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Many processes of technological and fundamental importance occur on surfaces. Adsorption is
one of these phenomena that has received the most attention. However, it presents a great challenge
to conventional density functional theory. Starting with the Lifshitz-Zaremba-Kohn second-order
perturbation theory, here we develop a long-range van der Waals (vdW) correction for physisorp-
tion of graphene on metals. The model importantly includes quadrupole-surface interaction and
screening effects. The results show that, when the vdW correction is combined with the Perdew-
Burke-Enzerhof functional, it yields adsorption energies in good agreement with the random-phase
approximation, significantly improving upon other vdW methods. We also find that, compared with
the leading-order interaction, the higher-order quadrupole-surface correction accounts for about 25%
of the total vdW correction, suggesting the importance of the higher-order term.

Since the discovery of graphene, it has received consid-
erable attention from scientists and technologists, due to
its many remarkable properties and a variety of commer-
cial applications. For example, it can be used in optoelec-
tronic devices and nanoelectronics [1] for high delocaliza-
tion of surface electrons, gas sensing [2–4], hydrogen and
natural gas storage [5], energy conversion [6], etc.

A striking property of graphene is its strong ability to
adsorb, due to its large surface area and high polarizabil-
ity. To fundamentally understand this interface prob-
lem, many van der Waals-corrected density functionals
have been employed to calculate binding energies and
equilibrium distances between graphene and metal sur-
faces [7–19]. In particular, Ruiz et al. proposed a vdW
method [20] to model the adsortion of molecules on the
surface of a transition metal based on the Zaremba-Kohn
theory. But their vdW coefficient C3 for physisorption
was calculated from C6. To calculate C3 from C6, the
screening effect of valence electrons of substrate (metal)
has to be neglected. Nevertheless, this model can de-
scribe the adsorption of molecules on the surface of a
transion metal quite well [21].

Adsorption on metals is of broad interest. Metal can
be used for the preparation of highly-ordered graphene
layers of different thickness which are transferred onto
an insulating or polymer support. In the latter case, the
obtained material can be used to fabricate touch screens.
In the application to electronic devices such as transis-
tors, graphene has to contact metals. These facts have
made the graphene industry very promising.

In recent years, a large literature on 2D layered ma-
terials has appeared [22]. Understanding the interac-
tion between graphene and metal surfaces can provide
insights into the properties of other 2D materials, which
have presented a major challenge to conventional DFT,
due to the dominant interlayer vdW interactions. The
random-phase approximation (RPA) calculation [23] of
graphene on nickel reveals that there is a double well
in the binding energy curve: One well arises from the
short-range dominant chemisorption or orbital overlap of

surface electrons of graphene and nickel, while the other
arises from the long-range vdW interaction. While the
RPA may underestimate the strengths of normal chem-
ical bonds [24, 25], it is reliable for weak vdW bonds.
Recent studies [23, 26, 27] showed that while some semilo-
cal DFT methods are able to reproduce this double-
well feature, the second well located further away from
the surface is not deep enough, indicating the need for
the long-range interaction. Recently, it has been shown
that the nonlocal functionals vdw-DF-cx [28], optB88-
vdW [23, 29], and SCAN+rVV10 [30] agree with one an-
other for the physisorption of graphene on nickel (1,1,1),
and with the RPA value. For the chemisorption mini-
mum, optB88-vdW agrees with RPA, while vdW-DF-cx
and SCAN+rVV10 provide deeper minima that agree
between them. While the RPA provides a benchmark
for vdW bonds, it typically underbinds covalent bonds.
Therefore, its use as a benchmark for the chemisorp-
tion minimum is questionable. In addition, its compu-
tational cost requires the use of constrained geometries.
For graphene at a metal surface, the metal lattice con-
stants are taken from bulk experimental values, and the
in-plane graphene lattice constants are stretched or com-
pressed into registry with the surface.

According to the distance d between graphene and
metals (see explicit definition for d below), adsorption
of graphene can be classified into two types. One is
chemisorption, occuring at about 2 Å-2.5Å, while an-
other is a relatively weak physisorption, which occurs at
a longer range ≥ 3.0 Å. The former involves a dramatic
electron density redistribution and stronger bonding be-
tween electrons of graphene and surfaces, while the lat-
ter involves little electron redistribution. Here we aim
to address the physisorption problem. For this purpose,
we develop a vdW correction to model the physisorp-
tion of graphene on metals. Then, in the same spirit
as our work on lattice constants and cohesive energies
of ionic and transition-metal solids [31], we combine it
with DFT-GGA to study the physisorption of graphene
on metals. Our calculation shows that, with the vdW
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correction, the DFT-GGA can reproduce the adsorption
energies with a mean absolute error of 6 meV, improv-
ing upon many other vdW-corrected DFT methods. We
find that the higher-order term can contribute as much
as 25% of physisorption energy.
Theory. The vdW interaction for physisorption arises

from instantaneous charge fluctuations of particles and
induced multipole moments on the surface of a substrate.
In the large-separation limit, the vdW interaction be-
tween particles and a clean surface is given by the asymp-
totic expansion [32, 33]

EvdW = −
C3

(Z − Z0)3
−

C5

(Z − Z0)5
, (1)

where Z is the distance between the centers of the par-
ticles and the planar surface of the outermost metal slab
(or background edge for a jellium surface), and Z0 is
the distance between a vdW reference plane and that
planar surface. In this formula, we have eliminated the
need for an explicit C4/Z

4 term by the appropriate choice
of Z0. The reference position Z0 is usually small, com-
pared to the equilibrium distance Zeq. The vdW coeffi-
cient C3 describes the dielectric response of the bulk solid
to the instantaneous dipole moment of particles. C5 =
Cq

5+Cnl
5 +Cd

5 represents the fluctuating quadrupole, non-
local, and diffuse contributions of particles. Since the dif-
fuse part is small [33] in comparison with the quadrupole
and nonlocal parts, we nelect it in this work. In the
above formula, there are additional terms that describe
the lateral interaction between particles on the surface,
but they are also small [34] and vanish exponentially with
the distance between particles. Here we only consider the
lateral average V (Z) =

∫

dXdY V (X,Y, Z)/A, with A
being the surface area.
From Eq. (1), we can see that the long-range vdW

interaction beween particles and surfaces is quite differ-
ent from the vdW interaction between particles, whose
asymptotic expansion is given by −C6/R

6−C8/R
8−· · · .

The difference between the correct C3 and that predicted
by summation of pairwise interactions is largely due to
the strong screening effect of the substrate [35]. How-
ever, when the distance between particles and surface
approaches the lattice constant, their interactions can be
approximated as pair interactions.
For a clean surface, the vdW coefficients C3 and Cq

5

arising from the fluctuating dipole and quadrupole mo-
ments can be calculated from second-order perturbation
theory [36, 37] by

C2l+1 =
1

4π

∫ ∞

0

du αl(iu)
ǫ1(iu)− 1

ǫ1(iu) + 1
, (2)

where iu is the imaginary frequency. αl(iu) is the mean
dynamic multipole polarizability of the adsorbate parti-
cle defined in terms of the dynamic multipole polarizabil-
ity tensor, αl(iu) = (αl,xx(iu) + αl,yy(iu) + αl,zz(iu))/3.

ǫ1(iu) is the isotropic dielectric function of the sub-
strate [38]. The nonlocal part of C5 can be evaluated
by [33]

Cnl
5 =

3

4π

∫ ∞

0

du α1(iu)
ǫ1(iu)[ǫ1(iu)− 1]2ξ2

[ǫ1(iu) + 1]3
, (3)

where ξ = β/
√

ω2
p + u2 and β2 = 3k2F /5 [39]. Note that,

in this expression, the dipole polarizability rather than
the quadrupole polarizability of graphene appears.
For a clean surface, the reference plane position is given

by

Z0 =
1

4πC3

∫ ∞

0

du α1(iu)
ǫ1(iu)− 1

ǫ1(iu) + 1
dIP(iu), (4)

where dIP is the dynamic image plane given by dIP =
[d‖ + ǫ1(iu)d⊥(iu)]/[ǫ1(iu) + 1]. Here d⊥(iu) is the grav-
ity center of the density induced on the surface, and d‖
reflects the spatial distribution of the currents parallel
to the surface induced by a uniform tangential electric
field [40]. Because of translational invariance of the sur-
face, d‖ = ZB [40], the edge of the positive background.
Dynamic multipole polarizability per atom of

graphene. It has been shown [41, 42] that the hollow-
sphere or solid-sphere [43] model within the single-
frequency approximation (SFA) for the dynamic multi-
pole polarizability can yield accurate vdW coefficients for
fullerenes, clusters, and molecules. The non-sphericity of
the density can enter the formula by the input static po-
larizability, which can be obtained from ab initio many-
body calculations. Therefore, the model polarizability
can also be useful for non-spherical densities. Since the
surface electron density of graphene is quite uniform,
the hollow-sphere or solid-sphere model within the SFA
should be suitable to graphene. As such, the model dy-
namic multipole polarizability per atom of graphene can
be written as

αl(iu) = αl(0)
ω2
l

ω2
l + u2

, (5)

where ωl = ωp

√

l/(2l+ 1) is the plasmon frequency of a

sphere, and ωp =
√
4π n is the plasmon frequency of the

extended electron gas, with n being the electron density
of graphene. In this expression, αl(0) is the input static
multipole polarizability per atom of graphene, from the
next paragraph.
For nanostructures, the input static higher-order po-

larizability can be estimated from the static dipole po-
larizability via αl(0) = [α1(0)]

(2l+1)/3. Therefore, we
only need the static dipole polarizability as input in this
model. The average valence electron density of graphene
can be obtained by n = Nvalence/Vcell, with Nvalence = 4
being the number of valence electrons of carbon atoms
in the outermost subshell (two carbon atoms in the unit
cell). For hcp unit cell, the cell volume is Vcell = abc,
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with b = a sin(π/3) and c being the vdW thickness
of graphene, which we set to be 3.4 bohr. This is a
value used to confine the relatively constant and size-
independent charge density of fullerene [44, 45]. Con-
sidering the similarity of graphene to the large-size limit
of fullerene, we take the same c to confine the electron
density of graphene. The lattice constant a = 2.46Å,
which is calculated from the DFT-LDA [46]. Thus
n̄ = 4/[(2.46/0.529)((2.46×

√
3/2)/0.529)× 3.4] (Atomic

units e = me = ~ = 1 are used.) The static dipole polar-
izability per atom of graphene is taken to be 11.7×0.85 =
9.945 [47], as estimated from the Hirshfeld partitioning
scheme [48, 49].
Adsorption on jellium. Jellium is a simplified yet

realistic model for simple metals. In this model, the
valence electrons are evenly distributed over the posi-
tive background with ion cores smeared. Study of ph-
ysisorption of graphene on jellium is quite indicative for
graphene on transition metals. The real part of the di-
electric function of bulk jellium in the long-wave length
limit is

ǫ1(iu) = 1 +
ω̄2
p

u2
, (6)

where ω̄p =
√
4πn̄ is the plasmon frequency of the ex-

tended uniform electron gas, and n̄ is the average va-
lence electron density of the jellium substrate. From
Eq. (2), the vdW coefficients arising from the dipole and
quadrupole moments of particles for graphene and the
jellium surface can be analytically evaluated as

C2l+1 =
1

4π

∫ ∞

0

du

(

αl(0)
ω2
l

ω2
l + u2

)(

ω̄2
p/2

ω̄2
p/2 + u2

)

=
αl(0)

8

ωlω
sur

ωl + ω̄sur
, (7)

where αl(0) is the static multipole polarizability per atom
of graphene, and ωsur = ω̄p/

√
2 is the surface plasmon

frequency of the jellium substrate. Note that ωl is the
plasmon frequency of graphene defined below Eq. (5).
The dynamic image plane dIP of Eq. (4) for jellium can

be calculated as follows. Choosing the origin of coordi-
nates to coincide with the jellium edge of the background
ZB, we have d‖ = ZB = 0. Thus we obtain

dIP(iu) = ǫ1(iu)d⊥(iu)/[ǫ1(iu) + 1]. (8)

Persson and Zaremba [40] proposed a simple approxima-
tion for d⊥(iu), which assumes

d⊥(iu) =
d⊥(0)

1 + η[u/ωsur]2/2
. (9)

The form is consistent with the sum rule [40]. Here
η = d⊥(0)/λ and d⊥(0) is the static centroid position.
For simple metals, λ and d⊥(0) for rs = 2, 3, 4 are

TABLE I: The electron density parameter rs = [3/(4π n̄)]1/3,
vdW coefficients, and Z0 for graphene on simple metals, all
in atomic units. Al has rs = 2.07.

rs C3 Cq
5 Cnl

5 C5 Z0

2.0 0.291 1.406 0.773 2.179 0.965
2.07 0.284 1.365 0.768 2.133 0.949
3.0 0.201 0.955 0.689 1.644 0.795
4.0 0.147 0.692 0.615 1.306 0.695

TABLE II: The electron density parameter rs, vdW coeffi-
cients, and Z0 for graphene on the (1,1,1) transition metals
Ni, Pd, Pt, Cu, Ag, and Au, and on the (0,0,0,1) surface of
Co, all in atomic units.

rs C3 Cq
5 Cnl

5 C5 Z0

Ni 2.60 0.298 1.442 0.869 2.311 0.600
Co 2.61 0.300 1.452 0.875 2.327 0.588
Pd 2.90 0.353 1.721 1.047 2.768 0.358
Pt 2.87 0.354 1.730 1.053 2.783 0.349
Cu 2.67 0.312 1.514 0.912 2.426 0.525
Ag 3.02 0.316 1.537 0.908 2.445 0.424
Au 3.01 0.345 1.684 1.026 2.710 0.346

given by the Lang-Kohn self-consistent surface calcula-
tion [50]. Tao and Rappe [51] have parametrized λ and
d⊥(0) for 2 ≤ rs ≤ 6. They are given by the simple
ananlytic formulas λ = −0.0105r2s+0.1285rs+0.248, and
d⊥(0) = 0.02r2s−0.27rs+2.06. The reference position Z0

of jellium can be evaluated with Eq. (4). Summarized in
Table I are the vdW coefficients and Z0 of graphene on
jellium. From Table I, we see that both vdW coefficients
and Z0 decrease slightly with increasing electron density
parameter rs, as expected.
Adsorption on transition metals. The dielectric

function of transition metals is more complicated, due
to the d-electron participation. It can be split into two
contributions. One is from the s valence electrons of
transition metals (ǫf ), and the other is the contribution
from d-electron participation (ǫb). Then the real part of
the dielectric function can be written as [40]

ǫ1(iu) = 1 + ǫf + ǫb, (10)

where ǫf = ω̄2
pf/u

2 and ǫb = Ω2/(ω2
0 + u2). ω̄2

pf =

(1/mopt)ω̄
2
p is the plasmon frequency of the uniform gas,

but with the density parameter rs replaced by the cor-
rected density parameter rfs = (1/mopt)

1/3rs, where
mopt is the optical mass [40]. The parameters mopt, Ω,
and ω0 can be obtained from optical experimental data.
For convenience, all the parameters rs, mopt, Ω, and ω0

for several commonly-used transition metals are listed in
the Supplemental Material (Table S1). From the dielec-
tric function, we can evaluate vdW coefficients C3 and
C5 from Eqs. (2) and (3) for physisorption on transition
metals.
The reference position Z0 for transition metals can be

calculated as follows. First, we split d⊥(iu) as a sum of
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TABLE III: Physisorption energies (in meV/atom) of graphene on (1,1,1) surfaces of Al, Ni, Pd, Pt, Cu, Ag, Au and (0,0,0,1)
surface of Co. d is the RPA equilibrium separation [25] between the plane of graphene nuclei and the outermost plane of metal
nuclei, and c is the distance between neighboring planes of metal nuclei, both in Å. All calculations employ the constrained
geometries that were used in the RPA reference calculation, and all except our PBE+vdW use a relaxed d or are estimated
from a binding energy curve.

d d− c/2 PBE+vdW RPA LDA PBE vdW-DF vdW-DF2 vdW-DF2-C09 B86bPBE-XDM

Al 3.51a 2.34 67 52a 29a 2a 35b - - 34c

Ni 3.26d 2.24 70 70a 50a 2a 45d 44d 75d 81c

Co 3.25a 2.23 70 66a 2a 30e

Pd 3.34a 2.22 83 90a 43a 4a 49d 52d 72d 66c

Pt 3.42a 2.29 82 84a 36a 5a 52d 54d 68d 71c

Cu 3.09a 2.05 78 68a 40a 2a 44d 46d 62d 73c

Ag 3.31a 2.13 75 78a 30a 2a 42d 42d 53d 72c

Au 3.22a 2.04 83 95a 34a 2a 47d 49d 59d 66c

ME 0 -39 -74 -33 -30 -16 -9
MAE 6 39 74 33 30 19 17

(a) From Ref. [25].
(b) From Ref. [55].
(c) From Ref. [56].
(d) From Ref. [26].

two contributions [40] weighted by the dielectric function,

i.e., d⊥(iu) = [ǫf (iu)d
f
⊥(iu) + ǫb(iu)d

b
⊥(iu)]/[ǫf(iu) +

ǫb(iu)]. Here df⊥(iu) is assumed to take the same form
as for jellium, but with rs replaced by the corrected den-
sity parameter, as discussed above. We also listed λ, and
df⊥(0) in Table S1. Second, we choose the origin to coin-
cide with the planar surface of the outermost metal slab.
This leads to db⊥(iu) ≈ ZB = 0. Then we obtain

d⊥(iu) = ǫf (iu)d
f
⊥(iu)/[ǫf(iu) + ǫb(iu)]. (11)

Then we can calculate Z0 by combining d⊥(iu) of Eq. (11)
with Eqs. (4) and (8). The results for C3, C5, and Z0 of
some common metals are listed in Table II.
Now we turn to the vdW part of the adsorption energy.

This part can be evaluated with Eq. (1). The equilibrium
distance between graphene and metal substrate can be
reliably taken from the RPA calculation [25]. However,
the reported RPA value is not really the distance from the
background edge of metals Zeq, but the distance d from
the plane of graphene nuclei to the outermost plane of
metal nuclei, as shown by Fig. 1 of Ref. [26]. According
to Zaremba and Kohn [36], the background edge of a
metal is located at c/2 from the outermost plane of metal
nuclei, as shown by Fig. 2 of Ref. [52], where c is related
to the lattice constant a via c = a/

√
h2 + k2 + l2, with

k, k, l being miller indices for Al, Ni, Pd, Pt, Cu, Ag, Au.
For Co, with the hexagonal close-packed structure, c is
half the lattice constant (4.07 Å) along the z axis. The
reported RPA distances d need to be substracted by c/2.
The value c/2 just defines the background edge of metals.
Then we can find the vdW energy from

EvdW =

[

−
C3

(Z − Z0)3
−

C5

(Z − Z0)5

]

fd. (12)

At equilibrium, Zeq = d − c/2 corresponds to the

Zaremba-Kohn equilibrium distance from graphene to
the (1,1,1) metal surface [36], and the vdW energy at
Zeq = d − c/2 corresponds to the binding energies. In
this formula, we need to add a damping function to avoid
double counting, due to the long-range part. fd is the
damping function given by

fd = x5/
√

1 + gx2 + hx4 + x10, (13)

where x = (Z − Z0)/b > 0. The parameters g =
2b2C3/C5 and h = 10b4C2

3/C
2
5 are chosen to zero out

the x2 and x4 terms of the Taylor expansion of Eq. (12)
so that the damped vdW interaction is a monotonically
non-decreasing function of Z. They are both safely posi-
tive for any combination of C3, C5, and b. The parameter
b = 3.35 bohr is determined by a fit to the RPA values
of the binding energy, and is interestingly close to our
vdW thickness of graphene (3.4 bohr). Figure S1 of the
Supplemental Material [53] shows the damping functions
for graphene on the (1,1,1) surfaces of Al, Ni, and Au.
From Fig. S1, we see that the damping is significantly
important at equilibrium.
Finally, taking the lattice constants of metals from

Ref. [54] and the RPA values d, we obtain Zeq = d− c/2,
as listed in Table III. Based on Zeq, we calculate the
vdW binding energies of graphene on metals. Then we
combine the vdW part with the PBE (Perdew-Burke-
Ernzerhof) GGA value [25], which is almost free of vdW
contributions [31]. The results are displayed in Table III,
where they are compared with the results of other meth-
ods. As a comparison, we have also calculated the un-
damped vdW energy at the RPA geometry, finding that
the undamped vdW energy is about three times bigger
than the damped vdW energy, suggesting the significance
of damping.
From Table III, we can see that if we take the RPA val-
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ues to be the standard, our PBE+vdW yields the most
accurate results, with a mean absolute error (MAE) of
only 6 meV. Our study also shows that the C3 term con-
tributes only about 75% of the absorption energy, while
the higher-order term contributes much of the rest.

In conclusion, we have developed a physically-moti-
vated vdW method for physisorption of graphene on met-
als. The theory is based on the Lifshitz-Zaremba-Kohn
second-order perturbation theory, in which metal sur-
faces must be clean. Then we have calculated the vdW
coefficients C3, C5 and Z0, the reference plane position
with respect to which the position of the particle is de-
termined, from the dynamic dielectric functions of met-
als. Using the pre-determined RPA distance d between
the plane of graphene nuclei and the outermost plane of
metal nuclei, we calculate the adsorption energies for the
PBE+vdW method. The results are quite close to the
RPA values for physisorption, suggesting the promise of
the model. Extension of this work to other molecular ad-
sorption is under study. Our model can be also adapted
to recent meta-GGAs such as SCAN [57] and TM [58] by
scaling up b by a constant fit factor greater than 1.
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