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Abstract 
 
The multimode Jahn-Teller (JT) effect in a bulk system of neutral nitrogen-vacancy (NV0) center 
in diamond is investigated via first-principles density functional theory (DFT) calculations and 
intrinsic distortion path (IDP) method. The adiabatic potential energy surface (APES) of the 
electronic ground state of NV0 center is calculated based on local spin density approximation 
(LSDA). Our calculations confirm the presence of dynamic Jahn-Teller effect in the ground 2E 
state of NV0 center. Within the harmonic approximation, IDP method provides the reactive path of 
JT distortion from unstable high symmetry geometry to the stable low symmetry energy minimum 
geometry and describes the active normal modes participating in the distortion. We find that there 
are more than one vibrational modes contributing to the distortion and their contributions change 
along the IDP. Several vibrational modes with large contribution to the JT distortion, especially 
those modes close to 44 meV, are clearly observed as the phonon sideband in 
photoluminescence spectra in a serial of experiments, indicating that dynamic Jahn-Teller effect 
plays an important role on the optical transition of NV0 center.  
   
I. Introduction 
 

Nitrogen vacancy (NV) center defect in diamond is extensively studied for a broad range of 
applications including quantum computation, quantum information process, high sensitivity 
magnetometry and biosensor due to their unique properties.1 NV center can exist in two charge 
states: a neutral (NV0) state or a negatively charged state (NV-), which can be converted to each 
other by chemical,2, 3optical4 or electrical controlling methods.5, 6 The electronic and optical 
properties of NV center are directly influenced by atomic vibrations through electron-phonon 
coupling. The Jahn-Teller (JT) effect in NV center in diamond has attracted a lot of interest in 
recent years, because electron-phonon interaction and the Jahn-Teller effect are very crucial for 
understanding the unique properties of the defect. The Jahn-Teller effect has influence on the 
structure stability of NV center that inducing structure transition from high symmetry C3v 
geometry to more stable low symmetry C1h geometry for both the ground state of NV0 center and 
the excited state of NV- center. 7, 8 The phonon properties of NV center are also affected by the JT 
effect, especially the symmetry of vibrational modes which have a lower C1h symmetry. 9 The 
splitting of the double degenerate electronic states under the influence of an e-type distortion in 
the excited state of NV- center can also be attributed to the electron-phonon coupling.10 The JT 
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effect also plays an important role in the optical properties of NV center. The dynamic JT effect 
has been used to interpret the temperature dependence of the linewidth of the zero phonon line 
(ZPL) for the NV- center10, 11 and is also responsible for the absence of EPR signal in the ground 
state of NV0 center.12 

The impact of Jahn-Teller effect on the properties of the NV centers has been under investigation 
from the 1970s-80s.13-15 Recently, the vibronic properties and JT effect of NV- center have been 
continuously investigated by new experiments11, 16, 17 and ab initio calculations.9, 10, 18, 19 The 
studies confirm the presence of dynamic JT effect in the exited state of NV- center.10, 11 Previous 
researches showed that the Jahn-Teller effect is observed in the excited state of NV- center and is 
invoked to explain the asymmetry between the absorption and photoluminescence (PL) 
lineshapes.20 The JT effect has also been used to explain phonon-induced electronic dephasing 
between the two components of the 3E state.17 However, unlike NV- center, there are relatively 
few reports on the investigation of the JT effect in NV0. As mention above, dynamic Jahn-Teller 
effect is regarded as a possible mechanism for the absence of EPR signal in the ground state of 
NV0 via broadening the EPR lines to significantly reduce the detection capability.12 DFT 
calculations for the vibrational properties and formation free energy of NV centers have been 
performed to analyze the relative concentration of NV- and NV0 defects in diamond. The result 
demonstrates that the concentration of NV- becomes greater than that of the NV0 only when the 
temperature exceeds 600K.21 The analysis of the vibronic properties of NV0 center has also been 
proceed by other first-principles calculations,8, 22 and the calculation indicates the exist of JT 
effect in the ground state of NV0 center.8 Despite of these studies, our knowledge about NV0 
center in diamond is still far from complete. Further investigation of the JT effect in NV0 center 
can enrich our understanding of the role of JT effect in the process of optical transition and other 
properties.  

When the vibronic coupling is a mechanism responsible for structural distortions and 
dynamics, there is a cusp in the adiabatic potential energy surface (APES) at the high symmetry 
(HS) point and the system is unstable. The system will distort to a lower symmetry (LS) energy 
minimum point by the electron-phonon interaction. In an idea JT case, the JT distortion is 
represented by the movement of atoms from the HS point along one and only one soft mode of the 
system which leads the system toward the lower symmetry and lower energy point in APES. 
However, in the real case there may be many modes coupling to the distortion.23 To better 
understanding of multimode problem in Jahn-Teller systems, an intrinsic distortion path (IDP) 
method has been introduced to provide a detail description of Jahn-Teller distortion and to analyze 
the role of vibrational modes in the distortion.24 In the IDP method, the JT distortion is regarded as 
the superposition of all possible JT active normal modes. Within the harmonic approximation, IDP 
method provides the reactive path of JT distortion from unstable high symmetry geometry to the 
stable low symmetry energy minimum geometry and describes the active normal modes 
participating in the distortion. The method has been widely used in the studies of Jahn-Teller 
effect in molecular systems.25-27 In present work, we adopt IDP method to construct a general 
model for the analysis of the APES of a bulk system of NV0 center in diamond disposed to the 
multimode Jahn–Teller effect. We demonstrate that the combination of DFT calculations and IDP 
method to address the vibronic coupling and contributions successfully describes the dynamic 
Jahn-Teller effect of the ground state of NV0 center. To the best of our knowledge, our present 
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paper is the first time that the scheme is introduced to investigate multimode Jahn-Teller problem 
in a bulk system. Such an approach will provide a general tool to investigate JT distortion of other 
similar defects in crystals. 

The paper is organized as fellow. In Sec. II we give a brief summary of the computational 
procedure used in the paper. In Sec. III we analyze APES, IDP, and luminescence lineshape of 
NV0 center in detail. In Sec. IV we show the conclusion of the paper. 
 
II. Methods 
 
2.1. Density functional calculations of the structure and vibrational modes of NV0 center 
 

Previous ab initio calculations have shown that DFT works well in the study of electronic 
and vibronic (phonon) properties of NV0 center.8, 21 In our present work, density functional theory 
calculations are carried out using the plane wave basis code as implemented in the Vienna ab 
initio Simulation Package (VASP) with the local spin density approximation (LSDA).28 The Γ 
point for k-point sampling and a plane-wave basis set with an energy-cutoff of 420 eV are used in 
our calculations. In the geometry optimization calculations, a 215-atom cubic supercell (3×3×3) 
with the box length of 3a0 = 10.605 Å is used, where a0 is the optimized equilibrium lattice 
constant of the diamond structure. All internal atomic positions are relaxed in a constant volume 
until the forces are below 10−3 eV/Å on every atom.  

The atomic structure of the NV0 center in its electronic ground state has been optimized 
before the calculation for the vibration modes are performed. The vibrational modes for the 
ground state of the NV0 center are performed using finite displacement method.29 The dynamics 
matrix of the supercell containing a NV0 center defect is obtained from a set of force calculations, 
in which atoms in the supercell is selected one-by-one to displace with a small displacement (0.02 
Å) from its equilibrium position. Diagonalization of the 645×645 dynamics matrix provides the 
frequencies and eigenvectors of the 642 vibrational modes and three translational modes. The 
degree of the mode localization can be quantified by its inverse participation ratio (IPR), defined 
as9, 30 

௞ܴܲܫ ൌ ∑ ሺ࢛࢏·࢛௜ሻଶே௜ୀଵ ൫∑ ࢏࢛ · ே௜ୀଵ࢏࢛ ൯ିଶ
                        (1) 

where ࢛࢏  is the normalized three-dimensional atomic displacements of the atom i in the 
corresponding eigenvector of vibrational mode k and N is the number of atoms in the system. It is 
obvious that ܴܲܫ௞ reflects a typical number of atoms participating effectively in the vibrational 
mode k. For completely delocalized phonons ܴܲܫ௞~ 1 ܰ⁄  is almost zero for macroscopic systems, 
while for a completely localized mode ܴܲܫ௞ is finite independently of the system size. 

 

2.2 DFT calculations of JT properties and potential energy surface of NV0 center 
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The NV0 center has 2E electronic ground state in the high symmetry atomic configuration. 

This atomic configuration is not a stationary point on potential energy surface, and there is 
coupling between the E electronic states with the non-totally symmetric e vibrations. Therefore, 
our procedure for calculating the JT parameters consists of the following steps:31 (i) a geometry 
optimization of NV0 center in a high C3v symmetry with an occupation of 0.5 on both e orbitals, 
(݁௫)0.5 (݁௬)0.5. (ii) Energy calculation using the high symmetry geometry (GHS) obtained by step (i) 
and with the electronic configuration as that in the lower symmetry structure. This is achieved by 
doing calculation with an integer occupation on one of the doubly degenerate orbitals, e.g., (݁௫)1 
(݁௬)0. (iii) A complete geometry optimization on the lower symmetry structure, with the same 
electron occupancy in step (ii). This results in two different geometries with low C1h symmetry, 
i.e., a geometry at the energy minimum (GM) and a geometry at the saddle point (GS), respectively. 
A vector RሬሬԦJT in the APES defines the straight path (also called Direct Path) from the GHS to the 
GM. Similarly, RሬሬԦS defines the straight path (Direct Path) from the GS to the GM. EJT is the 
difference between the energies of the GHS in the steps (ii) and the GM in step (iii). The energy 
difference between GS and GM is the warping barrier, ߜ. The energies of the lower branch of the 
APES are obtained along the direct path RሬሬԦJT and RሬሬԦS with the orbital occupancy (݁௫)1 (݁௬)0. The 
energies of the upper branch of APES are obtained by promoting one electron from the ݁௫ to ݁௬ 
with the same geometries of the lower branch.  
 
2.3 Intrinsic Distortion Path (IDP) 
 

The reaction path starting from high symmetry geometry GHS to low symmetry minimum GM 
is defined as ‘intrinsic distortion path (IDP)’.24 In the IDP method, each point X in the APES can 
be represented as a 3N-dimentional vector  ሬܴԦ௑, and the energy minimum point M is taken as the 
origin point ( ሬܴԦሺܩெሻ ൌ 0). Within harmonic approximation, the distortion ሬܴԦ௑ can be written as a 
linear combination of all (Na1) totally symmetric normal modes in the GM,  ሬܴԦ௑ ൌ ∑ ௑௞ݓ ሬܳԦ௞ேೌభ௞ୀଵ ,                                   (2) 
where ሬܳԦ௞ are mass-weighted totally symmetric normal coordinates, which are the eigenvector of 
the corresponding vibrational mode in the GM. ݓ௑௞  are weighing factors representing the 
contribution of different mode to the distortion. The energy difference (ܧ௑) between the point X 
and GM can be obtained from a sum of the energy contributions of all totally normal modes in the 
GM:  ܧ௑ ൌ ∑ ௞ܧ ൌ ଵଶேೌభ௞ୀଵ ∑ ௑௞ଶேೌభ௞ୀଵݓ ሬܳԦ௞ଶߥ௞,                           (3) 

where ݓ௑௞  is obtained from equation (2), ߥ௞ and ሬܳԦ௞  are frequency and eigenvector of the 
corresponding vibrational mode in the GM, which are obtained from the DFT calculation. When 
the point X is corresponding to the high symmetrical geometry ( ሬܴԦ௑ ൌ ሬܴԦ௃்), we then obtain JT 
energy: EJT. The APES constructed by the IDP method is a simplified quadratic energy surface, 
which can be deviated from the APES obtained directly from DFT calculations which include also 
the effects of anharmonicity. However, it is found that most of the results obtained from IDP 
method with harmonic approximation are in a good agreement with DFT calculations.25 The 
driving forces on the unstable point X on the APES can directly obtained from the derivation of 
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energy over Cartesian coordinates. The total force can be expressed as a vector sum of the 
individual forces: ܨԦ௑୲୭୲ ൌ ∑ Ԧ௑୩ܨ ൌ ଵଶேೌభ௞ୀଵ ∑ ௑௞ேೌభ௞ୀଵݓ ଵܯ௞ߥ ଶ⁄ ሬܳԦ௞,                     (4) 

where M is a diagonal 3N×3N matrix with atomic masses in triplicates as elements (m1, m2, m3, 
m4, …, mn).24 The force will drive the system from the cusp to the minimum energy point 
step-by-step on the APES in a fast energy minimization manner. In this process, the path that the 
system covered is IDP, which is in general different from the Direct Path mentioned above. The 
energies and forces of the points along the IDP can be recorded by equations (2-4). The 
contribution of all the totally-symmetric modes to the distortion and their changes along the IDP 
can also be distinguished. Details about this method have been represented in the previous work. 
24, 31 

 
2.4 Luminescence lineshape and Huang-Rhys (HR) factor 
 

We adopt the method introduced by Alkauskas et. al. to calculate the luminescence lineshape 
and HR factor for the neutral NV center.19 The method has been successfully used in the study of 
the negatively charged NV center. According this method, the normalized luminescence intensity 
is expressed as  ܮሺ԰߱ሻ ൌ  ሺ԰߱ሻ,                              (5)ܣଷ߱ܥ
where ܥ is a normalization constant: 

ଵିܥ  ൌ ׬ ߱ଷܣሺ԰߱ሻ ݀ሺ԰߱ሻ,                            (6) 
and ܣሺ԰߱ሻ is optical spectral function which is defined as the Fourier transform of a generating 
function ܩሺݐሻ:32, 33 ܣሺܧ௓௉௅ െ ԰߱ሻ ൌ ଵଶగ ׬ ሻஶ଴ݐሻ݁௜௪௧ିఊ|௧|݀ሺݐሺܩ ,                     (7) 

where the parameter ߛ represents the broadening of the ZPL and is chosen to reproduce the 
experimental width of the ZPL. 

The generating function ܩሺݐሻ is defined as  ܩሺݐሻ ൌ ݁ௌሺ௧ሻିௌሺ଴ሻ,                                  (8) 
where ܵሺݐሻ ൌ ׬ ܵሺ԰߱ሻ݁ି௜௪௧݀ሺ԰߱ሻஶ଴ .                           (9) 

 ܵሺ԰߱ሻ is the spectral function of electron-phonon coupling which is defined as  
 ܵሺ԰߱ሻ ൌ  ∑ ܵ௞ߜሺ԰߱ െ ԰߱௞ሻ௞ ,                          (10) 

where ω୩ is the frequency of the vibrational modes k, and ܵ௞ is the (partial) HR factor for the 
mode k. It is calculated as:34 ܵ௞ ൌ ߱௞ݍ௞ଶ ሺ2԰ሻ⁄ ,                                (11) 
with ݍ௞ ൌ ∑ ݉ఈଵ ଶൗ ൫ܴ௘;ఈ௜ െ ܴ௚;ఈ௜൯ఈ௜  ௞;ఈ௜,                       (12)ݎ∆

where ߙ labels atoms, ݅ ൌ ሼݔ, ,ݕ  ሼ௘,௚ሽ;ఈ௜ is the equilibriumܴ ,ߙ ሽ, ݉ఈ is the mass of atomݖ
position in the initial (excited) and the final (ground) state, and ∆ݎ௞;ఈ௜ is a normalized vector that 
describes the displacement of the atom α along the direction ݅ in the phonon mode k.  
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The total HR factor for a given optical transition is obtained by ܵ ؠ ܵሺݐ ൌ 0ሻ ൌ ׬ ܵሺ԰߱ሻ݀ሺ԰߱ሻஶ଴ ൌ ∑ ܵ௞௞ .                  (13) 

More details of the calculations can be found in the previous work.19 

Taken the atomic positions of the energy minimum point M in the APES as reference, the 
position deviation of the point X from the energy minimum point M in the APES can be described 
by 3N equations:  ܴ௑;ఈ௜ ൌ ܴ௚ሺ௑ሻ;ఈ௜ െ ܴ௚ሺெሻ;ఈ௜,                               (14) 
where ߙ and i have the same meaning in the Eq. (12), ܴ௚ሺ௑ሻ;ఈ௜ and ܴ௚ሺெሻ;ఈ௜ is the atomic 
position in the point X and the low symmetry minimum GM in the APES of the neutral NV center 
in the ground state. In special, when ሬܴԦ௑ ൌ ሬܴԦ௃், we have: ௃்ܴ;ఈ௜ ൌ ܴ௚ሺுௌሻ;ఈ௜ െ ܴ௚ሺெሻ;ఈ௜,                             (15) 
where ܴ௚ሺுௌሻ;ఈ௜ is the atomic position in the high symmetry geometry GHS. From Eq. (2), we can 
obtain 3N equations: ൫ܴ௚ሺுௌሻ;ఈ௜ െ ܴ௚ሺெሻ;ఈ௜൯ ൌ ∑ ௞;ఈ௜ேೌభ௞ୀଵݎ∆௞ݓ ,                       (16) 
where ݓ௞ are weighing factors representing the contribution of different mode to the distortion ሬܴԦ௃் and ∆ݎ௞;ఈ௜ has the same definition in the Eq. (12). In Eq. (12), the equilibrium atomic 
position in the final (ground) state is exactly the one in the energy minimum geometry:  ܴ௚;ఈ௜ ൌ ܴ௚ሺெሻ;ఈ௜. In general, the equilibrium atomic position (ܴ௘;ఈ௜) in the excited state may not equal to 
the one (ܴ௚ሺுௌሻ;ఈ௜) in the high symmetry geometry GHS in the ground state. However, these two 
geometries have the same (C3V) symmetry and their distortions from the low symmetry minimum 
GM in the ground state have positive correlation: ൫ܴ௚ሺுௌሻ;ఈ௜  െ  ܴ௚ሺெሻ;ఈ௜ ൯~൫ܴ௘;ఈ௜ െ ܴ௚;ఈ௜൯ found 
in our calculations. Thus, from equation (11), (12) and (16), we can obtain:    ݍ௞ ൌ ∑ ݉ఈଵ ଶൗ ൫ܴ௘;ఈ௜ െ ܴ௚;ఈ௜൯ఈ௜ ~௞;ఈ௜ݎ∆ ∑ ݉ఈଵ ଶൗ ∑ ௞;ఈ௜ଶேೌభ௞ୀଵఈ௜ݎ∆௞ݓ ,          (17) 

and      ܵ௞ ൌ ߱௞ݍ௞ଶ ሺ2԰ሻ⁄ ~߱௞ ൤∑ ݉ఈଵ ଶൗ ∑ ௞;ఈ௜ଶேೌభ௞ୀଵఈ௜ݎ∆௞ݓ ൨ଶ ሺ2԰ሻൗ .               (18) 

Therefore, there is a strong positive correlation between partial Huang-Rhys factors ܵ௞ and the 
weighting factor ݓ௞, which represents the contribution of different mode to the JT distortion. 
 
III. Results and Discussion 

 
3.1 Geometry optimization and JT distortion energy 

The neutral nitrogen-vacancy color center consists of a substitutional nitrogen atom (N) and 
an adjacent vacancy (V) in the diamond lattice. It has trigonal C3v symmetry in the 2E ground state. 
The defect state of NV0 center can be described by the five-electron model:8 two fully symmetric 
singlet a1 states (ݑݑതݒߥҧ) and one doubly degenerate e state (݁௫ ҧ݁௫݁௬ ҧ݁௬), with an occupation of five 
electrons ݑଶߥଶ݁ଵ in the 2E ground state. Here ݑ denotes a spin up state while ݑത denotes a spin 
down state. The coupling between the twofold degenerate electronic E states and the twofold 
degenerate e vibrations will result in an ۪݁ܧ JT problem in the ground state of NV0 center.  
   The occupation of defect levels in the band gap of diamond and the optimized structure around 
vacancy obtained from our calculation are shown in Fig. 1. Following the computational step (i) 
mentioned above, the geometry optimization is initialized from the high symmetry C3v geometry 
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with half occupied two degenerate e levels: (e୶)0.5 (e୷)0.5, and the C3v symmetry is found to be 
kept after optimization. Then the system energy is calculated when one of two degenerate levels is 
occupied ((e୶)1 (e୷)0) as mentioned in the step (ii) and the results are shown in the middle panel of 
Fig. 1. After geometry optimization, the bond length of three carbon atoms adjacent to the 
vacancy are equivalent (2.635 Å), forming an equilateral triangle. And the bond lengths of the 
nitrogen atom with these carbon atoms are also equivalent (2.715 Å). 

Following the step (iii) described in the method section, two geometries with C1h symmetry 
are obtained after optimization: the carbon atoms adjacent to the vacancy forms acute (Fig.1, left 
panel) or obtuse (Fig.1, right panel) isosceles triangles. One of them is at the energy minimum 
(denoted as M) and the other is a saddle point (denoted as S) on the APES. The corresponding 
Jahn-Teller distortion energies ܧ௃ெ்  and ܧ௃ௌ்  are 73.2 meV and 63.2 meV, respectively. The 
energy difference between the C3v and C1h geometries of the neutral NV center in diamond at 
ground state are also obtained by first-principles calculations with LDA potential.8 The energy 
barrier (ߜ) between the two low symmetry geometries (GM and GS) is 10 meV. The distortion 
distances from the high symmetry geometry to the two low symmetry geometries ܴெ and ܴௌ 
are 0.101 Å and 0.127 Å, respectively. The results can also be seen in Table I.  

 
3.2 APES: Coupling of electronic E states and the double degenerate e vibration modes and the 
dynamic Jahn-Teller effect 
 

Since the ground state of NV0 center in diamond with the C3v symmetry belongs to an ۪݁ܧ 
JT system in which the doubly degenerate electronic E states are coupled with the doubly 
degenerate e vibrational states, the distortion coordinate is e (ܧ۪ܧ ൌ ଵܣ ൅ ሾܣଶሿ ൅  and the (ܧ
decent of symmetry goes to C1h

 according to group theory. In this case, the irreducible 
representation of the active modes becomes totally symmetric. 

For the ground state of neutral vacancy center in diamond, the degenerate electronic E states 
(߰ఌ, ߰ఏ) can be perturbed by the vibration e modes (ܳఌ , ܳఏ ), besides being perturbed by totally 
symmetric atomic movements. Considering the electron-phonon interaction, according to the 
Jahn-Teller theory, the adiabatic potential energy surface can be written in a polar coordinate form ሺQఌ ൌ ,φ݊݅ݏߩ Qఏ ൌ ,ߩേሺߝ φሻ,35ݏ݋ܿߩ ߮ሻ ൌ ଶܸ௔ߩଶ ൅ ଷܸ௔ߩଷܿ3߮ݏ݋  േ ሾሺߩ ଵܸ௘ଶ െ 2 ଵܸ௘ ଶܸ௘3߮ݏ݋ܿߩሻ ൅ ሺ2 ଵܸ௘ ଷܸ௘ ൅ ଶܸ௘ଶ ሻߩଶ െሺ2 ଶܸ௘ ଷܸ௘ଷ cosሺ3߮ሻሻߩଷ ൅ ଷܸ௘ߩସ ሿଵ ଶ⁄ ,                                              (19) 
where ଶܸ௔ሺ ଷܸ௔ሻ is an elastic (cubic) force constant, and ௜ܸ௘ሺ݅ ൌ 1,2,3ሻ are linear, quadratic, 
and cubic coupling parameters. Neglecting the parameter ଷܸ௘, which may not have significant 

contribution to the APES ߝേ,35we expand the equation (19) in the third order in ,ߩേሺߝ : ߮ሻ ൌ ଶܸ௔ߩଶ ൅ ଷܸ௔ߩଷܿ3߮ݏ݋  േ ሾሺߩ ଵܸ௘ଶ െ 2 ଵܸ௘ ଶܸ௘3߮ݏ݋ܿߩሻ ൅ ଶܸ௘ଶ ଶ ሿଵߩ ଶ⁄ .     (20) 
If one includes only the linear JT coupling, the APES will show radial symmetry, resembling 

the well-known Mexican hat shape. In our study, two methods are introduced to fit the ab initio 
data of the APES based on the analytical expression of Eq. (20) and up to third order in ߩ. One is 
to fit both the upper and lower branches of the APES (ߝା and ିߝ) simultaneously, and the other is 
to fit the two curves, ሺߝା ൅ ሻିߝ 2⁄  and ሺߝା െ ሻିߝ 2⁄ , separately.35 The fitting parameters from 
both fitting methods are shown in Table II. The corresponding results are compared with the ab 
initio data as shown in Fig. 2. The frequency of the effective coupling vibrational mode can be 
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estimated using the elastic constant ଶܸ௔.10 The energy (԰߱) of the vibrational mode is about 62.5 
meV obtained by both fitting methods. This energy is close to the energy (about 70 meV) of the 
effective vibrational mode of NV0 center in the ground state.13, 15 Unlike the case in the negatively 
charged NV center,10 which has a weak coupling constant ߣ ൌ ௃்/԰߱ܧ ൏ 1, in the present ab 
initio calculations, the coupling constant of NV0 center are strong due to that ߣ ൌ ௃்ܧ  ԰߱⁄ ൌ1.17 ൐ 1, but not very strong. This is consistent with the statements in Ref.13 that the consequence 
of the JT effects at deep centers in diamond is different for ground-state and excited states. All the 
known orbitally degenerate ground states undergo significant relaxations (ߣ ൐ 1), while all the 
degenerate excited states have small or negligible relaxations (ߣ ൏ 1). However, it is worth noting 
that Davies used a bigger value of ߣ ሺൌ 2ሻ in his discussion of NV0 center by assuming that the 
JT relaxation is a significant contributor to the bandshape.13  

Furthermore, adiabatic potential energy surface and contour plot of the lower sheet of 2E state 
are shown in Fig. 3. Three equivalent minima (at ߠ ൌ 0, ߨ2 3⁄ , ߨ4 3⁄ ) separated by three saddle 
points are found in the lower sheet of the APES. From first-principles calculations, the barrier 
height ߜ between the minima is 10 meV, which is close to the experiment result 28 meV.15 The 
smaller energy barriers we got may be due to LDA tends to underestimate the barrier energy. In 
the case that the barrier height ߜ ሺൌ 10 ܸ݉݁ሻ  is smaller than the phonon energy ԰߱ ሺൌ62.5 ܸ݉݁), the vibration can help atoms to hop between the three equivalent C1h configurations in 
the ܳఌ , ܳఏ space much more easily and the system exhibits an effective C3v symmetry, as 
predicted by dynamic Jahn-Teller theory.  

According to the JT parameters obtained in Table II, we can also perform the calculations of 
effective vibronic energies via diagonalizing the vibronic Hamiltonian: ܪ ൌ ଴ܪ െ ԰ଶ ⁄ܯ2 ൫߲ଶ ߲ܳఏଶ⁄ ൅ ߲ଶ ߲ܳఌଶ⁄ ൯ ൅ ܷఏൣ ଵܸ௘ܳఏ ൅ ଶܸ௘൫ܳఌଶ െ ܳఏଶ൯൧ ൅ ఌܷሾ ଵܸ௘ܳఌ ൅ଶܸ௘ሺ2ܳఌܳఏሻሿ ൅ ൣܫ ଶܸ௔൫ܳఏଶ ൅ ܳఌଶ൯ ൅ ଷܸ௔൫ܳఏଷ െ 3ܳఏܳఌଶ൯൧                               (21) 
where ܪ଴ is the Hamiltonian of degenerate electronic state at ܳఌ ൌ ܳఏ ൌ 0, and ఌܷ , ܷఏ and ܫ 

are 2 ൈ 2 matrix: ఌܷ ൌ ቀ1 00 െ1ቁ, ܷఏ ൌ ቀ0 11 0ቁ, and ܫ ൌ ቀ1 00 1ቁ. The vibronic Hamiltonian 

can be diagonalized in a symmetry adapted vibronic basis constructed from the direct product of 
the electronic wave-function ߶௝ሺݎԦሻሺ݆ ൌ 1, 2ሻ  and the states of the harmonic oscillators ߯௡ഄሺܳఌሻ ܽ݊݀ ߯௡ഇሺܳఏሻ : ߰௝,௡ഄ,௡ഇ ൌ ߶௝ሺݎԦሻ߯௡ഄሺܳఌሻ߯௡ഇሺܳఏሻ.                        (22)     

The results for the lowest few vibronic states are shown in Table III. The first excited 
nondegenerate state (ܣଶ) above the vibronic ground ܧ state obtained from our calculation is a 
little larger ሺ3߁ ൌ 21.4 meV ሺor 23.8 meVሻሻ  than that ( ߁3 ൌ 13.6 ܸ݉݁ ሺ110 ܿ݉ିଵሻ ) 
mentioned in Ref. 13. The splitting 3߁ between the E-type vibronic ground state and the A-type 
first excited state is the so-called tunneling splitting.23 Similar to the negatively charged NV, the 
energy barrier (ߜ ൌ 10 ܸ݉݁) between the APES minima from the present ab initio calculation is 
rather small that the concept of occasional tunneling between localized vibration states is also not 
valid for the neutral NV center. However, we can still use the energy splitting 3Γ as a measure of 
the degree of the localization (or delocalization) of the vibrational states.18 For the neutral NV 
center, the barrier to tunneling splitting ratio, ߁3/ߜ is 0.47 (or 0.42), indicating that the system is 
also a dynamic Jahn-Teller system. Our calculations also show that there is another ܣଵ state at 
38.5 meV (or 30.8 meV) above the ܧ vibronic ground state. This is consistent with the results in 
Ref. 13, in which Davies predicted an ܣଵ  state to lie at an energy 
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∆ ൅ ߁3 ൌ 45.9 േ 24.8 meV ሺ370 േ 200 cmିଵሻ above the ܧ vibronic ground state and he also 

obtained a value 35.3 ቀ൅18.6 െ6.2 ቁ meV (285 ቀ൅150 െ50 ቁ cmିଵ) of the ܣଵ state from the fit to their 

stress data to support his prediction.  
 
3.3 Intrinsic Distortion Path (IDP) 
 

The energy variation of the defect along IDP is showed in Fig. 4(a). The JT energy obtained 
by the IDP method is 60.9 meV, which is smaller than the one (73.2 meV) obtained from DFT 
method due to lack of the anharmonic effect in IDP. The decrease of energy along IDP is faster 
than that along the direct path in the early time of distortion process. Then the energy falls 
gradually to zero, in the meantime the system relaxes to the C1h minimum point. Overall, the 
deviation of the reactive path from the two paths is small. As mentioned above, the number of the 
vibrational modes of system is 3N-3 ( = 642) in our calculations. But not all these modes have 
contribution to the distortion form the GHS to the GM. In our calculations, we find that 338 totally 
symmetry modes have contribution to the JT distortion. Among these modes, we chose the most 
important 14 normal modes shown in Table IV. These 14 modes have 86.8% contribution to the 
JT distortion and 63.4% contribution to the JT energy (Table IV). Most of the modes with large 
contribution to the JT distortion are soft modes. It is noteworthy that not all these modes are 
quasilocalized modes, some of them have small IPR as shown in Table IV. In addition, we also 
find that several modes with large frequency not shown in the Table IV (e.g., the hardest modes: 
167.2 meV) also have large contribution (2.7%) to the JT distortion energy. 

The contributions of the most important totally symmetric modes to the JT distortion along 
the IDP are illustrated in Fig. 4(b). At start point (GHS), one quasilocalized mode with an energy of 
52.9 meV has the largest contribution to the distortion (39.1%). The contribution decreases along 
the IDP, and finally gets to a value less than 20% when it is close to the LS geometry GM. In the 
contrast, the contributions of other three normal modes around 45.0 meV (44.2, 45.6, and 46.7 
meV) increase along the IDP and get their maximum contributions at the GM, especially for the 
mode of 44.2 meV, whose contribution stands over 50%. It indicates that these modes dominate 
the relaxation of the geometry near the GM. The contributions of the other modes (e.g., 65.1 meV 
etc.) decrease along the IDP gradually and fade out when approaching GM.  

In order to see the details of the coupling vibrational modes, the motions of the atoms in the 
normal modes are extracted from the corresponding eigenvectors of the vibration modes. Here we 
represent atomic vibration patterns of the two important modes (44.2 and 52.9 meV) with the 
largest contribution to the distortion in Fig. 5. The atoms around the vacancy have large degree of 
displacement and the modes favorite the bond-bending patterns. 

The driving forces along the IDP are shown in Fig. 6. The modes with the largest forces 
could generally be divided into two categories: the hard modes and the soft ones. For the seven 
hardest modes (167.2, 161.6, 164.0 158.7, 166.4 164.8 and 159.5 meV) in the ground state of NV0 
center, the forces along the IDP decrease rapidly to nearly zero once RX/RJT reaches 0.6. It is the 
primary cause of the energy reduction in the early stage of the distortion. By contrast, the forces 
from soft modes (52.9, 83.1, 64.1, 74.2, and 44.2 meV) reduce slowly along the IDP. 

The important coupling modes with energies of 44.2, 45.6 and 46.7 meV stay in the range of 
the effective phonon energy (37.2 meV~104.2 meV) and are close to a sideband of 45 meV 
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illustrated by Davies.13 Moreover it is also in excellent agreement with the observations in the 
PL-spectra of NV0 diamond: one clear sideband at about 44 meV is found both in the Fig. 1(a) of 
reference 36 and Fig. 2(a) of reference 37. Besides, photoluminescence studies also shows that the 
vibrations of NV0 involve one phonon with energy of 42 meV.38 In addition, the quasilocalized 
vibrational modes (74.2 and 72.6 meV) with small IPR, which also have large contribution to the 
JT distortion, are in a good agreement with the effective mode about 70 meV inferred by 
experiment13, 15 and the activated mode about 75 meV evaluated by quantum chemical 
calculation.22 This implies that the vibration modes coupled to JT distortion could play an 
important role in optical properties of NV0 center if we assume that the Jahn-Teller effect has a 
significant contribution to the bandshape. 

We also performed the calculations to study the intrinsic distortion path with a larger 
supercell (4×4×4) to see whether the main results we obtained from the (3×3×3) supercell are 
reliable. The JT energy of the (4×4×4) 511-atom supercell is obtained in the same way as in the 
215-atom supercell calculation. The vibrational modes of the 511-atom supercell are calculated 
using the method proposed in the Ref. 19. The comparison of the IDP between the 215-atom and 
511-atom supercells is shown in Fig. 7. For both supercells, their energy changes from the GHS to 
the GM along the IDP are very close to each other, especially when the geometries are close to the 
GM (Fig. 7a). The deviation between them increases with the value of RX/RJT and gets its 
maximum when RX/RJT = 1. The JT energy of 511-atom supercell obtained from IDP method is 
67.8 meV, which is a little bigger than the one (60.9 meV) from 215-atom supercell but is very 
close to the one (69.9 meV) from fully ab initio calculation for the 511-atom supercell. Since the 
number of vibrational modes in the 215-atom and 511-atom supercells is not the same, it is 
convenient to compare the contributions of the vibrational modes to the JT distortion from both 
supercells by looking at the energy-dependence spectra of the contribution. Using a Gaussian 
smoothing scheme, the spectra of the contributions of vibrational modes to the JT distortion in 
both supercells are compared in Fig. 7b. Comparison shows that the spectra of the two supercells 
are in good agreement. Since the JT energy, IDP, and the contributions of vibrational modes from 
the 215-atom supercell and 511-atom supercell calculations are very similar, we believe that the 
215-atom supercell is suitable for the investigation of the multimode Jahn-Teller effect in the 
ground state of the neutral NV center. 

  
3.4 HR factor and luminescence lineshape 

 
To further examine the role of the JT relaxation on the optical transition, we investigate the 

contribution of the JT active modes to the vibrionic spectra by calculating the HR factor and 
luminescence spectrum. The HR factor is used to characterize vibrational structure of the 
luminescence band. The total HR factor ܵ defined in equation (13) describes the total number of 
phonons emitted during the optical transition. The calculated total HR factor is S = 2.79, a little 
smaller than the expected value (S = 3) from experiment.13 The smaller value of HR factor could 
be attributable to DFT method and the psedopotential used in our calculations. Similar results 
have also been reported for DFT calculation at PBE level of negatively charged NV center.19 The 
partial HR factor ܵ௞ represents the average number of phonons of type k emitted during the 
optical transition.39 So ܵ௞ can be treated as an important parameter describing the relationship 
between the vibrational mode k and the sideband in the luminescence spectra. The vibrational 
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modes with the two largest values of ܵ௞  are at 44.2 meV (ܵ௞ ൌ 0.778ሻ  and 52.9 meV 
(ܵ௞ ൌ 0.378) respectively, which are the modes having large contribution to the JT distortion.    

The calculated luminescence lineshape and its comparison with the experimental results are 
shown in Fig. 8. The lineshape from the calculation qualitatively agrees with the experiments,13, 

36-38 especially for the main phonon replicas at about 44-46 meV and 89-90 meV, though there are 
quantitative differences. Similar quantitative differences between the calculations at PBE levels 
and the experiment can also be found in the investigation of the negatively charged NV center.19 
The active phonon mode at 44.2 meV in the JT distortion, which is found to have the largest 
contribution to HR factor S, produces an obvious phonon sideband in the luminescence lineshape. 
Because of this, we suggest that dynamic Jahn-Teller effect could play an important role on the 
optical transition of NV0 center. 
 
IV. Conclusion 
 

We investigated the multimode Jahn-Teller effect of NV0 center in diamond using both DFT 
and IDP methods. The methods open a road to analysing the multimode JT distortion of bulk 
system and provide the description of JT properties with reliable accuracy. We obtain the energies 
on the APES from DFT calculations, and fit the data with an analytical expression of APES to get 
the vibronic coupling parameters. The calculation shows that the quadratic JT coupling induces 
the bottom of the APES to be warped with alternating three global minima separated by three 
saddle points. Free rotation between the three minima are expected to be present because the 
energy of coupling virational mode is bigger than the warping barrier (԰߱ ൐  From the analysis .(ߜ
of APES, we confirm that the ground state of NV0 center is a dynamic JT system, which is consist 
with the observation by Davies in the 1970s-80s13-15 and recent ab initio results from Gali et. al.8      

By extending the IDP method from molecular system to a bulk crystal system (diamond) 
with a defects (NV0 center), we demonstrated advantages of the IDP method in the investigation 
of multimode JT distortion of defects in crystals. One of them is selecting a true LS energy 
minimum on the APES as reference point. The JT distortion is given as a superposition of 
all-totally symmetric normal modes of the reference point. As we know, there is no practical 
method to calculate the frequency of HS unstable point.10 One can also use finite displacement 
method to calculate the phonon modes of HS unstable point, but that will contain some negative 
modes, which may be not suitable (or convenient) for the analysis of JT effect. The second is that 
within the harmonic approximation, IDP method treats the JT distortion in a simple form. This 
will help one to analyze the JT effect more efficiently, and bring more convenience for the 
calculation of reactive path of JT distortion. However, for the same reason, IDP method has 
disadvantage that it does not include the anharmonicity of electron-phonon coupling, which 
should be considered in the further studies. For the multimode Jahn-Teller effect, how many 
normal modes have contribution to the distortion; how to distinguish them and how do they 
change along the IDP? These questions are very important for understanding the mechanism of JT 
distortion. IDP method provides the related active modes, their contribution to the distortion, and 
the change of the contribution along the IDP. Therefore, another advantage of IDP method is that 
it provides more details of electron-phonon coupling in the JT systems.  

We specifically pick up the neutral NV center in diamond as an example of bulk system for 
the use of IDP method, due to that the NV center in diamond is very important and extensively 
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studied recently. The results of IDP method are consistent with the DFT calculations. We find 
several key modes coupling to the JT distortion, some of them can be directly observed in 
photoluminescence band in several different experiments. It is important to note that most of the 
normal modes with large contribution to the distortion of NV0 center are soft modes, which are not 
all quasilocalized vibrational modes. However, through analyzing the change of forces along IDP 
from the GHS to the GM, the hard modes (with large frequencies) are also found to play an 
important role at early stage, causing the energy fell quickly in the beginning, while the soft 
modes with large contribution to the distortion dominate the relaxation part of the reactive path. 
This phenomenon is similar to that of the JT systems in molecules.  

In summary, we have demonstrated that the combination of DFT and IDP methods can be 
considered as powerful tools for the investigation of adiabatic potential energy surfaces of JT 
active systems and for better understanding the multimode Jahn-Teller effect of defects in crystals.   
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Figures and Tables: 

 
FIG. 1. (Color online) Structures (lower panel) and relevant single-electron orbitals (upper panel) of the neutral 

NV0 center in the ground state: the 2E C3v high symmetry state HS(middle), a distorted C1h energy-minimum state 

M(right) and a saddle point state S(left). In the lower panel, only first neighbor C (green) and N (yellow) atoms to 

the vacant site are shown. In the C1h state, one carbon (denoted as C1) is different from the two others (denoted as 

C2 and C3, and related to each other by reflection in the mirror plane {110}, passing through N, C1, and the 

vacancy site). In the C3v state, these three C atoms are equivalent. The distances in unit Å between the first 

neighbor atoms are also shown. In the upper panel, the KS single-electron states between the valence band (VB) 

and conduction band (CB) are shown, with the top of VB as the reference energy. The symbols with a bar denote 

spin-down states, while the symbols without a bar correspond to spin-up states. The states ν and⎯ν have a1 

symmetry, all other states have e symmetry. 
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FIG. 2. (Color online) Adiabatic potential energy of the neutral NV0 center along RJT (positive) and RS (negative) 

directions in the ground state via DFT calculations. All the points shown in the figure are ab initio energies which 

show the lower branch of 2E state (black square points) and the upper branch of 2E state (red circle points). The 

black dash and blue solid lines are quadratic fit of the ab initio energies based on Eq. (15) using the method 1 and 

2, respectively as described in the text. The energy shown in the vertical axis is with respect to the energy of GM.  

 

 
FIG. 3. (Color online) The adiabatic potential energy surface (APES) (a) and contour plot (b) of the lower sheet of 
2E state for the neutral NV center in diamond. The energy (in unit meV) shown in figure is with respect to the 

energy of GM. Rx and Ry are in unit Å. 
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FIG. 4. (Color online) (a) Energy changes from the high symmetry GHS (RX/RJT=1) to the low symmetry energy 

minimum GM (RX/RJT=0) along the Direct Path and IDP respectively. The points shown in the (a) are the ab initio 

energies with the same geometries from the IDP. (b) The contributions (normalized to 1) to the JT distortion from 

the most important normal modes along the IDP from the high symmetry GHS (RX/RJT=1) to the low symmetry 

energy minimum GM (RX/RJT=0).  

 

 
FIG. 5. (Color online) Two most important quasilocalized vibrational modes with energies of 44.2 meV (a) and 

52.9 meV (b) in the energy minimum GM of ground state of the neutral NV center, corresponding to the JT active 

vibrations. The red arrows show the eigenvector of atomic vibrations, the arrow length is proportional to the 

vibration amplitude of a given atom. Yellow spheres denote N atom, blue spheres denote the C atoms adjacent to 

the vacancy, green spheres denote the C atoms adjacent to the N atom. Small gray spheres are the other carbon 

atoms in the diamond lattice. 
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FIG. 6. (Color online) Forces from the modes that have larger contribution to the total force along IDP from the 

high symmetry GHS (R୶ RJT⁄  = 1) to the low symmetry energy minimum GM. 

 

 
FIG. 7. (Color online) (a) Energy changes from the high symmetry GHS (RX/RJT=1) to the low symmetry energy 

minimum GM (RX/RJT=0) along the IDP for 215-atom and 511-atom supercells respectively. (b) Normalized 

contribution of all the vibrational modes to the JT distortion (RX = RJT) in the 215-atom and 511-atom supercells. 

The maximum of the contribution of the vibration modes is normalized to 1 for comparing. The relaxation 

coordinate (RX = RJT) corresponding to the contributions is defined as RJT;஑୧ ൌ R୥ሺMሻ;஑୧ െ R୥ሺHSሻ;஑୧, where ߙ 
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labels atoms, i ൌ ሼx, y, zሽ, R୥ሺMሻ;஑୧ and R୥ሺHSሻ;஑୧ is the atomic position in the low symmetry minimum GM and 

the high symmetry geometry GHS in the ground state.  

 

 
FIG. 8. (Color online) Normalized luminescence lineshapes for the neutral NV center in diamond. The energy 

shown in the horizontal axis is with respect to the energy of zero phonon line (EZPL= 2.156 eV). The calculated 

results (bar) are obtained using the method mentioned in the text. Three experimental results (1, 2, 3 and 4) are 

derived from reference 11, 36, 37, and 38.  
TABLE I. Key parameters of the APES obtained from ab initio calculations ߩ௠ (Å) ܧ௃௠் (meV) ߩ௦ (Å) ܧ௃௦்  (meV) δ (meV) 

0.101 73.2 0.127 63.2 10 

 
TABLE II. Values of the vibronic coupling constants V௜ஓ ሺ݅ ൌ 1,2,3; ߛ  ൌ ܽ, ݁ሻ of the NV0 center obtained by 

fitting the ab initio data using the Eq. (20) and the two methods as explained in the text (V௜ஓ ݅݊ unit of eV/Åi). The 
energy of the effective phonon mode is also shown. 

Fitting method ଶܸ௔ ଷܸ௔ ଵܸ௘ ଶܸ௘ ԰߱ (meV) 
 (I) εേ 5.603 1.391 1.231 -0.496 62.5 
(II) ሺߝା േ ሻିߝ 2⁄  5.612 0.446 1.137 -0.757 62.5 

 

Table III. Calculated vibronic levels for the neutral NV center. The vibronic energies ( I and II) are calculated with  

the JT parameters obtained from the different fitting methods (I and II) in the Table II. The original energies of 

vibronic levels shown in the Table are with respect to the energy of degenerate electronic ground state in the GHS. 

The adjusted ones are with respect to the energy of the E vibronic ground state.  

Symmetry Energy I (meV)  Energy II (meV)  
Original Adjusted Original Adjusted ܣ 0 19.0- 0 29.2- ܧଶ -5.4 23.8 2.4 21.4 ܣଵ 1.6 30.8 19.5 38.5 61.8 42.8 61.5 32.3 ܧ 
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 ଶ 85.5 114.7 103.6 122.6ܣ 109.1 90.1 107.6 78.4 ܧ ଵ 71.8 100.0 82.8 101.8ܣ 77.2 58.2 73.6 44.4 ܧ
 

TABLE IV. Analysis of the multimode JT effect in the ground state of NV0 center: the JT radii ( ௃ܴ௞் , (amu)1/2 Å), 

the JT stationary energy (ܧ௃௞் , meV), the contributions of the chosen normal modes to the distortion (ܿ௥௞) and JT 

energy (ܿ௘௞), and the inverse participation ratio (ܴܲܫ௞).  

Frequency, 
meV 

ܓࢀࡶࡾ , 
(amu)1/2 Å 

Contribution to ࢀࡶࡾ (ܿ௥௞, %) 
௃௞்ܧ , 
meV 

Contribution to ܧ௃் (ܿ௘௞, %) 
 ௞ܴܲܫ

52.9 0.0395 39.1 15.9 26.1 0.014 
44.2 0.0157 15.5 4.4 7.2 0.011 
45.6 0.0077 7.6 2.3 3.8 0.007 
65.1 0.0057 5.7 3.4 5.6 0.009 
83.1 0.0031 3.1 3.0 4.9 0.010 
74.2 0.0027 2.7 2.2 3.6 0.025 
59.7 0.0026 2.6 1.3 2.1 0.007 
64.2 0.0024 2.4 1.4 2.3 0.011 
58.6 0.0018 1.8 0.9 1.5 0.016 
64.8 0.0018 1.8 1.1 1.8 0.006 
46.7 0.0014 1.4 0.4 0.7 0.007 
72.3 0.0012 1.2 0.9 1.5 0.025 
56.8 0.0011 1.1 0.5 0.8 0.013 
76.3 0.0010 1.0 0.9 1.5 0.010 

Total 0.0877 86.8 38.6 63.4  

 
 
 
 
 
 


