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The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ 

of thin metal layers is investigated using non-equilibrium Green’s function density functional 

transport simulations. Cu(001) thin films with thickness d = 1-2 nm are used as a model system, 

employing a random one-monolayer-high surface roughness and frozen phonons to cause surface 

and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7±1.0 μΩ·cm 

at d = 1.99 nm to 18.7±2.6 μΩ·cm at d = 0.90 nm, contradicting the asymptotic T = 0 prediction 

from the classical Fuchs-Sondheimer model.  At T = 900 K, ρ = 5.8±0.1 μΩ·cm for bulk Cu and 

ρ = 13.4±1.1 and 22.5±2.4 μΩ·cm for layers with d = 0.90 and 1.99 nm, respectively, indicating 

an approximately additive phonon contribution which, however, is smaller than for bulk Cu or 

atomically smooth layers. The overall data indicates that the resistivity contribution from surface 

scattering is temperature-independent and proportional to 1/d, suggesting that it can be described 

using a surface scattering mean free path λs for 2D transport which is channel-independent and 

proportional to d. Data fitting indicates λs = 4×d for the particular simulated Cu(001) surfaces 

with a one-monolayer-high surface roughness. The 1/d dependence deviates considerably from 

previous 1/d2 predictions from quantum models, indicating that the small-roughness-

approximation in these models is not applicable to very thin (< 2 nm) layers, where the surface 

roughness is a considerable fraction of d.  
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I. Introduction 

Electron transport in thin metallic films including the prediction of the resistivity ρ as a 

function of layer thickness d continues to be of great scientific interest [1-13].  Electron 

scattering at film surfaces [14–19] is particularly important as it causes an increase in ρ with 

decreasing thickness [20–26] that has also garnered technological interest as it impedes 

integrated circuit downscaling [27,28].  This resistivity size effect due to surface scattering is 

described by the classical Fuchs-Sondheimer (F-S) model [1,2], which employs Boltzmann 

transport and assumes that electron relaxation only occurs in the bulk, while partially diffuse 

scattering at the surfaces is accounted for by boundary conditions. The bulk scattering is 

quantified by the bulk mean free path λ which is typically dominated by phonon scattering and is 

therefore temperature dependent, while surface scattering is described by a phenomenological 

specularity parameter p that defines the probability for specular vs diffuse electron reflection at 

the surfaces. The F-S model describes experimental data well for layer thicknesses that are 

comparable or larger than λ, but consistently underestimates the measured resistivity for layers 

with d < 20 nm [16,18,20,22,23,29–35]. Moreover, in the limit of high purity films at low 

temperature, i.e. λ → ∞, the F-S model predicts a vanishing thin film resistivity since surface 

scattering alone cannot relax carriers within the F-S model. This intrinsic limitation of the F-S 

model [3] originates from two approximations that are not necessarily satisfied at small 

thickness, in particular (i) the electronic structure is bulk like, and (ii) the surface scattering 

occurs exactly at the surface. Later studies have proposed other models to replace the F-S model 

[3,4,5,7,12]. They apply a two-dimensional transport description with quantized vertical wave 

vector components, leading to an electronic structure with sub-bands and an in-plane 

conductivity defined by the sum over all conduction channels [5]. Within that framework, 
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surface scattering can be described by a mean free path λs that quantifies electron relaxation due 

to surface scattering [5], contrary to the specularity parameter within the FS model which 

describes a boundary effect without electron relaxation. The resistivity in the limit of small 

thickness and/or low temperature from these quantum mechanical models [3,4,5,7] is 

proportional to 1/d2. This is in direct contradiction to the F-S model which predicts ρ ∝ 

1/[dln(λ/d)] for small d and/or large λ. The disagreement at small d suggests the breakdown of 

the F-S model and motivates resistivity studies that determine the ρ vs d dependence at small 

thicknesses. Such studies also provide quantitative insight and corresponding benchmark data for 

metal nanowire applications including the continued downscaling of integrated circuits. 

First-principles simulations that explicitly account for the atomic level structure and 

associated electronic structure of the thin film are expected to yield correct transport data for 

very thin films and nanowires [15,21,36–42]. They do not directly provide a functional form for 

ρ as a function of, for example, layer thickness, surface roughness, bulk (phonon) scattering or 

metal element. Nevertheless, we use in this study this approach to numerically determine the ρ vs 

d relationship for thin Cu(001) layers using a large number of individual transport simulations. A 

key strength of this method is full control over the parameters that determine electron scattering. 

For example, a specific surface roughness [15,36,43] or atomic displacements (to simulate 

temperature) [44,45] can be easily constructed and kept constant while varying geometrical 

parameters of the conductor, providing a direct path to determine the resistivity from the 

calculated ballistic conductance and ultimately the resistivity as a function of any desired 

structural parameter. Correspondingly, in a second step, the simulated data can be directly 

compared to model predictions to evaluate existing or newly developed functional forms for the 

resistivity size effect. 
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In this paper, we present results from first-principles calculations of electron transport in 

1-2 nm thick Cu(001) films, employing non-equilibrium Green’s function (NEGF) density 

functional theory (DFT) calculations. The chosen thickness range is large enough so that the 

charge distribution in the film center is bulk like, but is still comparable to the Fermi wavelength 

in Cu (~0.46 nm), such that quantum effects cannot be neglected. Electron surface scattering is 

facilitated by a 50%-coverage surface monolayer that represents a random atomic-level 

roughness. The zero-temperature resistivity is purely caused by this surface scattering, while 

finite temperature bulk scattering is included with a frozen phonon approach. Resistivities at both 

temperatures are calculated as a function of film thickness, providing ρ vs d data that can be 

directly compared to predictions of the existing models. The overall results indicate that the 

resistivity contribution due to surface scattering is proportional to 1/d, in direct contradiction to 

the classical F-S model. In addition, the data also deviates strongly from the 1/d2 prediction from 

more recent quantum models, suggesting that the small-roughness approximation is not 

applicable and that the surface roughness also affects electron scattering within the layer. 

 

II. Computational Procedure 

The conductance of Cu(001) thin films is determined using first-principles NEGF-DFT 

calculations as implemented in the SIESTA package [46]. The simulated system is a two-

terminal device consisting of two electrodes that are semi-infinite along the Cu [100] transport 

direction (x-axis) and are separated by a scattering region between the electrodes. Both 

electrodes and the scattering region form a thin film which is infinite along the [010] direction 

(y-axis) but has a finite thickness of 6 to 12 monolayers (ML) along the z-axis, corresponding to 

d = 1-2 nm using a fixed lattice constant a = 0.3615 nm. This is implemented using periodic 
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boundary conditions and supercells with a constant width w of 3a along [010] to form a 

continuous film. This width corresponds to six atomic planes and was chosen to render effects 

due to the periodicity of frozen phonons and surface roughness negligible (< 1% effect on 

electron transmission) and, more importantly, to create a large number of surface sites to reduce 

variations associated with the random surface roughness as described below. The supercells have 

a fixed height (along z-direction) of 10a, so that the Cu only occupies a fraction of the cell while 

a vacuum of at least 4a is placed above/below the Cu, forming open Cu(001) surfaces. The 

length L of the scattering region along the transport direction (x-axis) is varied from 1 to 10a, 

which ultimately allows to determine the resistivity from the length dependence of the calculated 

resistance. Each electrode is 1.5a long along the transport direction, corresponding to 3 MLs. 

Therefore, the total size of the simulated cell is (L+2×1.5a)×3a×10a.  

The electronic structure is calculated with a Γ-centered 12×6×1 k-point mesh for the 

electrodes and a 1×6×1 mesh for the scattering region. All calculations use a single-zeta basis 

with polarization orbitals [47,48], an energy shift of 0.02 Ry, a norm-conserving pseudopotential 

for copper that includes all core electrons up to the 3p electrons, and the Perdew-Burke-

Ernzerhof (PBE) exchange correlation functional [49,50]. Electron smearing is carried out with a 

Fermi-Dirac occupation function with a temperature of 100 K. The electronic transport 

properties are then calculated using the TRANSIESTA [51] code with zero bias. Green’s 

functions are determined with 32 points on the complex contour. The transmission coefficients 

are calculated with a 1×255×1 k-point mesh. Convergence tests as a function of all of these 

parameters indicate a numerical computational accuracy of ±1% for the calculated resistance 

values. We note that many simulated quantities in this study have considerably larger relative 

uncertainties, as indicated by the error bars. The primary reasons for this are (i) the resistivity is 
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effectively determined from the difference of two resistance values of similar size, which leads to 

a larger relative error, and (ii) average values from ensembles of simulated random 

configurations have standard deviations that are considerably larger than 1%. 

Atomic-level surface roughness is introduced to the scattering region by randomly 

removing 50% of the atoms in both the top and bottom ML of the simulated film. 

Correspondingly, a simulation cell with for example L = 5a has 60 surface atoms of which 30 are 

removed, since the two surfaces have an area of 5×3a2 each and the (001) surface of an fcc 

crystal has two atoms per a2. This corresponds to a reduction of the average film thickness by 

exactly one monolayer. That is, a simulation that starts out with, for example, a thickness of 6 

ML (= 3a) has a scattering region thickness d = 5 ML = 2.5a = 0.90 nm after removal of the 

surface atoms. In contrast, the electrodes in this example still have a thickness of 6 ML and are 

therefore thicker than the scattering region. For any given set of scattering region length L = 1-

10a and layer thickness d = 0.90-1.99 nm, the resistance R is calculated using an ensemble of six 

to sixteen configurations of surface atoms that are randomly placed on surface lattice sites using 

a random number generator. These surface atoms are not relaxed, since their primary purpose is 

to cause electron scattering without representing a realistic surface morphology.  The average R 

from these 6-16 calculations is subsequently used for further analysis and determination of the 

resistivity, while the standard deviation, which ranges in these calculations from 0.1% for d = 

1.99 nm and L = a to 5% for d = 0.90 nm and L = 5a, is taken as the statistical uncertainty of a 

given R(L,d) value.  

Frozen phonons are introduced in the scattering region in order to simulate systems 

which exhibit bulk electron scattering in addition to surface scattering. The idea of the frozen 

phonon approach is that the fast-moving electrons only see a snapshot of the vibrating atoms 
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[44,45]. Correspondingly, electron transport is calculated for configurations with fixed atomic 

positions which are, however, displaced from the equilibrium lattice sites to simulate the 

temperature induced atomic vibrations. One direct approach to create an appropriate set of 

atomic displacements is to superpose all allowed modes and generate one corresponding 

configuration [52,53], while another approach employs repeated calculations over an ensemble 

of systems in order to account for thermodynamic fluctuations [38], where each system exhibits 

different random displacements which are determined by molecular dynamics [38] or a chosen 

spatial distribution function [37,54]. In this work, we displace both bulk and surface atoms in the 

scattering region from their equilibrium position by a vector Δ, which is randomly determined 

for each atom by independently choosing its x, y, and z-coordinates from a uniform distribution 

U[-A, A], where A corresponds to the maximum amplitude of a local one-dimensional vibration. 

The temperature that corresponds to a particular A is determined by calculating the change in the 

potential energy vs displacement of one atom in a bulk supercell and setting the average potential 

energy corresponding to the uniform displacement distribution equal to ½kT per degree of 

freedom. That is, phonons are assumed to be local classical harmonic oscillators corresponding 

to the “Einstein model” for lattice vibrations. We note that surface atoms are expected to 

experience smaller force constants than bulk atoms and would therefore need to be displaced by 

a larger amplitude. This effect is neglected in this study because surface atoms are already very 

strongly disordered and therefore the vibration of them is expected to have a negligible effect on 

the overall resistance. The chosen approach of displacing atoms independently of each other has 

the advantage that the resulting frozen phonons are independent of the system size, that is, the 

scattering region size. In contrast, a physically more realistic model where phonons are 

displacement waves within the crystal would not only be computationally more demanding but 
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also would lead to problems in interpreting the R vs L data which would no longer directly 

correspond to the resistivity but would also be affected by the changing system size as the 

phonons would be dependent on L. To validate this chosen frozen phonon approach, bulk 

transport simulations that include frozen phonons but no surfaces were done by NEGF-DFT, 

using a two terminal configuration with a variable-length scattering region. These calculations 

employ the same computational parameters as those used for the thin film calculations, except 

there is no vacuum in the supercell, the cross sectional area of the supercell perpendicular to the 

transport direction is 2a×2a, and k-point meshes are 12×6×6 and 1×6×6 for the electrodes and 

scattering region, respectively, and 1×255×255 for the transport calculation.  

 

III. Results 

We first present results from bulk transport simulations that are used to validate the 

frozen phonon approach and the system temperature. For these calculations, all atoms within the 

scattering region are randomly and individually displaced following a uniform distribution with a 

maximum amplitude A in each dimension, as described in more detail in the previous section. 

Figure 1(a) is a plot of the calculated resistance R as a function of the length L of the scattering 

region, where L = 3-6 is given in units of the lattice constant a = 3.615 Å, yielding L = 1.08-2.17 

nm. The simulated system cell has a cross-sectional area of 2a×2a, such that the scattering region 

contains a total of 48-96 atoms. Calculations are done for maximum displacements A = 0, 0.02 a, 

0.03 a, 0.04 a, 0.05 a, and 0.06 a, which are equal to atomic displacements of 0 – 0.22 Å and 

correspond to classical temperatures of 0, 142, 324, 576, 901, and 1300 K, respectively. The 

resistance at T = 0 K is 1828 Ω and is independent of L. This is expected since this resistance 

corresponds to the ballistic resistance Ro which is independent of conductor length. The 
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calculated values for the four different L = 3, 4, 5, and 6 a vary by only 0.005%, indicating a 

negligible numerical variation associated with the unit cell length. The specific ballistic 

resistance Ro·(w·d) = 0.955×10-15 Ωm2 is within the range 0.91-1.01×10-15 Ωm2 of previously 

reported values for the ballistic resistance of Cu along the [100] direction [13,39,55].  

In contrast, the data labeled with T = 142 K in Fig. 1(a) indicates resistances that are 

larger than Ro and increase with increasing L. Each data point corresponds to the average R of 

four separate calculations with different random atomic displacements with an amplitude A = 

0.02 a, while the plotted error bar indicates the standard deviation from these four calculations. R 

increases linearly with L, as indicated with the line through the data points which is the result 

from a linear fit that is forced to go through Ro at L = 0. That is, the only fitting parameter is the 

R-vs-L slope, which corresponds to the resistivity ρ = 1.13±0.03 μΩ·cm due to the frozen 

phonons at T = 142 K. Similarly, the data for T = 324-1300 K also exhibit linear R(L) 

relationships, suggesting a well-defined resistivity associated with the frozen phonons [38]. The 

plotted error bars increase with increasing T. This is attributed to the increasing displacement 

amplitudes which lead to larger variations in the random displacement configurations.  

Fig. 1(b) is a plot of the resistivity ρ vs temperature T, as determined from the slopes in 

Fig. 1(a). It increases approximately linearly from 1.13±0.03 μΩ·cm for T = 142 to 2.38±0.07, 

4.04±0.11, 6.11±0.16 and 8.53±0.23 μΩ·cm for T = 324, 576, 901, and 1300 K. The linear 

relationship is also indicated by the solid line from linear fitting of the data points forced through 

the origin. Fig. 1(b) also shows as open symbols the known experimentally measured resistivity 

of copper from Ref. [56]. Our frozen-phonon calculations are in good agreement with the 

experimental resistivity, with deviations of <13% for T = 400-1000 K. The calculations 

overestimate ρ at low temperature, by 76% and 26% for T = 142 and 324 K, respectively, which 
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is expected because the simulated phonons are purely classical and, therefore, their density is 

proportional to T, while quantization in true solids leads to a stronger-than-linear decrease in the 

phonon density as their energy becomes comparable to or smaller than kT. The low-temperature 

resistivity can be correctly predicted by calculating and populating the eigenvalues of collective 

lattice vibrations (i.e. phonon modes), as shown by Liu et al. [52]. This approach is not used here, 

because we are primarily interested in high temperatures and, more importantly, our approach 

has the advantage of a phonon population that is completely independent of the length of the 

scattering region, as described in the previous section. Also, Fig. 1(b) shows that the 

experimental resistivity increases more steeply as the temperature approaches the Cu melting 

point Tm = 1358 K. We attribute this to additional electron scattering at Cu vacancies, which 

have a density of 0.76×10-3 per lattice site at Tm [57]. 

For the remainder of this manuscript, we explore the effect of phonons on electron 

transport using a single displacement amplitude A = 0.0498a that corresponds to a nominal 

temperature T = 900 K. For this temperature, the simulated resistivity agrees with experiment 

within 1%. We note that it is also possible to perform low temperature simulations using our 

frozen-phonon approach. In that case, the A vs T relationship would need to be more carefully 

done, likely by calibrating the temperature with the experimental resistivity. We emphasize here 

again that the data in Fig. 1(b) represents a true first-principles prediction of the temperature 

dependence of the resistivity of Cu using a rather simple frozen-phonon approach that, however, 

leads to an accurate resistivity prediction at medium-to-high temperatures. Thus, in summary, we 

conclude that the chosen frozen-phonon approach is well suited to cause temperature-induced 

electron bulk scattering in our transport simulations and is used in the following simulations of 

Cu(001) thin films.  



11 
 

Figure 2 shows the results from transport simulations on Cu(001) thin films with 

thickness d = 0.90-1.99 nm at T = 0 and 900 K. The resistance R is calculated as a function of the 

length L of the scattering region for simulated cells that are w = 3a = 1.08 nm wide and are 

terminated by periodic boundary conditions on their sides to effectively simulate an infinitely 

wide thin film, as described in more detail in Section II. Fig. 2(a) is a schematic that illustrates 

the simulated geometry. For each configuration, the surface atoms in the scattering region are 

randomly placed on 50% of lattice sites and, for T = 900 K, the atoms in the scattering region are 

also displaced by a random Δ from their lattice site to form frozen-phonons as described in detail 

in the previous section. The plot in Fig. 2(b) shows a total of 76 data points, each representing 

the average R from a minimum of six calculated configurations. The data set for d = 0.90 nm and 

T = 0 K is from a 5-ML-thick layer. Its resistance increases monotonically from R = 1017±5 Ω 

for L = 0.3615 nm to R = 1772±17 μΩ·cm for L = 3.615 nm, which is attributed to electron 

scattering at the atomically rough surfaces. The increase is steep for small L but the slope 

approaches relatively quickly a constant value, as illustrated by the line through the data points in 

Fig. 2(b) which is approximately straight for L > 4a. This line is obtained from data fitting using 

R = Ro + mL − αe-βL, where Ro is the ballistic resistance, m is the slope at large L which defines 

the resistivity due to surface scattering, and the last term is an exponential decay that accounts 

for the non-linearity at small L which is attributed to a tunneling current between the two 

electrodes that lowers the overall resistance. Fitting yields Ro = 1095 Ω, which is slightly larger 

than the calculated ballistic resistance of 1021 Ω for a smooth copper layer with the same 

thickness (5 ML) and width, indicating an increase in the ballistic resistance due to the rough 

surfaces, consistent with an earlier report on the decrease in the ballistic conductance of Cu 

layers with periodic surface roughness [36]. Extrapolating the fitted line to zero length yields R(L 
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= 0) = Ro – α = 1095 Ω - 338 Ω = 757 Ω, which is slightly smaller than the calculated ballistic 

resistance of 856 Ω for the 6 ML thick electrodes, indicating a relatively large uncertainty (as 

expected) in extrapolating an exponential function. The inverse of β is the decay length of the 

exponential tail for electrode-electrode tunneling and is sufficiently small (1.2a) such that the 

correction to the resistance due to the tunneling becomes negligible (< 0.5 %) for L > 5a. This 

confirms a good linearity with a well-defined slope m that is unaffected by the uncertainty in the 

exact fit of the exponential tail. m is used to determine the resistivity ρ = m·(w·d).  

This fitting process is repeated for different thicknesses and temperatures, as indicated by 

the lines in Fig. 2(b). For T = 0 K, the ballistic resistance decreases from Ro = 1095 to 784, 590 

and 463 Ω, as d increases from 0.90 to 1.27, 1.63 to 1.99 nm, respectively, showing an expected 

proportionality between ballistic resistance and the inverse of cross sectional area. The slope m, 

however, decreases much faster, from 69 to 32.9, 21.2, and 16.2 Ω/a, indicating a strong 

thickness dependence of layer resistivity, which is caused by surface scattering. The data for T = 

900 K exhibits a comparable thickness dependence but steeper slopes for all d, which is 

attributed to the additional phonon scattering resistivity. In contrast, the ballistic resistance Ro = 

1097, 772, 573, and 472 Ω for T = 900 K are nearly identical to the T = 0 K values, which is 

expected since bulk scattering does not contribute to the ballistic resistance (contact resistance). 

Figure 2(c) shows the resistivity from all eight data sets, that is for four thicknesses d = 

0.90, 1.27, 1.63 and 1.99 nm and two temperatures T = 0 and 900 K. The values are determined 

from the slopes m of the fitted curves in Fig. 2(b), and the dashed lines through the data points in 

Fig. 2(c) are from curve fitting using Eq. (8), as discussed in Section IV. The zero-temperature ρ 

increases with decreasing d, from 9.7±1.0 to 10.4±2.6, 12.5±1.6, and 18.7±2.6 μΩ·cm. This 

resistivity is purely due to surface scattering and is in direct contradiction to the classical F-S 



13 
 

model, which predicts a zero resistivity in the absence of bulk (phonon and/or defect) scattering 

[1,2]. As discussed in Section I, we attribute this discrepancy to a limitation of the F-S model, 

where carriers that move parallel to the surface never interact with the surfaces and therefore 

have, in the absence of bulk scattering, a diverging (infinite) contribution to the conductance. 

The resistivity at T = 900 K similarly increases with decreasing d, from 13.4±1.1 to 15.6±1.3, 

17.4±1.4 and 22.5±2.4 μΩ·cm. These values are all larger than those for T = 0 K, which is 

attributed to additional electron scattering at the frozen phonons. The resistivity difference 

between 0 and 900 K is Δρph = 3.7±1.5, 5.2±2.9, 4.9±2.1 and 3.8±3.5 μΩ·cm, respectively. These 

values are relatively independent of layer thickness despite that d varies by more than a factor of 

two from d = 0.90 to 1.99. This suggests that, within the large numerical uncertainty, the 

resistivity contributions from phonon and surface scattering are additive, such that no deviation 

from Matthiessen’s rule can be detected. To explore the effect of phonon scattering in thin films 

further, the resistivity at 900 K of smooth thin films with frozen phonons was calculated by 

determining the slope of R vs L similar as done in Fig. 2, but without surface roughness. This 

provides values Δρph = 6.06±0.14, 5.48±0.13, 5.81±0.14 and 5.81±0.05 μΩ·cm for smooth layers 

with d = 1.08, 1.45, 1.81 and 2.17 nm, yielding an average of 5.8±0.1 μΩ·cm. This is close to the 

calculated bulk resistivity at 900 K of 6.11±0.16 μΩ·cm, but is larger than the average Δρph = 

4.4±1.3 μΩ·cm for the rough layers. That is, the resistivity contribution due to phonon scattering 

is the same for bulk and flat thin film calculations, but is smaller for the rough films. 

Correspondingly, we conclude that (i) the change in the electronic structure from bulk to thin 

film has a negligible effect on the electron-phonon scattering for our 1-2 nm thick Cu(001) layers 

and (ii) there is a deviation from Matthiessen’s rule for electron scattering at surfaces and 

phonons. The latter may be attributed to the fact that electrons that scatter at the potential 
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variation of the rough surface will not scatter more strongly if the surface atom is also displaced 

by a frozen phonon. Thus, the large fraction of atoms that are at the surface in our thin films 

effectively reduce the phonon contribution to the resistivity Δρph for thin films with roughness. 

We note though, that the difference between Δρph = 4.4±1.3 μΩ·cm from rough layers and 

5.8±0.1 μΩ·cm from smooth films is of similar magnitude as the computational accuracy, such 

that the data does not unequivocally demonstrate a deviation from Matthiessen’s rule. 

 

IV. Discussion 

This section discusses possible functional forms of the resistivity size effect of thin films. 

That is, it explores if physical models that predict a ρ vs d dependency are consistent with the 

computational results presented in Section III. For this purpose, we first compare the prediction 

of the classical Fuchs-Sondheimer model with the calculated data, followed by a discussion of a 

classical 2-D transport model, quantum models, and a generic power-law fitting of the data.  

A. Fuchs-Sondheimer model 

The classical F-S model employs Boltzmann transport equations to derive an explicit 

expression for the thin film resistivity  [1,2] 
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where ρo is the bulk resistivity that quantifies electron relaxation due to bulk (phonon) scattering, 

κ = d/λ, and the phenomenological specularity parameter p defines the fraction of electrons 

which retain their in-plane momentum when reflecting off the surface, as accounted for as a 
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boundary condition. That is, p = 0 and 1 correspond to diffuse and specular surface scattering, 

respectively, while the parameter κ defines the relative importance of bulk vs surface scattering. 

More specifically, κ → ∞ represents the bulk scattering dominated regime at relatively large 

thickness and/or high temperature, leading to a well-known approximate F-S formula ρ = 

ρo[1+3λ(1-p)/8d] that deviates by only 9% from Eq. (1) for 0.05 < κ < 1, and converges to Eq. (1) 

for increasing κ > 1 [33,58]. This approximate form implies that surface scattering results in an 

additive resistivity term that is proportional to 1/d, as often reported from experiments 

[27,30,59]. In contrast, κ → 0 represents the surface scattering dominated regime at small 

thickness and/or low temperature, where Eq. (1) converges to ρ = 4ρoλ(1-p)/[3(1+p)dln(λ/d)] 

[1,2]. That is, ρ is proportional to 1/[dln(λ/d)] and, since the product ρo×λ is independent of 

temperature [60], the limit of vanishing bulk scattering (λ → ∞) leads to a vanishing thin film 

resistivity [3]. This limitation is illustrated in Fig. 3(a).  

 Figure 3(a) is a plot of the calculated Cu(001) thin film resistivity together with curves 

obtained from data fitting using the F-S model in Eq. (1). The data points are identical to what is 

shown in Fig. 2(c), but are plotted vs the inverse of thickness such that the bulk values ρo = 0 and 

6.1 μΩ·cm at 0 and 900 K, respectively, can be directly plotted at 1/d = 0, representing the 

important limit of thick (d → ∞) layers. The plotted line fits the data well for T = 900 K. It is 

obtained using the known product ρo×λ = 6.7×10-16 Ωm2 which corresponds to a room-

temperature ρo = 1.678 μΩ·cm and  λ = 39.9 nm [60]. Correspondingly, the only fitting parameter 

is the surface scattering specularity which was found to be p = 0.37, suggesting that the 

simulated surface roughness represented by a random 50%-occupation of a surface monolayer 

causes 37% of electrons to scatter specular, while correspondingly 63% of surface scattering is 

diffuse. That is, the relatively rough simulated surface causes more diffuse scattering than 
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experimental smooth Cu(001) surfaces with a reported specularity p = 0.67 [31]. The red dashed 

line in Fig. 3(a) has a slight negative curvature, since the predicted increase in ρ from Eq. (1) is 

less than for a linear ρ vs 1/d relationship. A straight line would be expected for the large-

thickness high-temperature limit of the approximate F-S model which, however, is not perfectly 

applicable because T = 900 K and d > 0.90 nm corresponds to a relatively small κ > 0.08. We 

note, that the plotted data points would be better described by a straight line than the plotted F-S 

prediction. This apparent linear increase in ρ vs 1/d is further discussed below in subsection D.  

In contrast, for T = 0 K and no bulk-defect scattering, the F-S model predicts a thickness-

independent ρ = 0 μΩ·cm, regardless of the choice of fitting parameters. This is represented in 

Fig. 3(a) with the horizontal line which completely fails to describe the calculated zero-

temperature thin film resistivity. We attribute this break down to an intrinsic limitation of the F-S 

model, which does not include any electron relaxation due to surface scattering. 

Correspondingly, in the limit of ρo → 0, the F-S prediction of the thin film resistivity also 

vanishes which is in complete contradiction with our calculated T = 0 K data. 

B. Semi-classical 2D transport 

Two-dimensional (2D) transport models avoid the low-temperature breakdown of the F-S 

model. This is achieved by electron surface scattering which causes electron relaxation and is 

quantified by a surface scattering mean free path λs. In this framework, the electrons are confined 

between the surfaces of a thin film, forming a standing wave φn = d2 sin(nπz/d) perpendicular 

to the surface. This gives rise to multiple conduction channels with a sub-band index n and 

quantized wave vectors kz = nπ/d perpendicular to the layer surface [5][61]. At small thickness, 

this electronic structure is very different from that of the bulk, and the total in-plane conductivity 
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σ is obtained from the sum over all channels [5]. Following this approach, we express the 

conductivity of a thin film as 
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where kF is the length of the 3D Fermi vector which itself depends on the thickness d, ΙΙk =

22
zF kk −  = 2222 / dnkF π−  is the n-dependent length of the wave vector component within the 

plane of the film, Nc ≈ kFd/π is the total number of channels, and λs(n) is the electron mean free 

path due to surface scattering, which is thickness and channel dependent and defined in three 

dimensional space in order to be compatible with the bulk mean free path λ. Eq. (2) can be used 

within a semi-classical description for transport in thin films. In that case, the distance that is 

travelled by an electron between the two surfaces is d×kF/kz, and correspondingly, the classical 

mean free path for surface scattering becomes 
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This expression can now directly be used in Eq. (2), yielding the thin film resistivity within the 

framework of a semiclassical 2D conductor: 
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We note that for the limiting case of large thickness (d/λ → ∞), Eq. (4) converges to the 

approximate F-S formula ρ = ρo[1+3λ(1-p)/8d] where ρo = (3πh)/(2e2kF
2λ). This holds true as 

long as Nc ≈ kFd/π >> 1. That is, the 2D semi-classical model prediction in Eq. (4) converges for 

the bulk scattering dominated regime (κ → ∞) to the F-S model if d >> π/kF, which corresponds 
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for the case of copper to d >> 0.23 nm. Additionally, the prediction for ρ in Eq. (4) does not 

vanish in the zero-temperature (λ→∞) limit, correcting the problematic prediction of the F-S 

model in the surface scattering dominated (κ → 0) regime.  

The dashed lines in Fig. 3(b) show the result from data fitting using the 2D semi-classical 

expression in Eq. (4). This is done by numerical summation over all channels where the only free 

fitting parameter is the specularity parameter p, which is expected to be temperature 

independent. Correspondingly, fitting is done simultaneously for both temperatures, yielding p = 

0.35. This is close to the value p = 0.37 obtained using the F-S model, as described above. The 

curves do not satisfactorily describe the simulated data points and suggest a considerably 

stronger resistivity scaling. More specifically, the plotted curves exhibit a stronger curvature than 

the data points and underestimate the resistivity at low temperature and large thickness, but 

overestimate the resistivity at high temperature and small thickness. Nevertheless, this 2D semi-

classical model provides a clear improvement over the F-S model for the zero-temperature limit 

[horizontal line in Fig. 3(a)]. This is attributed to two key improvements, namely (i) describing 

electrons as quantized standing waves in the perpendicular space, and (ii) introducing a mean 

free path for surface scattering. 

C. Quantum models 

Full quantum mechanical approaches have also been applied to study electron-surface 

scattering in thin films [3,4,5,7]. In these models, the electron conductivity is predicted as a 

function of the electronic potential and the geometry of the surface roughness, treating the 

surface roughness as a perturbation to the flat surfaces’ Hamiltonian. For the case of small 

roughness, studies by Calecki [5], Tešanović et al.[3], Trivedi et al.[4] and Sheng et al.[7] all 

predict a channel-dependent mean free path in the surface dominated regime that is proportional 
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to the cube of the thickness, i.e. λs(n) ∝ d3/n2, which results in a resistivity contribution from the 

surface that increases with the inverse square of the thickness: (ρ – ρo) ∝ 1/d2. Without 

replicating the details of these quantum model approaches, their result can be qualitatively 

understood by examining the electron wave near the surface: The scattering probability 1/τs is 

proportional to < φn |V(z)| φn > = ∫V(z)(2/d)sin2(nπ/d)dz, where V(z) is the scattering potential. 

Since V(z) is localized at the surface, 1/τs ∝ ∫V(z)(2/d)(nπ/d)2dz ∝ n2/d3. Accordingly, the thin 

film resistivity in the surface dominated regime was derived by Sheng et al. [7] for the case of 

small  roughness:  
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where Qo quantifies the effect from the surface morphology. This expression implies an effective 

mean free path due to surface scattering of 
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We note, Eq. (5) converges to the F-S prediction in the limit κ → ∞, defining the relationship 

between the roughness factor Qo and the specularity parameter p, as Qo = 15(1-p)/(32kF). 

The dotted lines in Fig. 3(b) are from fitting the data using the expression in Eq. (5), 

which is done by numerical determination of the sum as a function of d, while keeping the fitting 

parameter Qo the same for the two temperatures. However, the curves do not well describe the 

calculated data points. More specifically, the predicted resistivity from this model increases too 

steeply with decreasing d. We note that the model also fails at large thickness, since the Qo = 
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0.037 nm from the fitting procedure corresponds to an unphysical specularity parameter p = -0.1, 

slightly outside the allowed range 0 ≤ p ≤ 1. 

We attribute the failure of the quantum models to the small-roughness-approximation. 

This approximation requires that (i) the lateral correlation length is small in comparison to the 

Fermi wavelength which effectively means that the maximum surface mound width is 

comparable to the size of atoms. This requirement is met for our simulations, since the random 

atomic surface roughness has a characteristic scale of one atom. However, more generally, this 

requirement is not satisfied in realistic thin films with mound features with typical lateral length 

scales of 2-100 nm, resulting in an additional roughness-term to the resistivity [13,19]. We note 

that this correction has been directly included in some quantum models which predict a 

resistivity scaling that is more complex than 1/d2 for the case of long-range correlated surfaces 

[4,7]. Secondly, the small-roughness approximation requires that (ii) the root-mean-square 

roughness is small compared to the film thickness [3,4,5,7]. This requirement is not met in our 

simulations since the surface monolayers that define the roughness represent a considerable 

fraction of the overall layer thickness. For example, the thinnest simulated layer has just four 

perfect Cu monolayers between the two surface roughness monolayers. Consistent with this 

argument, a recent report on transport in Cu suggests that electron transmission is severely 

degraded near the surface, approximately ~0.5 nm deep into the film [41], which corresponds to 

the entire simulated layer with two surfaces for d < 1 nm. Correspondingly, the predicted 1/d2 

proportionality from the proposed quantum models for the resistivity contribution in the thin-

layer limit does not apply to our simulation results. We also note that the quantum models 

assume well defined channels which may not correctly account for channel mixing associated 

with the strong disorder at the surface. 
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D. Power law 

 In an attempt to determine a functional form that satisfactorily describes the resistivity vs. 

thickness data from our simulations, we use a general power-law expression for the thin film 

resistivity  

γρρ df ⋅+= o .      (7) 

The prefactor f and exponent γ are functions of ρo. That is, they are not assumed to be 

temperature independent, so that Matthiessen’s rule is not pre-assumed, consistent with the 

discussion in Section III. Fig. 3(c) shows the result from the power law fitting with Eq. (7). The 

plotted curves describe the data points well – considerably better than the alternative models 

presented in Figs. 3(a) and (b). The fitting procedure provides values for γ of -0.85±0.14 at 0 K 

and -0.99±0.07 at 900 K. That is, considering the computational uncertainty, the exponent is -1 

for both temperatures, implying an inverse thickness dependence for the resistivity contribution 

from surface scattering. This is in good agreement with previous work by Ke et al. [43] and 

Zahid et al. [15], who reported surface scattering resistivity values calculated with 

nonequilibrium DFT methods including vertex correction [62], and used the approximate F-S 

formula with a 1/d dependence to describe their data. Based on the 1/d dependence for the 

resistivity contribution due to surface scattering at both 0 and 900 K, we assume that the 1/d 

dependence is also valid for any other temperature between 0 and 900 K. In that case, Eq. (2) can 

only be satisfied if λs(n) is channel independent and proportional to d. This implies that the 

surface scattering probability is independent of the channel, which means independent of the 

momentum perpendicular to the surface and/or the probability distribution (i.e. the square of the 

wave function) of the electron within the conducting film. This is clearly different from the 
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assumptions for the quantum models described above, and suggests a surface scattering that is 

“bulk like”. That is, opposite to the above models, surface scattering does not only occur at the 

physical surface but extends into the film. We attribute this to the simulated films consisting of 

only a few monolayers, such that the perturbation of the electron potential by the surface 

roughness extends throughout the thickness of the layer, causing scattering of electrons even if 

they have wave functions that vanish near the surface. 

 Correspondingly, based on this temperature-independent 1/d dependence of the resistivity 

contribution due to surface scattering, Eq. (7) with a fixed γ = -1 yields an expression for the thin 

film resistivity ρ with a surface scattering mean free path λs that is proportional to the thickness d 

and both temperature-independent and channel-independent: 

⎟
⎠
⎞⎜

⎝
⎛ +=

sλ
λρρ 10 ,    λs = α×d.     (8) 

The proportionality constant α is independent of temperature and thickness and is a function of 

the electronic structure of the surface. We use Eq. (8) for data fitting of the simulated resistivity, 

plotted as dashed lines in Fig. 2(c). The curves describe the plotted data relatively well and yield 

λs = (3.8±0.2)×d and (4.4±0.1)×d at T = 0 and 900 K, respectively. That is, the mean free path 

associated with electron scattering at the simulated monolayer roughness is only four times the 

layer thickness. Correspondingly, electron surface scattering is expected to dominate the 

resistivity for layers that are at least four times thinner than the bulk mean free path λ. This 

corresponds to a critical thickness of 10 nm for Cu at room temperature below which electron 

surface scattering dominates. We note that α for T = 900 K is 16% larger than for T = 0 K, which 

can be attributed to the uncertainty but may also indicate a trend towards larger λs with 

increasing T. Such an increase in λs with increasing T (or correspondingly decreasing λ) is 



23 
 

consistent with the above discussion on the deviation from Matthiessen’s rule. More specifically, 

an electron that scatters on a displaced atom (phonon) will not scatter “more” if this atom also 

belongs to a surface roughness. This effectively reduces the effect of electron surface scattering 

with increasing temperature, leading to an increase in λs. 

We note that Eq. (8) proposes the same functional form as the approximate F-S model. 

However, based on the discussion above, Eq. (8) is valid for very thin layers for which surface 

scattering becomes bulk-like while the approximate F-S model is valid in the limit of large 

thickness. More specifically, the simulations in this work suggest a resistivity contribution due to 

surface scattering on Cu(001) surfaces that is proportional to 1/d for the simulated range d = 1-2 

nm, while previous studies (including the classical F-S model) suggest the same 1/d dependence 

for approximately d > 20 nm [16,18,31,32]. It is not evident from our results, if the intermediate 

range, d = 2-20 nm, exhibits the same functional form. 

 

V. Conclusions 

First-principles simulations of electron transport in 1-2 nm thick Cu(001) layers with 

electron scattering at both surface roughness and bulk phonons suggest an additive resistivity 

term due to electron surface scattering that is nearly temperature-independent and inverse 

proportional to the thickness. The calculated thin film resistivity at 0 K is finite, contradicting the 

classical F-S model prediction and indicating a breakdown of the F-S model in the surface 

scattering dominated regime. Both classical and quantum 2D transport models correct the 

problematic F-S prediction at zero temperature. However, they fail to correctly describe the 1/d 

dependence. This is attributed to the small-surface-roughness approximation in these models, 
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which is not satisfied for the simulated layers. The surface scattering in the simulations is bulk-

like and described with a channel-independent mean free path λs that is proportional to d, leading 

to the additive 1/d resistivity term. This functional form matches the approximate F-S prediction 

for the case of relatively thick layers. Therefore, the 1/d dependence is expected for both thin (< 

2 nm) and thick (> 20 nm) layers, while the intermediate 2-20 nm range may yield another 

functional form. 
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Figure 1: (a) Calculated resistance R vs length L of simulated scattering region for bulk Cu with 

frozen phonons corresponding to temperatures T = 0-1300 K. (b) Bulk resistivity ρ vs T, as 

determined from the slopes in (a) (red triangles). The black open squares indicate the 

experimental Cu bulk resistivity from Ref. [56].  
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Figure 2: (a) Schematic of the simulated system including a scattering region with 50% of 

surface vacancies and random atomic displacements Δ, causing surface and phonon scattering, 

respectively. (b) Calculated resistance R vs length L and (c) resistivity ρ vs thickness d of 

Cu(001) thin films at temperatures T = 0 and 900 K. The dashed lines in (c) are from curve 

fitting using Eq. (8). 
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Figure 3: The simulated resistivity ρ vs the inverse of the thickness d of Cu(001) layers at 0 and 

900 K. The curves are from data fitting using (a) the Fuchs-Sondheimer model according to Eq. 

(1), (b) 2D semi-classical (dashed line) and quantum transport (dotted line) models according to 

Eqs. (4) and (5), and (c) a power law according to Eq. (7). 

 


