by,

pα =
ρα↑ − ρα↓
ρα↑ + ρα↓

=
Γα↑ − Γα↓

Γα↑ + Γα↓
. (6)

pα = 0 indicates that lead α is a normal metal, and
pα = 1 denotes a half-metallic ferromagnet. Then the
coupling strength can be written as Γασ = Γα(1+σpα)/2,
with σ = 1 for spin-up and σ = −1 for spin-down. In
this work, we assume the system is symmetric and both
leads have the same coupling strength, ΓL = ΓR ≡ Γ,
and the same polarization, pL = pR ≡ p.

The retarded Green’s function of the central QD in
spin space is

Gr(E) = (E −H0 −RΣr
LR

† − Σr
R)

−1, (7)

where H0 = diag(ǫ↑, ǫ↓), and the retarded self-energy
in the lead α is Σr

ασ = −iΓασ/2. The transmission
matrix from the left lead to the right lead is T =
GrRΓLR

†GaΓR, with Γα = diag(Γα↑,Γα↓), and Ga =
[Gr]†. The transmission amplitude matrix, which con-
sists of the scattering matrix elements relating the left
and right leads, can be obtained using the Fisher-Lee
relation and expressed as73–75,

t =

(
t↑↑ t↑↓
t↓↑ t↓↓

)
=

√
ΓRG

rR
√

ΓL, (8)

with its component tσσ′ denoting the transmission am-
plitude from spin σ′ in the left lead to spin σ in the right
lead. The explicit energy E dependence of the transmis-
sion amplitude matrix is suppressed for notational sim-
plicity. The QD spin valve is driven out of equilibrium
by applying a constant voltage bias V . The transport
window is [EF , EF + eV ] with EF the Fermi level at zero
temperature. The spin current in the left and right leads
are, respectively, expressed as,

ILσ =

∫ eV

0

[
t†t

]
σσ

dE, IRσ =

∫ eV

0

[
tt†

]
σσ

dE. (9)

The particle current through the system is expresses as

I =

∫ eV

0

Tr
[
tt†

]
dE. (10)

The spin transfer torque is given by,30

STT =

∫ eV

0

Tr
[
Gr(iΣa

LR̄ − iR̄Σr
L)G

aΓR

]
dE. (11)

with

R̄ =

(
− sin θ cos θ
cos θ sin θ

)
. (12)

B. Waiting time distributions

In this subsection, we discuss the formalism to calcu-
late waiting times between successive electrons detected
in the right lead. The system has two incoming and two
outgoing channels, namely, spin up and spin down. If one
detects an electron at a starting time τs, the conditional
probability density of detecting the successive electron
at an ending time τe is the two-channel WTD W(τs, τe).
The detection involved in the two-channel WTD does
not differentiate the electron spin. One can also define
the spin-resolved WTD Wσσ′(τs, τe), which is the con-
ditional probability density to detect a spin σ′ electron
at an ending time τe on the condition that the starting
detection of spin σ electron occurred at the earlier time
τs. If the two successively detected electrons possess the
same spin, it is the spin-resolved single-channel WTD,
while if the two successive electrons have different spins,
one can define it as the cross-channel WTD69. Since the
dc case is considered here, WTD only depends on the
time difference τ = τe − τs due to the time translational
symmetry, and one can write the above defined WTDs
as W(τ) and Wσσ′(τ), respectively. Before coming back
to the discussion of WTDs, we first discuss the idle time
probability (ITP) which plays the role of the generating
function of WTDs.
We use the scattering matrix approach, which was ini-

tially developed by F. Hassler et al.
35 and then gener-

alized to multi-channel case by D. Dasenbrook et al.
69,

to evaluate the ITPs in non-interacting systems at zero
temperature. The scattering matrix approach requires a
linear dispersion relation with respect to the momentum
in the transport window [EF , EF + eV ],

E(k) = ~kvF , (13)

where the energy E(k) is measured with respect to the
Fermi level and vF is the Fermi velocity. We assume that
the Fermi velocities for spin up and down electrons are
the same and no spin bias is present in this work. Instead
of considering the probability of no spin σ electrons de-
tected in the time intervals [τsσ, τ

e
σ ], one can consider the

probability of detecting no electrons in the spatial inter-
val [vF τ

s
σ, vF τ

e
σ ]. We define the single-particle projection

operator

Q̂σ =

∫ vF τe

σ

vF τs
σ

b̂†σ(x)b̂σ(x)dx, (14)

which measures the probability of finding a spin σ elec-
tron in the spatial interval xσ ∈ [vF τ

s
σ, vF τ

e
σ] in the right

lead, where b̂
(†)
σ (x) annihilate (create) spin σ electrons

at position x. The generalized ITP69, Π(τs↑ , τ
e
↑ ; τ

s
↓ , τ

e
↓ ), is

the joint probability that no spin σ electrons are detected
during the time intervals [τsσ , τ

e
σ]. It can be expressed as

the expectation value of the normal-ordered exponent of

−
∑

σ Q̂σ,

Π(τs↑ , τ
e
↑ ; τ

s
↓ , τ

e
↓ ) = 〈: e−

∑
σ
Q̂σ :〉, (15)
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with : · · · : denoting the normal-ordering of operators69.
One may evaluate the average and obtain the ITP in a
determinant form69,

Π(τs↑ , τ
e
↑ ; τ

s
↓ , τ

e
↓ ) = det

(
I−Q(τs

σ
,τe

σ
)

)
. (16)

The matrix Q is a 2-by-2 block matrix in the spin space
with the form69,

Q(τs
σ
,τe

σ
)(E,E′) = t†(E)K(E − E′)t(E′). (17)

Here, the kernel matrix is diagonal in spin space and
reads as69

Kσσ(E) =
κ

π
e−iE(τs

σ
+τe

σ
)/2 sin[E(τsσ − τeσ)/2]

E
. (18)

In calculating the determinant, Eq. (16), we have divided
the transport window into N energy elements, each with
size κ = eV/N . A large N should be taken to ensure the
numerical convergence.

The two-channel ITP Π(τs, τe), the probability of de-
tecting no electron regardless of the spin degree in any
of the outgoing channels during a time interval [τs, τe],
can be obtained from the generalized ITP by setting
τe↑ = τe↓ = τe, τs↑ = τs↓ = τs. The ITP for a single
spin σ channel can be obtained from the generalized ITP
as Πσ(τ

s
σ, τ

e
σ) ≡ Π(τsσ, τ

e
σ ; τ

s
σ̄ = τeσ̄). Here and below, we

use notation σ̄ to denote the spin index which is different
from σ, with σ̄ =↓ for σ =↑, and σ̄ =↑ for σ =↓.

The joint probability density of detecting two succes-
sive electrons both at τs and τe is equal to the WTDs
multiplied by the probability density of a detection event
at τs. For the uni-directional quantum transport con-
sidered in this work, the probability density of a detec-
tion at τs is simply the electronic current I(τs) with-
out distinguishing spin or spin current IRσ(τ

s) for a spe-
cific spin channel. The joint probability density can also
be obtained by differentiating the ITPs with respect to
both the starting time τs and the ending time τe. Then
we can get the equations for two-channel WTD, spin-
resolved single-channel WTD, and cross-channel WTD,
respectively, as69

I(τs)W(τs, τe) = −∂τs∂τeΠ(τs, τe), (19)

IRσ(τ
s)Wσσ(τ

s, τe) = −∂τs∂τeΠσ(τ
s, τe), (20)

IRσ(τ
s)Wσσ̄(τ

s, τe) = −∂τs∂τeΠ(τsσ , τ
e; τs, τe)

∣∣
τs
σ
=τs

.

(21)

For the dc transport at zero temperature, the electronic
current is the inverse mean waiting time62,69, so that we
have I(τs) = 1/〈τ〉, and IRσ(τ

s) = 1/〈τσ〉, where 〈τ〉 is
the average two-channel waiting time, and 〈τσ〉 is the av-
erage spin-resolved single-channel waiting time. Since
the dc quantum transport possesses the time transla-
tional symmetry, WTDs and ITPs only depend on the
time difference τ = τe − τs, and one can write the above

expressions of WTD as69,

W(τ) = 〈τ〉
∂2Π(τ)

∂τ2
, (22)

Wσσ(τ) = 〈τσ〉
∂2Πσ(τ)

∂τ2
, (23)

Wσσ̄(τ) = 〈τσ〉
∂2Π(τsσ , τ

e; τs, τe)

∂τsσ∂τ
e

∣∣∣∣
τs
σ
=τs; τe−τs=τ

. (24)

The formalism presented is used to calculate WTDs for
the non-interacting systems at zero temperature and as-
sumes a linear dispersion relation with respect to the mo-
mentum in the electronic reservoir. It assumes neither
Markovian approximation nor any renewal properties.
The first passage time distribution (FPTD) Fσ(τ

s
σ , τ

′)
is the probability density for the event to occur at a time
τ ′, in spite of the observation result of the previous time
τsσ

52,69,76. One can relate the FPTD of the spin σ channel
with the corresponding ITP through the relation,

1−

∫ τe

σ

τs
σ

Fσ(τ
s
σ , τ

′)dτ ′ = Πσ(τ
s
σ, τ

e
σ; τ

s
σ̄ = τeσ̄). (25)

The time integral in the above equation represents the
probability to detect spin σ electrons during the time
interval [τsσ , τ

e
σ]. For dc quantum transport, the FPTD is

expressed as76,

Fσ(τ) = −∂τΠσ(τ). (26)

If the outgoing spin up and down channels are uncorre-
lated, the detection result of a later time in one channel
doesn’t depend on the earlier detection in the other chan-
nel, so that the cross-channel WTD for uncorrelated spin
channels is equal to the FPTD69,

Wuc
σσ̄(τ) = Fσ̄(τ). (27)

In order to measure WTD above the Fermi sea exper-
imentally, a quantum formalism of a detector, which is
called waiting time clock, has been proposed67. The wait-
ing time clock consists of a mesoscopic capacitor being
coupled to a quantum two-level system. The electrons
from the system transmit to a chiral edge state in the
quantum Hall regime and then tunnel into the capacitor
through a quantum point contact. The quantum point
contact only transmits the electrons above the Fermi sea.
Electrons inside the capacitor interact with a two-level
system of which we monitor the coherent precession, and
then leave the capacitor. The coupling strength λ(t) be-
tween the two-level system and the capacitor is tunable
and time-dependent. The moment generating function
could be obtained from reading the off-diagonal element
of the density matrix of the two-level system for different
coupling strengths λ. Then one can get the ITP from the
moment generating function, and hence WTD. The chiral
edge state is needed here so that the electron can tun-
nel into the capacitor through a quantum point contact.
For the system presented in our work, we consider the
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FIG. 2. (Color online) Schematic plot of spin-resolved wait-
ing time clock. A quantum spin Hall QD is embedded be-
tween two ferromagnetic electrodes. Spin-σ (spin-up in the
plot) electrons can tunnel into the capacitor through a quan-
tum point contact and then interacts with a two-level system.
Spin-σ electron waiting times can be obtained from moni-
toring the two-level system by changing interaction strength
λσ(t).

QD to be a quantum spin Hall (QSH) quantum dot70–72

(see Fig. 2) in order to have edge states in the QD spin
valve. When the the Fermi wavelength are longer than
the distance between two ferromagnetic electrodes, the
spin-dependent scattering can open a gap to form a dot
in a systems such as the double HgTe/CdTe quantum
well77. One can also use QSH edges in contact to the
QD78,79 to form chiral edge states in the central scat-
tering region. When the Fermi energy of QD is inside
the energy gap, electrons only tunnel through the uni-
directional spin locked edge state, and one can use one
edge to transmit spin up electrons and the other edge
to transmit spin down electrons. Then the spin-σ WTD
can be measured by measuring the two-level system with
which the spin-σ electrons interact. Waiting time clock
involving cross-channel detection is also worth future in-
vestigation.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical outcome on the WTDs of the
QD spin valve by varying noncollinear angle θ and spin
polarization p is reported. We choose the lead coupling
strength Γ as the energy unit. Voltage bias eV = 3Γ is
applied on the left lead. In the following calculation, the
QD levels are set within the transport window with ǫ↑ =
2.0Γ and ǫ↓ = 1.5Γ for resonant transport, except for
Fig. 5, wherein ǫ↑ = ǫ↓ = 5.0Γ for off-resonant transport.
The waiting time τ is in units of the fundamental time
scale τ̄ = h/(eV ), which is the average time separation
of the emitted electrons from the left lead.
In Fig. 3, we plot the two-channel WTD W(τ) [panel

(a)], spin-up WTD W↑↑(τ) [panel (b)], spin-down WTD
W↓↓(τ) [panel (c)], and cross-channel WTD W↑↓(τ)

0 2 4 6 8 10 12
τ/ ̄τ
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FIG. 3. (Color online) Two-channel WTD W(τ ) [panel (a)],
spin-up WTD W↑↑(τ ) [panel (b)], spin-down WTD W↓↓(τ )
[panel (c)], and cross-channel WTD W↑↓(τ ) [panel (d)] are
plotted by varying noncollinear angle θ with spin polarization
p = 0.8. The corresponding FPTD for spin down F↓(τ ) is
plotted with dashed line in panel (d). The waiting time is in
units of time τ̄ = h/(eV ).

[panel (d)] by varying noncollinear angle θ with spin po-
larization p = 0.8. The FPTDs for spin down electrons
F↓(τ) are plotted with dashed lines in panel (d). θ = 0
and θ = π corresponds to parallel and antiparallel config-
uration, respectively. Differently from the single-channel
case where the Pauli exclusion principle does not allow
two electrons to occupy the same state, two electrons
from different spin channels can be detected at the same
time, so that two-channel WTD is nonzero at τ = 0.
Two-channel WTD takes its maximal value at τ = τ̄ ,
and this is the same as that of spinless system62. With
a positive polarization, spin-up and down states are ma-
jority and minority states in the left lead, respectively.
The spin-up current in the right lead have contributions
from both the spin-up and spin-down electrons in the left
lead. Increasing θ from 0 to π, the contribution to IR↑

from the spin-up (majority state) electrons in the left
lead decreases, and the contribution from the spin-down
(minority state) electrons increases. The combined effect
leads to a decreasing spin-up current IR↑ in the right
lead with increasing θ. Due to a similar argument, one
can explain that spin-down current IR↓ increases with
increasing θ. The particle current, as the sum of spin-up
and spin-down current decreases with increasing θ. These
current behaviors with respect to noncollinear angle θ are
shown in Fig. 4 (a-c). As can be observed from Fig. 3 (a-
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FIG. 4. (Color online) Charge current [panel (a)], spin up
current IR↑ [panel (b)], spin down current IR↓ [panel (c)],
influence degree [panel (d)], and STT [panel (e)] versus non-
collinear angle θ with different spin polarization p are plotted.
Influence degree versus STT are plotted in panel (f) with the
quadratic fitting IF = 0.51 ∗ (STT)2 shown in dashed lines.

c), two-channel WTD W(τ) and spin-up WTD W↑↑(τ)
decrease with increasing θ at initial short times which
are around before τ = 5τ̄ , and spin-down WTD W↓↓(τ)
and cross-channel WTD W↑↓(τ) increase with increasing
θ at initial short times. Comparing the behaviors be-
tween currents and WTDs, one can observe that both
particle current and two-channel WTD at initial short
times decrease with increasing θ, and IRσ and Wσ′σ(τ)
at initial short times share the same monotonicity. The
maximum point of W↓↓(τ) shifts towards shorter times
with increasing angle θ from 0 to π and this indicates
the increasing of the tunnel magnitude to the spin down
state in the right lead as well.

In Fig. 3 (d), FPTDs for spin down F↓(τ) are plotted
using dashed lines in comparison with the corresponding
cross-channel WTD W↑↓(τ). We can observe that FPTD
and WTD coincides with each other for the collinear con-
figurations with θ = 0 and θ = π, since the two spin
channels are uncorrelated. Once the spin valve is in the
non-collinear setup, cross-channelWTD deviates from its
corresponding FPTD, and this indicates the occurring
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FIG. 5. (Color online) WTDs for off-resonant transport cor-
responding to Fig. 3 with ǫ↑ = ǫ↓ = 5Γ.

of spin torque transfer during transport. Cross-channel
WTDs are less than FPTDs at initially short times and
this indicates the suppression of subsequent detection due
to the correlation between two spin channels and Pauli
exclusion principle. One can observe that FPTD is a
Monotonically decreasing function with respect to the
time, while cross-channel WTD may not have this prop-
erty.
In order to better demonstrate the influence of the first

detection on the subsequent detection result from the
perspective of cross-channel WTD, the influence degree
quantity is defined as the cumulative absolute difference
between cross-channel WTDs and FPTDs with the ex-
pression,

IF =
∑

σ

∫ ∞

0

|Wσ̄σ(τ)−Fσ(τ)|dτ. (28)

We plot the influence degree versus θ by varying spin
polarization p in Fig. 4 (d), and the influence degree ver-
sus spin polarization p by varying θ in panel Fig. 7 (d).
One can see that the influence degree vanishes for lin-
ear configurations with θ = 0 and θ = π, and reaches its
maximum near angle θ = π/2 in which STT also achieves
its maximal value14–16.
If one tunes the QD levels far away from the reso-

nant condition, it can mimic the behaviors of MTJ with
an insulating scattering region. WTDs for off-resonant
transport corresponding to Fig. 3 with ǫ↑ = ǫ↓ = 5Γ are
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plotted in Fig. 5. One can see that there are small oscil-
lations with period τ̄ for all the WTDs shown in Fig. 5
at initial short times, due to the small transmission am-
plitude in the off-resonant condition.62 The behaviors of
WTDs at short times with respect to noncollinear angle
θ.

In Fig. 6, we plot the WTDs by varying spin polar-
ization p with noncollinear angle θ = π/2 for the res-
onant transport. The corresponding FPTDs F↓(τ) are
plotted with dashed lines in panel (d). Increasing the
polarization reduces both the particle current and spin-
down electronic current so that two-channel WTD W(τ),
spin-downWTDW↓↓(τ) and cross-channelWTDW↑↓(τ)
decrease at initial short times with increasing p. As indi-
cated in Fig. 7 (b), the spin-up current is not monotonic
with respect to polarization p at θ = 0.5π, so is the short
time behavior of spin-up WTD W↑↑(τ). The short time
behavior of Wσ′σ(τ) is the same as spin-σ current IRσ by
changing polarization p by comparing Fig. 6 and Fig. 7.
With p → 1, both leads become half-metallic ferromag-
net with only spin-up channel, W(τ = 0) → 0 due to
Pauli exclusion principle. When both leads are normal
metal, i.e., p = 0, spin-up and -down channels are uncor-
related and there is no spin flip process through the junc-
tion, and as can be seen from Fig. 6 (d), cross-channel
WTD W↑↓(τ) coincides with FPTD F↓(τ). One can ob-
serve from Fig. 7 (d) that the influence degree is zero
for p = 0, and this is independent of angle θ. Influence
degree is an increment function with respect to the spin
polarization regardless of noncollinear angle, as can be
seen from panel Fig. 4 (d) and Fig. 7 (d). Cross-channel
WTDs are less than FPTDs at initially short times by
varying polarization, and this is also due to spin channel
correlation.

We plot the corresponding spin transfer torque (STT)
versus noncollinear angle θ with different spin polariza-
tion p in Fig. 4(e), and versus spin polarization with dif-
ferent noncollinear angle θ in Fig. 7(e). In order to show
that spin-resolved waiting times can directly reflect STT,
we show a one to one correspondence between STT and
the influence degree quantity (IF) in panel in Fig. 4(f)
and Fig. 7(f). The noncollinear angle θ takes the value in
the range [0, π/2] in Fig. 4(f). We can see that by varying
noncollinear angle θ and polarization p, there is always a
specific value of influence degree ’IF’ corresponding to a
given STT. We also find that they can be very well fitted
by a quadratic relation IF = 0.51 ∗ (STT)2 of which the
lines are plotted in dashed lines in Fig. 4(f) and Fig. 7(f).
Finally, from Fig. 4(f) and Fig. 7(f) we see that IF versus
STT for different noncollinear angles as well as different
polarizations collapse into to a single curve showing uni-
versal behaviors. This demonstrates that the behaviors
of spin-resolved waiting times and STT are closely re-
lated.
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FIG. 6. (Color online) Two-channel WTD W(τ ) [panel (a)],
spin-up WTD W↑↑(τ ) [panel (b)], spin-down WTD W↓↓(τ )
[panel (c)], and cross-channel WTD W↑↓(τ ) [panel (d)] are
plotted by varying spin polarization p with θ = π/2. The cor-
responding FPTD for spin down F↓(τ ) is plotted with dashed
line in panel (d).

IV. CONCLUSION

In this work, we employ the scattering matrix approach
to study the WTDs in a QD spin valve at zero temper-
ature. The WTDs and FPTDs are calculated by taking
derivatives with respect to the ITP which is a determi-
nant involving both the spin and energy space. The be-
haviors of two-channel WTD, spin-up WTD, spin-down
WTD and cross-channel WTD are numerically shown
with respect to noncollinear angle and spin polarization.
Two-channel WTD takes its maximal value at τ = τ̄ ,
and is nonzero at τ = 0 which is due to the possibil-
ity of detecting two electrons from different spin chan-
nels at the same time. The short time behaviors of two-
channel WTD and Wσ′σ(τ) are the same as particle cur-
rent and spin-σ current IRσ , respectively. We observe
that FPTD and WTD coincides with each other for the
collinear configurations wherein the spin channels are un-
correlated. When the spin valve is in the non-collinear
setup, the deviation of cross-channel WTD from its cor-
responding FPTD indicates the occurring of spin torque
transfer across the junction. Cross-channel WTD is less
than the corresponding FPTD at initially short times
and this indicates the suppression of subsequent detec-
tion due to the correlation between the two spin channels.
We introduce the ’influence degree’ quantity to quantita-
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FIG. 7. (Color online) Charge current [panel (a)], spin up
current IR↑ [panel (b)], spin down current IR↓ [panel (c)],
influence degree [panel (d)], and STT [panel (e)] versus spin
polarization p with different noncollinear angles θ are plotted.
Influence degree versus STT are plotted in panel (f) with the
quadratic fitting IF = 0.51 ∗ (STT)2 shown in dashed lines.

tively characterize the correlation strength of spin chan-
nels. We find that the influence degree vanishes for lin-
ear configurations, and reaches its maximum near angle
θ = π/2 in which STT also achieves its maximal value.
Since spin correlation strength increases with increasing
spin polarization, influence degree is an increment func-
tion with respect to the spin polarization. We’ve shown
that influence degree quantity is non-vanishing for the
systems with spin-flip process. We further observe that
influence degree versus spin transfer torque for different
noncollinear angles as well as different polarizations col-
lapse into to a single curve showing universal behaviors.
This work enables us to see that cross-channel WTD can
be a new pathway to characterize properties in spintron-
ics and motivates us to study waiting time distribution
in other spintronics systems in the future.
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3 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.
76, 323 (2004).

4 J. König, and J. Martinek, Phys. Rev. Lett. 90, 166602
(2003).

5 M. Braun, J. König, and J. Martinek, Phys. Rev. B 70,
195345 (2004).

6 K. Gong, L. Zhang, L. Liu, Y. Zhu, G. Yu, P. Grutter, and
H. Guo, J. Appl. Phys 118, 093902 (2016).

7 M. Julliere, Phys. Lett. A 54, 225 (1975).
8 J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
9 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B.
Hughes, M. Samant, and S.-H. Yang Nat. Mater. 3, 862
(2004).

10 J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R.
A. Buhrman, and D. C. Ralph, Nature Phys. 4, 67 (2008).

11 J. Mathon, and A. Umerski, Phys Rev. B, 63, 220403(R)
(2001).

12 J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
13 L. Berger, Phys. Rev. B 54, 9353 (1996).
14 I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and

W. H. Butler, Phys. Rev. Lett. 97, 237205 (2006).
15 I. Theodonis, A. Kalitsov, and N. Kioussis, Phys. Rev. B

76, 224406 (2007).
16 A. Kalitsov, M. Chshiev, I. Theodonis, N. Kioussis, and

W. H. Butler, Phys. Rev. B 79, 174416 (2009).
17 X. Jia, K. Xia, and G. E. W. Bauer, Phys. Rev. Lett. 107,

176603 (2011).
18 H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama,

S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K.
Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y.
Suzuki Nature Phys. 4, 37 (2008).

19 D. C. Ralph, and M. D. Stiles, J. Magn. Magn. Mater.
320, 1190 (2008).



9

20 Y. Dubi, and M. D. Ventra, Phys. Rev. B 79, 081302(R)
(2009).
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