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We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of mono-
layer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton
operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the
valley-chirality rule for the second-harmonic generation in monolayer MoS2, and find that the third-
harmonic process is efficient only for linearly polarized input light while the third-order two-photon
process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton
state. The absence of linear absorption due to the band gap and the unusually strong two-photon
third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for
coherent nonlinear photonics.

I. INTRODUCTION

Design bottlenecks arising from energy dissipation and
heat generation in the dense on-chip interconnect of
CMOS computing architectures have led to renewed in-
terest in approaches to all-optical information processing.
The preeminent challenge remains to develop materials
with low loss and large optical nonlinearity, which are
suitable for incorporation with integrated nanophotonic
structures1–5. Looking to the future, the development of
coherent nonlinear photonics may be regarded as prelim-
inary work towards quantum photonic architectures that
represent and process information utilizing non-classical
states of light6–9. Beyond computation per se, nonlin-
ear optical materials are fundamental for many other
integrated photonics applications including on-chip fre-
quency comb generation10,11, frequency conversion12 and
supercontinuum generation13,14.

Atomically thin 2D materials are promising candidates
for providing optical nonlinearity in integrated photonic
circuits, especially as growth techniques have advanced in
recent years to enable the deposition on top of lithograph-
ically fabricated devices15. In particular, monolayer
MoS2 has attracted great interest following the discov-
ery that it is indeed a direct band gap semiconductor16

with intriguing optical properties such as valley optical
selectivity17. The nonlinear optical properties of mono-
layer MoS2 are now being explored; in this article we aim
to characterize important contributions from its excitonic
bound states.

Large collective optical responses from excitonic states
are well known18,19. Reduced dimensionality further in-
creases the optical response of excitons since the most sig-
nificant contribution to exciton formation comes from the
band edges where density of states in 2D is much larger
than that in 3D. Hence, excitonic states of the transi-
tion metal (Mo, W) dichalcogenides (S2, Se2) (TMDs)
are expected to contribute substantial optical nonlinear-
ity even with their atomically thin layer thickness. Un-
like in graphene, which has a significant linear absorption
everywhere in the optical spectrum, nonlinear processes

utilizing the excitonic states of monolayer MoS2 may pre-
serve a sufficient level of coherence due to the band gap.
This unique set of features make monolayer MoS2 an at-
tractive material for coherent nonlinear photonics.

The direct band gap around the ±K points in the
first Brillouin zone of monolayer MoS2 is analytically best
modeled by a gapped Dirac cone17,19–22. We answer the
natural question whether the monolayer MoS2 has an
optical nonlinearity comparable to that of graphene. Al-
though there are numerous results available for the op-
tical properties of monolayer MoS2

20,22–25, only a few
results on the optical nonlinearities of monolayer MoS2

are available26–31. All of these focused on the second-
harmonic generation process, which, according to our
study, turns out to be a weak perturbative effect stem-
ming from the threefold rotational symmetry, while the
third-order nonlinearity may be more significant consid-
ering the symmetries of the excitons.

We calculate the optical susceptibilities of monolayer
MoS2 when the frequency of the output light is nearly
resonant with the highly optically responsive exciton en-
ergy levels. We show that, while the optical selection rule
dictates the substantially contributing channels in non-
linear processes, that of MoS2 excitonic states inherits
the threefold rotational symmetry of the atomic struc-
ture. As a result, several unusual high order transition
channels can be formed in the excitonic level transitions,
which appear to violate the usual valley selection rule.
Although previously an empirical nonlinear selection rule
was adopted,32,33 we explain the optical selection rules
through the actual calculation of dipole moments based
on massive Dirac Hamiltonian with the perturbative con-
tribution from the threefold rotational symmetry of the
atomic system. The same reason leads to unusually effi-
cient third-harmonic generation and the Kerr nonlinear-
ity with certain polarization configurations.

We restrict our analysis to the case where the higher
harmonic frequencies fall below the excition levels so that
the linear absorption of this higher harmonic frequen-
cies can be avoided. These transitions are of particular
interest for all-optical information processing as well as
quantum dynamical applications.
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This paper consists in the following. Section 2 con-
tains the theory of light matter interaction for the mono-
layer MoS2, clearly presenting the assumptions made, the
Hamiltonians, and the perturbative approach. Section 3
presents the calculation of the linear and the nonlinear
susceptibilities for the interesting linear and nonlinear
processes, resolved by the input light polarizations. Fi-
nally, a conclusion with discussions follows.

The appendix presents a clear derivation of the exci-
ton creation operator based on our defined completeness
relations in the Hilbert spaces, which necessarily clarifies
the dimension of constants. We also rigorously derived
the second quantized operators for the unbound exciton
states in the same appendix.

II. INTERACTION OF MONOLAYER MoS2

WITH A LIGHT FIELD

We assume zero temperature for simplicity. We count
only the radiative transitions, ignoring the coupling to
phonon excitations from the radiatively excited states.
Most of the practical nonidealities are collected phe-
nomenologically in the linewidth broadening factor. Our
primary interest is the linear and the nonlinear optical
processes that involve the bound exciton states of the
monolayer MoS2. We particularly assume a low-density
exciton so that we address only the regime of a single
exciton over the sample. Consequently, we ignore the
exciton-exciton interaction. This makes the perturba-
tive approach valid. We also ignore the trions, and focus
solely on the exciton states.

A. Unperturbed Hamiltonian

1. Excitons

The band structure of MoS2 is well known17. Due to
the mismatch between the Mo atom and the S atom,
the spatial inversion symmetry is broken, and hence, the
degeneracy at ±K points of the monolayer MoS2 is lifted.
The band structure is best described by the gapped Dirac
Hamiltonian (see the details in Appendix A). We then
proceed to the exciton description below.

At zero-degree temperature, the ground state is the
Fermi sea |0〉 where all the electrons are in the valence
band. A photon may be absorbed to produce an elec-
tron in the conduction band and a hole in the valence
band. The Coulomb attraction between the two creates
an exciton state. Considering that the exciton size in
the monolayer MoS2 is approximately23 ∼ 1 nm, which
is larger than the unit cell, we adopt the Wannier exciton
Schrödinger equation18,34:[

−~2∇2

2mr
+ V (r)

]
ψν(r) = Eνψν(r), (1)

where ψν(r) = 〈r|xν〉 with an exciton state ket |xν〉 is the
wave function of an electron-hole pair with the relative
position r = re − rh with the position of the electron re
and the hole rh, respectively, mr = (1/mc + 1/|mv|)−1

is the reduced mass where we calculate approximately
mc = 0.55me and mv = −0.56me from the energy dis-
persion equation (A4) with the electron rest mass me are
the effective masses of the conduction and the valence
band electrons, respectively, V (r) is the Coulomb poten-
tial between the electron and the hole, and Eν is the
energy eigenvalue with the quantum number ν. We note
that this Schrödinger equation includes the Bloch state
solutions of the electron and the hole through the renor-
malized particle mass mr that reflects the dispersions of
the conduction and the valence bands.

The monolayer MoS2 is a 2D sheet. The Coulomb
potential, however, is not strictly 2D due to the dielec-
tric screening effect, and the more appropriate potential
for an isolated 2D sheet is the Keldysh-type screened
potential35. The main differences between the strictly
2D Coulomb potential and the Keldysh-type screened
potential are the binding energies and the oscillation
strengths36–38, but the corrections are relatively small
(of order unity) for the isolated MoS2 2D sheet when
we fit the binding energy of the lowest exciton state to
an empirical data (see for example Fig. 3 of Robert et
al.37 When the lowest binding energies are equalized, the
difference in upper level energies is not significant). In
addition, the exciton wave functions using the Keldysh-
type screened potential are obtained usually through so-
phisticated numerical methods. Our main goal is to es-
timate the magnitude of the nonlinear response of the
exciton states, and the simple strictly 2D Coulomb po-
tential turns out to be sufficient for our purpose with
the advantage of easier calculation of the transition ma-
trix elements among the exciton states, based on the
well-known analytic 2D hydrogen-type wave functions.
Due to these reasons, we rather adopt the simple 2D
Coulomb potential to obtain the 2D solution to the Wan-
nier Schrödinger equation whose energy eigenvalues are,
for the quantum number ν = (n,m) with n = 0, 1, 2, · · ·
and m = −n,−(n− 1), · · · , n:18

Eν = −E0
1

(n+ 1/2)2
, (2)

where

E0 =
e4mr

2(4πε0εr)2~2
=

(
mr

me

)(
1

ε2r

)
Ry, (3)

with the electron charge e = −|e| = −1.6× 10−19 C, and
the vacuum and the relative material permittivity ε0, εr,
respectively. Here, Ry = 13.6 eV is the hydrogen Ry-
dberg energy. Indeed, later in the text, our calculated
results will be shown to be surprisingly close to the ex-
perimental results even with this simplified picture.

The eigenvalues of Schrödinger equation in equation
(1) are the binding energies. Therefore, the actual ex-
citon energy levels are given through Ec(0) + Eν where
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Ec(0) is the lowest energy of the conduction band (see
equation (A2)). It is also noteworthy that the band struc-
ture calculated in Appendix A is essential in calculating
all orders of susceptibilities since it constructs the exciton
creation operator (see Appendix B).

The wave function is18

ψn,m(r) =

√
1

πa2
0(n+ 1/2)3

(n− |m|)!
[(n+ |m|)!]3

× ρ|m|e−ρ/2L2|m|
n+|m|(ρ)eimφ, (4)

where a0 = 4π~2ε0εr/(e
2mr), ρ = 2r/((n+ 1/2)a0), and

Lpq(ρ) is the Laguerre polynomials defined by

Lpq(ρ) =

q−p∑
ν=0

(−1)ν+p (q!)2ρν

(q − p− ν)!(p+ ν)!ν!
. (5)

These wave functions satisfy the normalization δν,ν′ =

〈xν |xν′〉 =
∫

d2r 〈xν |r〉 〈r|xν′〉 =
∫

d2rψ∗ν(r)ψν′(r) where

we used the completeness relation
∫

d2r |r〉〈r| = 1. Also
one can consider the Fourier transform pair using an ad-
ditional completeness relation

∑
q |q〉〈q| = 1:

ψν(r) =
1√
A

∑
q

ψν(q)eiq·r,

ψν(q) =
1√
A

∫
A

d2rψν(r)e−iq·r, (6)

where A is the entire sample area of the monolayer
MoS2. As an example, for ν = (0, 0), we have

ψ(0,0)(r) = (2
√

2/π/a0)e−2r/a0 and the Fourier trans-

form is ψ(0,0)(q) =
√

2π/A(8a0/(4 + a2
0k

2)3/2). The cor-
responding energy eigenvalue is −4E0.

According to this wave function, the radius of the low-
est exciton state is calculated to be

〈
ψ(0,0)

∣∣ r ∣∣ψ(0,0)

〉
=

a0/2. The exciton radius of the monolayer MoS2 is exper-
imentally measured as 6 ∼ 10 Å at zero temperature23.
In addition, the binding energy of the lowest exciton
state of the monolayer MoS2 is estimated as −0.5 ∼ −0.3
eV23,24,39,40. These two lead to the value of εr, and we
chose εr to be 7, which implies the exciton radius of 6.7
Å and the binding energy of −0.31 eV.

2. Second quantization of excitons

The total Hamiltonian is the sum of the band Hamil-
tonian H and the Coulomb potential V (r) such that
H0 = H + V (r). When additional light-matter inter-
action Hamiltonian HI is present, one faces the situation
where two interaction Hamiltonians, V (r) and HI , are
both present. This makes the problem complicated. One
approach is to absorb the Coulomb potential into the un-
perturbed Hamiltonian and deal with HI as a perturbing
Hamiltonian.

The Hilbert subspace of the single particle excited
states is spanned by the band basis of a pair of an elec-

tron and a hole: |q,−q′〉 = α†qβ
†
−q′ |0〉 where α†q and β†−q′

are the creation operators for the electron Bloch state in
the conduction and the hole Bloch state in the valence
band, with the momentum ~q and −~q′, respectively.
Because we know that the exciton states diagonalize the
unperturbed Hamiltonian H0, we now represent it using
the second quantized exciton creation and annihilation
operators.

Following the procedure in Haug et al.18, we first define

the creation operator of a bound exciton B†νQ = |νQ〉〈0|
where ν is the quantum number of the exciton state,
and ~Q is the combined momentum of the electron hole
pair. Then, using the completeness

∫
d2r |r〉〈r| = 1 and∑

q |q〉〈q| = 1, it is straightforward to show (see the

Appendix B and the equation (B6)) that

B†νQ =
∑
q

ψν

(
q − Q

2

)
α†qβ

†
Q−q, (7)

At zero temperature, the exciton momentum ~Q must
be equal to the momentum of the incoming photon since
no phonon is available. Considering the negligibly small
photon momentum compared to the crystal momentum
~q, we can approximately set Q ≈ 0. Then, the bound
exciton creation operator is

B†ν =
∑
q

ψν (q)α†qβ
†
−q. (8)

Appendix B also derives the creation operator for the

unbound exciton states as C†q = α†qβ
†
−q. Setting the en-

ergy of the ground state Fermi sea |0〉 as zero, and using
the fact that the entire Hilbert subspace of the single exci-
tation is spanned by the bound and the unbound exciton
states such that the completeness relation is (Appendix
B) ∑

ν

|xν〉〈xν |+
∑
q

|Cq〉〈Cq| = 1, (9)

we finally obtain the second quantized Hamiltonian for
the exciton states:

H0 = ~
∑
ν

eνB
†
νBν + ~

∑
q

ωqC
†
qCq, (10)

where the energy is given by ~eν = Eg + Eν for bound
state excitons (Eν < 0), and ~ωq = Eg + ~2q2/(2mr) for
the unbound exciton.

B. Interaction Hamiltonian

Let us now consider a monochromatic external field
E(t) = ε̂E(κ)e−iωκt where ε̂ is the unit vector of po-
larization and each photon has a momentum ~κ. The
nature of the interaction between the external field and
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the monolayer MoS2 is the dipole interaction represented
by an interaction Hamiltonian18

HI = −
∑
q

[
dcv(q)α†qβ

†
−qE(κ)e−iωκt + h.c.

]
, (11)

where h.c. stands for the Hermitian conjugate. Mo-
mentum is conserved in this interaction as ~κ = ~Q ≈
~q+(−~q) since the crystal momentum q is much larger
than κ. Hence, in principle the incoming photon can ex-
cite an electron-hole pair with any q. Here, the dipole
moment for the interband transition is given by

dcv(q) = 〈cq| er · ε̂ |vq〉 , (12)

where |cq〉 and |vq〉 are the conduction and the va-
lence band state with a crystal momentum ±~q, re-
spectively. Particularly for the σ+ circularly polarized
light with ε̂ = ε̂+ = (1/

√
2)(x̂ + iŷ), the dipole mo-

ment is d+
cv(q) = (e/

√
2) 〈cq| (r cosφ + ir sinφ) |vq〉 =

(e/
√

2) 〈cq| reiφ |vq〉 where we adopted the polar position
coordinate r = (r, φ).

We wish to use the second quantized bound and un-
bound exciton operators in the interaction Hamiltonian
since our basis kets are the exciton states. We then cal-
culate the following:

α†qβ
†
−q =

∑
A

δq,Aα
†
Aβ
†
−A

=
∑
A,ν

ψ∗ν(q)ψν (A)α†Aβ
†
−A

+
∑
q′′,A

〈q|Cq′′〉 〈Cq′′ |A〉α†Aβ
†
−A

=
∑
ν

ψ∗ν(q)B†ν +
∑
q′′,A

〈q|Cq′′〉 〈Cq′′ |A〉α†Aβ
†
−A,

(13)

where the last equation follows from equation (8), and
the second equation follows from the following, using the
completeness in equation (9):

δq,q′ = 〈q|q′〉 =
∑
ν

〈q|xν〉〈xν |q′〉+
∑
q′′

〈q|Cq′′〉 〈Cq′′ |q′〉

=
∑
ν

ψ∗ν(q)ψν(q′) +
∑
q′′

〈q|Cq′′〉 〈Cq′′ |q′〉 . (14)

Following the treatment of Haug et al.18, approximating
the band states as the free states allows 〈q|Cq′′〉 ≈ δq,q′′ .
We then obtain

HI =

−

[∑
ν

gνB
†
νE(κ)e−iωκt +

∑
q

dcv(q)C†qE(κ)e−iωκt

]
+ h.c., (15)

where we defined

gν =
∑
q

dcv(q)ψ∗ν(q) = e 〈xν | ε̂ · r |0〉 . (16)

C. Optical selection rules and dipole moments

1. Interband transition

The well-known valley selection rule for the first-order
interband transition is explained as follows: The σ+ po-
larized light couples only to K valley whereas σ− polar-
ized light couples only to −K valley. This chiral selection
rule can be deduced from the symmetry considerations.
The monolayer MoS2 at ±K points belong to C3h point
symmetry group. Then, the Bloch wave functions of
the valence bands transform like the states with angular
momentum ∓~ for ±K valley, respectively, whereas the
conduction bands transform like the states with zero an-
gular momentum for both valleys17,41–44. This explains
the chiral optical selection rule in the angular momen-
tum conservation scheme. We note, however, that the
σ+ photon couples to the excitation of either a spin up
or down electron at +K valley, depending on the optical
frequency. Therefore, a broadband σ+ photon will see
the absorption peak at both transitions separated by the
spin orbit coupling energy.

It is, however, important to recognize that the sym-
metry argument is only for ±K points (valley bottoms).
For other k 6= ±K, the valley can interact with the oppo-
site circularly polarized photon as we will confirm below.
This is a critical difference between the interband transi-
tions and the transitions involving the exciton states as
the exciton is a collective superposition from various q
as shown in equation (7).

In order to calculate the dipole moment, one can use
the velocity operator v = (1/~)∇kH, which leads to
dcv(q) = −(ie/~ωq) 〈uq,c| ε̂ ·∇qH |uq,v〉, where H is the
band Hamiltonian for the Bloch functions. An equivalent
expression is the well-known Blount formula45:

〈ψk,λ| r |ψk′,λ′〉 =

− i∇k′ 〈ψk,λ|ψk′,λ′〉+ iδk,k′ 〈uk,λ|∇k |uk,λ′〉 . (17)

Here, |ψk,λ〉 = eik·r |uk,λ〉 is the wave function of a
Bloch state at band λ with a periodic Bloch function
uk,λ(r) = 〈r|uk,λ〉. For interband transition, the first
term vanishes. Now we can calculate the dipole moment
dcv(q) by diagonalizing the band Hamiltonian and find-
ing the eigenvectors.

If we use the analytical solution for the band states
(derived in equation (A2) of Appendix A), we find the
dipole moment for the σ+ light to be d+

cv(q) = 〈cq| er ·
ε̂+ |vq〉 = −i(

√
2e~v/∆)(1 − 4~2v2q2/∆2) for τ = +1

(+K valley), but d+
cv(q) = −i

√
2e~3v3q2ei2φq/∆3 for

τ = −1 (−K valley). Here, ∆ = Eg ± τEsoc/2 for
up or down spin subspace, respectively, with the en-
ergy band gap Eg and the spin-orbit coupling energy
Esoc. Also, q = (qx, qy) = k − τK, and qeiφq =
qx+iqy. On the contrary, the σ− light produces d−cv(q) =

〈cq| er · ε̂− |vq〉 = i
√

2e~3v3q2e−i2φq/∆3 for τ = +1, but

d−cv(q) = i(
√

2e~v/∆)(1−4~2v2q2/∆2) for τ = −1. Here,

ε̂− = (1/
√

2)(x̂ − iŷ) = ε̂+∗. For the ±K points where
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(a) σ+ polarization

(b) σ− polarization

FIG. 1: Numerically evaluated d+
cv(q) for σ+

polarization (up) and d−cv(q) for σ− polarization (down)
around +K point, based on the higher-order corrected

Dirac Hamiltonian.

q = 0, this dipole moment explains the valley selection
rule.

For a more accurate result, we numerically obtain the
eigenvectors from the higher-order corrected band Hamil-
tonian (see Appendix A). Fig. 1 shows the numerically
evaluated dcv±(q) around +K point. Qualitatively the
numerical solution dcv+(q) has a negligibly small real
value, matching the analytical result. The maximum is
also similar to the analytical solution. On the other hand,
the threefold rotational symmetry is clearly shown. We
note that dcv−(q = 0) = 0 while dcv−(q 6= 0) 6= 0 at +K
point. This confirms that the chiral valley selection rule
is only for ±K points. Indeed, the symmetry argument
breaks on the points away from ±K.

2. Transition between Fermi sea ground state |0〉 and bound
exciton states |xν〉

The dipole moment gν defined in equation (16)
is often approximated as gν ≈

∑
q dcv(0)ψ∗ν(q) =

TABLE I: Numerically calculated g±ν for +K valley.
For −K valley, g+

ν and g−ν are switched. All values are

relative to g+
(0,0)/

√
A = i2.28× 10−20 C. The symbol

“≈ 0” implies that the parameter is negligibly small
(. 10−3).

ν = (n,m) g+ν /g
+
(0,0) g−ν /g

+
(0,0)

(0, 0) 1 ≈ 0

(1, 1) ≈ 0 0.022
(1, 0) 0.148 ≈ 0

(1,−1) ≈ 0 ≈ 0

(2, 2) ≈ 0 ≈ 0
(2, 1) ≈ 0 0.010
(2, 0) 0.068 ≈ 0

(2,−1) ≈ 0 ≈ 0
(2,−2) ≈ 0 ≈ 0

(3, 3) ≈ 0 ≈ 0
(3, 2) ≈ 0 ≈ 0
(3, 1) ≈ 0 ≈ 0
(3, 0) 0.042 ≈ 0

(3,−1) ≈ 0 ≈ 0
(3,−2) ≈ 0 ≈ 0
(3,−3) ≈ 0 ≈ 0

(4, 0) ≈ 0 ≈ 0
(5, 0) 0.053 ≈ 0
(6, 0) 0.086 ≈ 0
(7, 0) 0.055 ≈ 0
(8, 0) ≈ 0 ≈ 0
(9, 0) −0.034 ≈ 0
(10, 0) −0.046 ≈ 0
(11, 0) −0.040 ≈ 0
(12, 0) −0.026 ≈ 0
(13, 0) −0.011 ≈ 0

(n(> 13),m) ≈ 0 ≈ 0

√
Adcv(0)ψ∗ν(r = 0) in an understanding that ψ∗ν(q) is

significant only for |q| � 1/a0 (Haug et al.18). Notably
for a given quantum number ν = (n,m) the wave func-
tion is ψν(r) ∝ rm, and consequently, the substantial
gν occurs for ν = (n, 0). Using these, we arrive at an
approximate analytical solution for the monolayer MoS2:

g(n,0) = −i

√
A

(2n+ 1)π

(
4e~v

(2n+ 1)a0∆

)
. (18)

We numerically calculated both g±ν for σ±, respectively,
based on the dipole moments shown in Fig. 1. The
result is shown in table I. The values g−ν are generally
small compared to the substantial g+

ν ’s. Recall that
g−ν =

∑
q ψ
∗
ν(q)d−cv(q). The envelope of ψν(q) decays

as q increases. Since d−cv(q = 0) = 0, g−ν must be signifi-
cantly smaller than g+

ν .
We find that only two transition dipoles g−(1,1) and g−(2,1)

are substantial. The reason for this is as follows: we re-
call that the analytical solution d−cv(q) ∝ e−2iφq at +K
valley. The higher order correction, however, imposed
the weak threefold rotational symmetry (see the equa-
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tion (A4) in Appendix A and the text underneath). In
perturbative treatment, the dipole moment can be ex-
pressed as46

d−cv(q) = e−2iφq×(
ξ(0)(q) + cos(3φq)ξ

(1)(q) +O(cos2(3φq))
)
, (19)

where the zeroth order term does not possess the three-
fold rotational symmetry, but the first order term has a
factor cos(3φq) = (1/2)(ei3φq − e−i3φq ). The net effect

is δd−cv(q) = d−cv(q)− e−2iφqξ(0)(q) ∝ e+iφq while we dis-
card the faster term e−i5φq that will later result in zero
while integrating over φq. The Fourier transformed wave

function of exciton is ψ∗(1,1)(q) = 288ia2
0

√
3πqe−iφq/(4 +

9a2
0q

2)5/2 ∝ e−iφq . Hence, these two cooperate such that
ψ∗(1,1)(q)δd−cv(q) does not depend on φq, resulting in non-

trivial value after integrating over φq. This nontrivial
integral over φq produces a substantial value for g−(1,1),

and g−(2,1), although the amplitude of the latter is smaller

due to a faster oscillation of ψ∗(2,1) in the radial direc-

tion than ψ∗(1,1). For a large n, however, the envelope of

ψν(q) quickly oscillates in the radial direction, resulting
in small values for g−(n,1) for large n. The same reason

causes decreasing g(n,0) as n increases.
This weak opposite chiral valley response of the bound

exciton states leads to some nontrivial optical nonlinear-
ities in the monolayer MoS2 as will be presented in the
following sections. Unlike the usual chiral valley selection
rule, the excitons respond to the opposite circularly po-
larized light since they are collective excitations including
k 6= ±K (see equation (16)). Nonetheless, we note that
this opposite chiral response is rather weak as they only
exists in a weak perturbative fashion.

3. Transition between bound exciton states |xν〉

The transition dipole moment between two bound exci-
ton states follow the usual angular momentum conserva-
tion rule, which can be deduced from the spherical sym-
metry of excitons, since the Wannier Schrödinger equa-
tion in equation (1) is rotationally symmetric, thus the
bound exciton states have well defined angular momenta
such that the angular momentum of

∣∣x(n,m)

〉
state is ~m.

Then, the optical selection rule is such that the transi-
tions |xn,m〉 → |xn′,m±1〉 are allowed and mediated by
the σ± circularly polarized photons, respectively, while
all others are forbidden.

Let us define the dipole moment h±ν1ν2 ≡ e 〈xν1 | ε̂± ·
r |xν2〉 between the two bound exciton states. Then, the
optical selection rule is such that

h±(n′,m′)(n,m)

{
6= 0, if m′ = m± 1,
= 0, otherwise.

(20)

Some selected dipole moment h+
(n′,m′)(n,m) are shown in

TABLE II: Examples of the dipole moment h+
(1,1)ν1

between the bound exciton states. The value is relative
to |e|a0.

ν1 h+
(1,1)ν1

/(|e|a0)

(0, 0) 0.344
(1, 0) −3.18
(2, 0) 0.752
(3, 0) 0.320
(4, 0) 0.194
(5, 0) 0.135
(6, 0) 0.102
(7, 0) 0.080

FIG. 2: Summary of allowed optical transitions in the
+K valley. The red and blue transitions correspond to
|0〉 → |xν〉 and |xν1〉 → |xν2〉, respectively. The solid and

dotted lines are mediated by σ+ and σ− photons,
respectively. The values in the circles represent the

dipole moments (gν are in unit of g+
(0,0) while hν1ν2 are

in unit of |e|a0.) In the −K valley, the roles of σ±
photons are switched.

the table II, which we will use later for the Kerr nonlin-
earity calculation.

4. Transition between bound exciton states |xν〉 and the
unbound exciton states |Cq〉

The relevant dipole moment of this transition is defined
as fν(q) = e 〈xν | ε̂ · r |Cq〉. This dipole moment turns
out to be negligibly small, which is rigorously shown in
Appendix D.

5. Summary of optical selection rules

The optical selection rule, quantified through the ap-
propriate dipole moments, plays the central role in the
optical susceptibility calculations. While the transitions
between the bound excitons (hν1ν2) follow usual angular
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momentum conservation rule, the transitions from the
ground state |0〉 to any bound exciton states (gν) are not
trivial since the corresponding dipole moments gν weakly
inherit the threefold rotational symmetry from the band
states. Fig. 2 summarizes the optical selection rule. It
also reveals the values of the dipole moments for some
transitions we will use later to calculate the optical sus-
ceptibilities.

D. Induced current density and susceptibility

For clarity, we present the following procedure to cal-
culate the susceptibilities, which is indeed well known
in the literature47. We will extensively use the calcu-
lated dipole moments to evaluate the susceptibilities in
the next section.

When an external field is present, an induced current
is produced as a result of the dipole interaction. It is
obtained as

J = eNe〈v〉 = eNetr[vρ], (21)

where Ne is the free carrier density, v is the velocity oper-
ator, and ρ is the quantum mechanical density operator.
The density operator follows the von Neumann equation
i~ρ̇ = [H0 +HI , ρ]. The solution is recursively obtained:

ρ(t) = − i
~

∫ t

−∞
dt′[H0 +HI , ρ(t′)]

= − i
~

∫ t

−∞
dt′

[
H0 +HI ,

(
− i
~

∫ t′

−∞
dt′′[H0 +HI , ρ(t′′)]

)]
... (22)

Since HI ∝ E(κ), one can expand the perturbative or-
der of ρ such that ρ(t) =

∑∞
n=0 ρ

(n)(t) where ρ(n)(t) in-
volves only O(En(q)) terms. We then use J = σE =(∑∞

n=0 σ
(n)
)
E to resolve σ(n) order by order. Combin-

ing the relations J = ∂P /∂t and P = ε0χE, one obtains

∂

∂t

(
ε0(χ(1) + χ(2) + · · · )E(t)

)
= (σ(1) +σ(2) + · · · )E(t).

(23)
Equating term by term, the relation between the suscep-
tibility and the conductivity for each order is obtained,
which finally resolves the optical susceptibilities for var-
ious orders.

E. Perturbative solution

The advantage of using the second quantized exciton
Hamiltonian in equation (10) is that the exciton states
already diagonalize the unperturbed Hamiltonian H0.
Then, solving the Schrödinger equation perturbatively
becomes straightforward. To obtain the physical quan-
tities such as the induced current, however, one must

represent the operators in the exciton basis. It is our
task to calculate the velocity operator v in this exciton
basis. For example, in the linear response theory where
the incoming light photon energy is close to the energy
of a bound exciton state |xν〉, our Hilbert space is essen-
tially two dimensional, with the basis {|xν〉 , |0〉}. Con-
sequently, the velocity operator and the density operator
are now 2× 2 matrices:

v =

(
vxx vx0

v0x v00

)
, ρ =

(
ρxx ρx0

ρ0x ρ00

)
, (24)

where each element is such that, for example, vx0 =
〈xν |v |0〉. To obtain the matrix elements of the velocity
operator, we move to the Heisenberg picture and connect
to the dipole moment as follows:

v0x = 〈0| ṙ |xν〉 = − i
~
〈0| [r,H0 +HI ] |xν〉

= − i
~
〈0| [r,H0] |xν〉 = −ieν 〈0| r |xν〉 . (25)

Here, we used the fact that [r,HI ] = 0 since HI ∝ r as it
involves the dipole moment element. It is also noteworthy
that the diagonal terms of the velocity operator v are all
zero according to the above derivation since the same
energies of the same state cancel each other. We thus
need only the off-diagonal terms of the density matrix to
calculate the induced current:

J = eNe(vx0ρ0x + v0xρx0). (26)

Next, since the normalization of the polarization vec-
tors is ε̂− · ε̂+ = 1, the velocity matrix component in ε̂+

is v0x = −ieν 〈0| ε̂− · r |xν〉 ε̂+. We calculate

〈0| ε̂− · r |xν〉 =
∑
q

ψν(q) 〈0| ε̂− · rα†qβ
†
−q |0〉

=
∑
q

ψν(q) 〈v(q)| ε̂− · r |c(q)〉 =
g+∗
ν

e
. (27)

This leads to v0x = ε̂+(−ieνg+∗
ν /e).

All we have left is to solve the Schrödinger equation for
ρ. We first note that 〈xν | [H0, ρ] |0〉 = ~eνρx0. We then
establish a differential equation for ρx0 in the Schrödinger
picture:

˙ρx0(t) = −ieνρx0(t)− i

~
〈xν | [HI , ρ(t)] |0〉 . (28)

From this, we carry out bookkeeping for each order on
the differential equations for n = 0, 1, 2, · · · :

ρ̇
(0)
x0 (t) = −ieνρ(0)

x0 (t),

ρ̇
(n)
x0 (t) = −ieνρ(n)

x0 (t)− i

~
〈xν | [HI , ρ(n−1)] |0〉 . (29)

Other matrix elements for ρ(n) can be obtained in a sim-
ilar manner.
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FIG. 3: Schematic of excitonic energy levels and the
first order radiative transition of excitonic states. The

continuum is the unbound electron-hole pair states.

III. LINEAR AND NONLINEAR OPTICAL
SUSCEPTIBILITIES

In this section, we calculate the optical susceptibilities
of the excitonic states from monolayer MoS2 . We will
first resolve the linear susceptibility and the resulting lin-
ear absorption and refractive index. Then, we proceed to
the higher order nonlinear susceptibilities.

A. Linear susceptibility

We are interested in a case where an incoming pho-
ton has an energy closely resonant with an exciton state
|xν〉 energy level (see Fig. 3). The first equation in (29)

describes the dynamics of ρ
(0)
x0 in the absence of any ex-

ternal perturbation. It is a free rotation. We then need

to solve ρ
(1)
x0 to resolve χ(1). For this, we first calculate

for the case of σ+ photon at +K valley:

〈xν | [HI , ρ(0)] |0〉

= −〈xν |

(∑
ν′

g+
ν′

(
B†ν′ρ

(0) − ρ(0)B†ν′
))
|0〉 E(κ)e−iωκt

− 〈xν |

(∑
ν′

g+∗
ν′

(
Bν′ρ

(0) − ρ(0)Bν′
))
|0〉 E∗(κ)eiωκt

= −g+
ν (ρ

(0)
00 − ρ(0)

xx )E(κ)e−iωκt

= −g+
ν E(κ)e−iωκt, (30)

where we used the fact that Bν′ |0〉 = |xν′〉〈0| with ρ
(0)
00 =

1 and ρ
(0)
xx = 0 since the state without the external field

at zero temperature is the Fermi sea. From this, the first
order differential equation is now

ρ̇
(1)
x0 (t′) = −ieνρ(1)

x0 (t′) +
i

~
g+
ν E(κ)e−iωκt

′
, (31)

Integrating over −∞ < t′ < t yields the following first
order solution:

ρ
(1)
x0 (t) =

g+
ν

~
1

(eν − ωκ)− iε
E(κ)e−iωκt, (32)

where ε is a positive infinitesimal parameter regulating
the integral at t′ → −∞.

From ρ
(1)
x0 (t) = ρ

(1)
x0 (ωκ)e−iωκt, we easily obtain

ρ
(1)
0x (ωκ) = ρ

(1)∗
x0 (−ωκ) =

g+
ν

~
1

(eν + ωκ) + iε
E(ωκ), (33)

where we used E∗(−ωκ) = E(ωκ). This is a nonresonant
term, which must be much less than the resonant term

ρ
(1)
x0 . Then, using equations (26) and (25), we obtain

J (1) = eNe
−ieνg+∗

ν

e

g+
ν

~
∑
p1=±1

1

eν + p1(ωκ + iε)
ε̂E(κ)e−iωκt.

(34)
From this, we obtain the linear conductivity σ(1), and
then, using the relation in equation (23), we obtain the
linear susceptibility of the exciton state:

χ(1)(ωκ) =
eν |g+

ν |2Ne
~ε0ωκ

∑
p1=±1

1

eν + p1(ωκ + iε)
. (35)

We now explain how to handle the free carrier density
Ne in the following. The value of g±ν is generally nu-
merically evaluated. If, however, we adopt the previous
approximation g±ν ≈

√
Ad±cv(q = 0)ψ∗ν(r = 0), we obtain

χ(1)(ωκ) =

(
~eν
~ωκ

)
ANe
ε0
|d+
cv(0)|2|ψν(r = 0)|2

×
∑
p1=±1

1

~eν + p1(~ωκ + i~ε)
. (36)

The induced current density J = tr[e(Neρ)v] in equa-
tion (21) captures the density of charge carriers and their
movements. Particularly Neρ with the quantum mechan-
ical density ρ (with unity maximum value) captures the
density of the excited exciton. Since each exciton carries
one excitation and thus one charge carrier, it is correct
to replace Ne → 1/Adeff. Here, deff ≈ 6.5 Å22,48 is the
effective thickness of the monolayer MoS2. The resulting
formula exactly matches the single spin electron results in
Elliott’s seminal paper49 as well as the formula appearing
in Haug, et al.18 (see equation 10.103) and also the for-
mula appearing in Klingshirn50 (see equation 27.52). The
agreement confirms that our replacement Ne → 1/Adeff

is reasonable.
One must add the responses from the different exci-

ton levels, resulting in the contribution from the bound
exciton levels as

χ
(1)
B (ωκ) =

∑
ν

∑
p1=±1

eν |g+
ν |2

~ε0ωκdeff

(
1

eν + p1(ωκ + iγB/2)

)
,

(37)

where we used g+
ν = g+

ν /
√
A, which does not depend on

the sample size since gν ∝
√
A. We also introduced the

phenomenological replacement ε→ γB/2 where γB is the
decay rate of the bound exciton |xν〉. Wang et al.20 and
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Selig et al.25 calculated the radiative lifetime of the ex-
citon at a temperature of 5 K to be ∼ 200 fs. From the
radiative decay perspective, it is expected that the line
broadening will depend on ν. However, other broaden-
ing mechanisms including the phonon-exciton scattering
and the disorder further broadens the spectrum20,51 in
real samples, and the difference among various ν from
the radiative decay alone is washed out. To account
for the phenomenological linewidth, various values were
used ranging from 1 meV to 50 meV16,19,52. We par-
ticularly choose 10 meV that matches our own experi-
mentally measured data at 4 K temperature53, as well as
the qualitative curves of the absorption spectra found in
low-temperature experimental results23,51,54,55.

The contribution from the unbound excitons is easily
deduced as

χ
(1)
U (ωκ) =∫

d2q
ωq|d+

cv(q)|2

4π2~ε0ωκdeff

∑
p1=±1

1

ωq + p1(ωκ + iγU/2)
, (38)

where we used the replacement
∑

q → (A/(2π2))
∫

d2k.

Here, γU is the radiative decay rate (inverse of the ra-
diative lifetime) of the conduction bands. Using Fermi’s
golden rule, we obtain γU = ω3

q|d+
cv(q)|2/(2πε0~c3). With

the monolayer MoS2 parameters, we obtain the radiative
lifetime of the conduction band to be approximately 4
ns.

Finally, we obtain the linear susceptibility:

χ(1)A(ωκ) = χ
(1)
B (ωκ) + χ

(1)
U (ωκ). For a single opti-

cal frequency ωκ, the contribution comes from all the
bound and the unbound exciton states. Note, however,
that χ(1)A(ωκ) is the contribution only from the spin
up electrons. The exciton states from the up spin in
valley +K are called the A excitons. One must add the
contribution from the B excitons, which comes from the
spin down electrons. The major difference between the
A and the B excitons is the energy eigenvalues. The
B excitons have higher energy by Esoc. Consequently,
all the exciton level energies are offset by the similar
amount. Finally, we obtain the true physical linear
susceptibilities as

χ(1)(ωκ) = χ(1)A(ωκ) + χ(1)B(ωκ)

≈ χ(1)A(ωκ) + χ(1)A(ωκ − Esoc/~). (39)

This response is only for the σ+ polarized light, com-
ing from +K valley. Indeed, σ− polarized light sees the
linear response from +K, too. The relative strength of
g−(1,1) and g−(2,1) are, however, only 2% and 1% of g+

(0,0),

respectively. Therefore, the relative strength of the re-
sponse will be only ∼ 10−4, compared to the strong g(0,0).
The same applies to the case for σ+ polarized light and
the −K valley. Hence, the linear response of σ+ light
is mostly from +K valley. On the other hand, the con-

tribution χ
(1)
U (ωκ) from σ− will increase as ωκ increases

well beyond ∆/~ since d−cv(q) ∝ q2.

(a) Near exciton resonances

(b) Below exciton resonances

FIG. 4: Calculated χ(1) near (up) and below (down)
exciton resonances. The real and the imaginary parts of

the nonresonant (dash-dot, sum of p1 = +1 terms in
equations (37) and (38) ), unbound states (dot,

equation (38)), and the total sum (solid) are shown
separately. The resonance labels indicate either A or B

exciton with the quantum number (n,m).

We calculated the χ(1) as shown in Fig. 4. The plot
shows that the contribution only from the nonresonant
terms (the sum of p1 = +1 terms in equations (37) and
(38), dash-dot curves) is negligibly small. That from the
unbound states (dot curves, (38)) leaves a long tail in
the real part only. Far below the exciton resonances, the
contribution from the nonresonant term starts gaining.
On the other hand, the absorption decays fast below the
exciton resonances. The contribution from the bound
excitons dominates in the spectral range below the band
edge. Near the band edge, the higher order excitons con-
tribute significantly. The band edge for the A excitons
(spin up electron) occurs at 2.16 eV, while that of the B
excitons at 2.31 eV. The contribution from the unbound
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FIG. 5: Inferred absorption from the calculated χ(1).
The resonance labels indicate either A or B exciton

with the quantum number (n,m).

states reaches the spectrum below the band edge. Our
model does not include higher conduction levels, which
diminishes the influence of this unbound state contribu-
tion in the bound state resonances.

We also calculate the linear absorption and the re-
flectance from the excitonic states (Fig. 5). The com-

plex refractive index is given as n =
√

1 + χ(1). The
imaginary part produces the absorption coefficient α =
2Im[n]ωκ/c. The linear absorption from the 2D sheet is

given by αdeff = 2deffIm[
√

1 + χ(1)]ωκ/c. The single pass
absorption does not depend on deff on the bound exciton
resonances due to the large value of |χ(1)|. Fig. 4 (b)
shows the calculated absorption spectrum. The calcu-
lated absorption peaks for the lowest A and B exciton res-
onance match reasonably well the measured absorptions
of 10% ∼ 15%, having the similar broadening23,51,54,55.
We note that the distortion of the curves are due to the
excessive negative real value of χ(1), caused by underes-
timated contribution from the unbound exciton states as
we mentioned above. As a result, the blue side of the
resonance curves are much more exaggerated than the
real situation. Nevertheless, both the absorption and the
reflection curves match qualitative features of the pub-
lished results.

B. Second order susceptibility

Let us consider the second-harmonic generation for
which the output second-harmonic frequency is nearly
resonant with the exciton energy levels (see the Fig. 6).
Due to the energy gap, one can avoid the direct linear
absorption for the fundamental pump light. If one also
avoids the direct linear absorption for the second har-
monic by slightly detuning from the resonance, one can
accomplish a coherent and efficient second-harmonic pro-
cess. The same applies to the degenerate optical para-

FIG. 6: Schematic of the second-harmonic process
where the second harmonic is near resonant with an

exciton level.

metric amplifier pumped at the exciton resonance, am-
plifying the signal at the half frequency.

This second-harmonic transition involves the virtual
levels, which sum all possible intermediate levels linking
the initial Fermi sea ground state |0〉 to the final exciton
state |xν〉. We are particularly interested in the resonant
second-harmonic frequency 2ωκ ∼ e0(= e(0,0)) (the fre-

quency of the state
∣∣x(0,0)

〉
) since it involves the largest

dipole moment g(0,0). The virtual level can be either the
bound or the unbound exciton states.

1. Bound exciton virtual states

Let us first consider the bound exciton virtual levels.
The composite transition must obey the optical selec-
tion rule explained in section II C. Let us consider the
case where the highest level is

∣∣x(0,0)

〉
. For +K val-

ley, where the second-harmonic light is in σ+, the sec-
ond order transition involving two σ+ fundamental pho-
tons is not allowed since h+

(0,0)(n,0) = 0 due to the angu-

lar momentum conservation rule. This implies the ten-

sor element χ
(2)
+;++ = 0. Instead, the transition |0〉 →∣∣x(1(2),1)

〉
→
∣∣x(0,0)

〉
is allowed by absorbing two σ− pho-

tons because the first transition relies on the dipole mo-
ment g−1(2),1( 6= 0), and the second transition relies on

the dipole moment h−(0,0)(1(2),1), which is nonzero. The

transition
∣∣x(0,0)

〉
→ |0〉 emits a σ+ photon as explained

in previous section. This corresponds to the susceptibil-

ity tensor χ
(2)
+;−−. We note that χ

(2)
+;−+ = 0 since the

dipole element h+
(0,0)(1(2),1) = 0. Also, χ

(2)
+;+− = 0 since

h+
(0,0)(n,0) = 0.

For −K valley, the opposite circularly polarized pho-
tons are used in the same transitions. Since the second-
harmonic output from −K valley is always σ− photon as
we explained in the previous section, we conclude that

χ
(2)
−;−− = χ

(2)
−;+− = χ

(2)
−;−+ = 0 and χ

(2)
−;++ 6= 0.

In summary, we have only two nonzero second-
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order susceptibility tensor elements, χ
(2)
−;++ and χ

(2)
+;−−.

This result is consistent with the well known exper-
imental results for the second-harmonic generation in
TMDs, where the output second-harmonic polarization
has the opposite chirality relative to the input circular
polarization32,33.

Let us quantify the tensor element χ
(2)
+;−− from +K

valley. For this, we solve the second order differential
equation for the density matrix elements. First, the basis
for the Hilbert space is {|0〉 ,

∣∣x(s,1)

〉
,
∣∣x(0,0)

〉
} where s = 1

or 2. Since we now involve the exciton-exciton transition,
we have an additional interaction Hamiltonian:

H′I = −
∑
s=1,2

[
h−(0,0)(s,1)B

†
0B(s,1)E(κ)e−iωκt + h.c.

]
.

(40)
We need to calculate the matrix elements such
as ρ

(2)
(1,2)0(t) =

〈
x(s,1)

∣∣ ρ(2)(t) |0〉, ρ
(2)
(0,0)(s,1)(t) =〈

x(0,0)

∣∣ ρ(2)(t)
∣∣x(s,1)

〉
, and ρ

(2)
(0,0)0(t) =

〈
x(0,0)

∣∣ ρ(2)(t) |0〉.
Using the operator properties and their action on the
states, we obtain that the only substantial term among

three is ρ
(2)
x0 (t), given as (see Appendix C)

ρ
(2)
x0 (t) =

E2(κ)e−i2ωκt

~2

g−ν h
−
(0,0)ν

(eν − (ωκ + iε)) (e0 − (2ωκ + iε′))
. (41)

We already calculated the velocity element v0x =

ε̂+(−ie0g
+∗
(0,0)/e). Using J (2) =

∑
ν eNe(v0xρ

(2)
x0 +

ρ
(2)
0x vx0) and J (2) = σ(2)ε̂+E2(q)e−i2ωκt, we obtain

σ(2) =

∑
ν

∑
p1=±1


− iNeg−ν h−(0,0)νg

+∗
(0,0)

~2

×
1

(eν + p1(ωκ + iε)) (e0 + p1(2ωκ + iε′))

 .

(42)

From the equation (23), the second order susceptibility
for the second-harmonic generation is obtained through

χ(2)(ωκ ∼ eν) =
σ(2)

−i2ε0ωκ
. (43)

Then, we finally obtain the contribution of the bound
virtual exciton states:

χ
(2)
B,+;−−(ωκ ∼ e0/2) =

∑
ν

∑
p1=±1

e0g
−
ν h
−
(0,0)νg

+∗
(0,0)

2ωκ~2ε0deff

×
1

(eν + p1(ωκ + iγB/2)) (e0 + p1(2ωκ + iγB/2))
. (44)

Recall that that g−ν is substantial only for ν = (1, 1)
and ν = (2, 1). Note that this contains the resonant
(p1 = −1) and the nonresonant (p1 = +1) term.

Calculating χ
(2)
B,−;++ from −K valley produces the

same result since the only difference between the two
valleys is the switched role between ±σ.

2. Unbound exciton virtual states

We now calculate the contribution from the unbound
exciton virtual states. Let us first consider the case of
σ+ polarized light. The cascaded second-order transition
is |0〉 → |C(q)〉 →

∣∣x(0,0)

〉
→ |0〉. In order to address

the second transition, we need the following interaction
Hamiltonian:

H′′I = −
∑
q

[
f(0,0)(q)B†0CqE(κ)e−iωκt + h.c.

]
, (45)

where the new dipole transition element fν(q) is given as

fν(q) = e 〈xν | ε̂ · r |Cq〉

= e
∑
q′

ψ∗ν(q′) 〈Cq′ | ε̂ · rα†qβ
†
−q |0〉

= e
∑
q′

ψ∗ν(q′) 〈Cq′ | ε̂ · r |Cq〉 . (46)

The physical intuition is that this dipole moment is a
superposition of all intraband dipole moment weighted
by the (Fourier-transformed) exciton wave function.

We can easily deduce χ(2) from this channel based on
equation (44):

χ
(2)
U (ωκ ∼ e0/2) =

∫
d2q

eνdcv(q)fν(q)g∗ν
8π2ωκε0~2deff

×∑
p1=±1

1

(ωq + p1(ωκ + iγU/2))(eν + p1(2ωκ + iγB/2))
.

(47)

Appendix D derives and conclude that f±ν (q) van-
ishes due to the symmetry. Hence, the virtual transition
through the unbound exciton to land on a bound exciton
state is negligible. This allows us to ignore in the future
any virtual channel involving the unbound exciton states.

3. Overall second-order susceptibility

We showed the opposite chirality rule between the fun-
damental light and the second-harmonic light for the
second-harmonic generation. Since the virtual channels
from the unbound excitons can be ignored, the second-

order susceptibility is χ(2)(ωκ ∼ e0/2) = χ
(2)
B (ωκ ∼

e0/2). Fig. 7 shows the calculated χ(2) for a single po-
larized second-harmonic output from a linearly polarized
pump light. The intensity of the second-harmonic light
depends on the absolute value |χ(2)| whereas the phase
of χ(2) explains the phase delay of the second-harmonic
light47. The maximum value of the calculated |χ(2)| at
frequency e0/2 is 6.6× 10−10 m/V. Fig. 7 also shows the
linear absorption at the second harmonic 2ω. In order to
avoid it, one may want to operate at slight red detuning
from the resonance. The figure also shows the contribu-
tion from the nonresonant term (p1 = +1 in equation
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FIG. 7: Numerically evaluated χ
(2)
+;−−(ωκ ∼ e0/2) based

on the higher-order corrected gapped Dirac
Hamiltonian. Also shown is the second-harmonic

absorption at 2ω in black.

(44)), which is negligibly small in both real and imagi-
nary parts. This is expected since the second-order sus-
ceptibility is concentrated near resonance and both the
two factors in the denominator of the resonant term in
equation (44) diverge around the resonance.

A few more experimental results on the monolayer
MoS2 second-harmonic generation that quantified the
second-order susceptibility were reported: Malard et al.56

reported a sheet susceptibility of 8×10−20 m2/V, equiva-
lent to a bulk χ(2) of 1.2×10−10 m/V, and Clark et al.27

experimentally obtained 2× 10−9 m/V while Woodward
et al.57 reported 3× 10−11 m/V, all with the second har-
monic at the A exciton resonance of 1.9 eV. These match
our result within an order of magnitude. Trolle et al.
theoretically calculated χ(2) through the tight binding
band structures and obtained 4×10−9 m/V30, which also
agrees with our result approximately within an order of
magnitude, although the approach was different.

Compared to the typical χ(2) value 2 × 10−11 m/V
of lithium niobate, which is the common material for the
second-harmonic generation, the single pass second-order
effect in the monolayer MoS2 is equivalent to approxi-
mately only nanometer thick lithium niobate material.
Hence, the monolayer MoS2 does not appear to be a
strong second-harmonic nonlinear material.

C. Third order susceptibility

The third order processes that can avoid the direct
linear absorption are the third-harmonic generation and
the two-photon process (i.e., Kerr effect and two-photon
absorption) as shown in Fig. 8.

(a) Third-harmonic generation (b) Two-photon process

FIG. 8: Third order processes with low frequency input
light. (a) Third-harmonic generation where 3ωκ ∼ e0.

(b) Two-photon process where 2ωκ ∼ e0.

1. Third-harmonic generation

We first consider the third-harmonic generation pro-
cess where ωκ ∼ e0/3 (see Fig. 8 (a)). This process
involves two virtual levels between |0〉 and

∣∣x(0,0)

〉
. As

we have seen from the previous calculation for χ(2), the
virtual contribution from the unbound excitons is neg-
ligible. We then count only the virtual levels from the
bound exciton states. This requires a modification of the
second interaction Hamiltonian in equation (40) as

H′I = −
∑
ν1,ν2

[
hν1ν2B

†
ν1Bν2E(κ)e−iωκt + h.c.

]
. (48)

This third-harmonic generation process involves the four
states |0〉 , |xν1〉 , |xν2〉 ,

∣∣x(0,0)

〉
with the successive transi-

tion |0〉 → |xν1〉 → |xν2〉 →
∣∣x(0,0)

〉
→ |0〉.

The optical selection rule where only
∣∣x(n,m)

〉
→

|x〉(n,m±1) are allowed from the polarization σ±, respec-

tively, applies here as well for efficient virtual transitions.
For σ+ input light alone, there are no cascaded transi-
tions to arrive at

∣∣x(0,0)

〉
through the two virtual bound

exciton states. The same applies to σ−. This forces

the tensor elements χ
(3)
TH,±;+++ = χ

(3)
TH,±;−−− = 0. On

the other hand, if both σ± photons are present, they
can cooperate and incur the following transition: |0〉 →∣∣x(s,0)

〉
→ |xs′,−1〉 →

∣∣x(0,0)

〉
→ |0〉 with s = 0, 1, 2, · · ·

and s′ = 1, 2, · · · . The sequential transitions are medi-
ated by σ+, σ−, σ+, σ+ for +K valley involving the
dipole moments g+

(s,0), h
−
(s′,−1)(s,0), h

+
(0,0)(s,−1), g

+∗
(0,0), re-

spectively, leaving the output polarization in σ+ light
of the third harmonic. The opposite polarization se-
quence applies to the −K valley, leaving the output
third-harmonic light in σ−.

Let us consider the tensor element χ
(3)
TH,+;+−+(=

χ
(3)
TH,+;++− = χ

(3)
TH,+;−++) from the +K valley. The

detailed calculations reveal that the only nonzero ma-

trix element in the density matrix ρ(3) are ρ
(3)
(0,0)0 =
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x(0,0)

∣∣ ρ(3) |0〉 and ρ
(3)
(s′,−1)(0,0) =

〈
x(s′,−1)

∣∣ ρ(3)
∣∣x(0,0)

〉
(see Appendix C):

ρ
(3)+−+
(0,0)0 =

∑
s′,s

h+
(0,0)(s′,−1)h

−
(s′,−1)(s,0)g

+
(s,0)

~3
×

ε3(κ)e−3iωκt

(es − ωκ − iε)(es′ − 2ωκ − iε′)(e0 − 3ωκ − iε′′)
, (49)

and

ρ
(3)+−+
(s′,−1)(0,0) = −

∑
s′,s

g+∗
(0,0)h

−
(s′,−1)(s,0)g

+
(s,0)

~3
×

ε3(κ)e−3iωκt

(es − ωκ − iε)(es′ − 2ωκ − iε′)(es′ − e0 + ωκ + iε′′)
.

(50)

We then calculate the induced current for the third-
harmonic generation: J (3) =

∑
ν1
eNe(v(0,0)0ρ

(3)
0(0,0) +

ρ
(3)
(0,0)0v0(0,0) + v(s′,−1)(0,0)ρ

(3)
(0,0)(s′,−1) +

ρ
(3)
(s′,−1)(0,0)v(0,0)(s′,−1)). After resolving the veloc-

ity matrix elements in a similar way to equations (25)
and (56), we use J (3) = σ(3)ε̂+E3(κ)e−i3ωκt with the
following relation:

∂

∂t
ε0χ

(3)
TH(ωκ ∼ eν)E3(κ)e−i3ωκt = σ(3)E3(κ)e−i3ωκt,

(51)

which leads to χ
(3)
TH(ωκ ∼ eν) = σ(3)/(−i3ε0ωκ), we fi-

nally obtain the third-order susceptibility for the third-
harmonic generation as

χ
(3)
TH,B,+;+−+(ωκ ∼ e0/3) =

∑
s,s′

g+∗
(0,0)h

+
(0,0)(s′,−1)h

−
(s′,−1)(s,0)g

+
(s,0)

3ωκε0~3deff
×


∑
p1=±1

e0

(es + p1(ωκ + iγB/2)) (es′ + p1(2ωκ + iγB/2)) (e0 + p1(3ωκ + iγB/2))

−
∑
p2=±1

es′ − e0

(es + p2(ωκ + iγB/2)) (es′ + p2(2ωκ + iγB/2)) (es′ − e0 − p2(ωκ + iγB/2))

 . (52)

Here, s = 0, 1, · · · and s′ = 1, 2, · · · . There are four terms
in the above for a given s, s′ pair. The first term with
p1 = −1 is the resonant term with all frequency differ-
ence denominator factors, while the other three terms
are nonresonant terms with at least one frequency sum
in the denominator. This is the response from +K val-
ley only. Since we ignore the virtual channel through

the unbound exciton states, we obtain χ
(3)
TH,+;++−(ωκ ∼

e0/3) = χ
(3)
TH,B,+;++−(ωκ ∼ e0/3). The response from

the other valley is identical since σ± polarizations switch
roles. Hence, we obtain the tensor elements

χ
(3)
TH,±;±±∓(ωκ ∼ e0/3) = χ

(3)
TH,±;∓±±(ωκ ∼ e0/3)

= χ
(3)
TH,±;±∓±(ωκ ∼ e0/3), (53)

all having the same result as in equation (52). All the
other tensor elements are negligible.

We evaluated this susceptibility tensor element nu-
merically (see Fig. 9). Just as the second-harmonic
generation, what matters in the third-harmonic gener-

ation efficiency is the amplitude |χ(3)
TH |, while the phase

of χ
(3)
TH determines the phase of the third-harmonic out-

put light. The maximum |χ(3)
TH | of the monolayer MoS2

is 1.5 × 10−17 m2/V2, which can be favorably com-
pared to the typical nonlinear bulk crystal third order
susceptibility47 ∼ 10−24 m2/V2. The linear absorption

FIG. 9: Numerically evaluated χ
(3)
TH,+;+−+(ωκ ∼ e0/3)

based on the higher-order corrected gapped Dirac
Hamiltonian. The real value (blue solid), the imaginary
value (red solid), and the absolute value (green solid) of
the total χ(3) (sum of resonant and nonresonant terms)

are shown. Also the separate contributions from the
nonresonant terms (blue and red dotted) are shown to

be negligibly small.

at the third harmonic (dotted black) shows a significant
absorption at near resonance. Hence, for an efficient
third-harmonic generation, one would operate at slight
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red detuning.
The figure also shows the contribution from the non-

resonant terms (dotted in red and blue). Both the real
and the imaginary values from the nonresonant terms are
negligible. The reason is as follows: the biggest contri-
bution in the nonresonant term is from the second term
in equation (52) with p2 = −1. However, the magni-
tude of the resonant denominator’s real values |es − ωκ|
and |es′ − 2ωκ| are still quite large since ωκ ∼ e0/3. In
addition, the third-harmonic generation susceptibility is
concentrated near resonance.

2. Two-photon process

Next, let us turn to the two-photon transition shown
in Fig. 8 (b). We consider the case where the input
light frequency is such that ωκ ∼ e0/2. This process
involves two virtual levels, one mediating the upward
transition and the other the downward transition, cor-
responding to |0〉 → |xν1〉 →

∣∣x(0,0)

〉
→ |xν2〉 → |0〉. For

+K valley, the circularly polarized input light σ− alone
can make a second order transition since the virtual lev-
els can be ν1, ν2 = (1(2), 1). Then, sequential transi-
tions involve the corresponding dipole moment g−(1(2),1),

h−(0,0)(1(2),1), h
−∗
(0,0)(1(2),1), g

−∗
(1(2),1), respectively, leaving

the output photon in σ− polarization from +K valley.
For −K valley, σ± polarizations switch roles, accepting
σ+ photons and leaving the output in σ+.

This sequence of transition, however, is not the most
efficient two-photon transition: the transition dipole mo-
ment for |0〉 ↔

∣∣x(1(2),1)

〉
is indeed small (see the Ta-

ble I). When we numerically evaluated, the maximum

value of |χ(3)
TP (ωκ = e0/2)| was only 1.6 × 10−21 m2/V2.

Rather, involving an intermediate level whose dipole mo-
ment to and from the ground state is large must be
much more efficient. This is accomplished if the up-
per state is

∣∣x(1,1)

〉
, through the the circularly polar-

ized input light σ+ in +K valley. As before, we ig-
nore the virtual channels involving the unbound exciton
states. The following two-photon transition is plausi-
ble: |0〉 →

∣∣x(s,0)

〉
→
∣∣x(1,1)

〉
→
∣∣x(s′,0)

〉
→ |0〉 where

s, s′ = 0, 1, 2, · · · . These transitions involve the dipole
moments g+

(s,0), h
+
(1,1)(s,0), h

+∗
(1,1)(s′,0), g

+∗
(s′,0), respectively,

where all the dipole moments are indeed substantial. We
also listed the value of h(1,1)(n,0) in Table II.

We then need to calculate the tensor elements of ρ(3)

from +K valley in the basis {|0〉 ,
∣∣x(s,0)

〉
,
∣∣x(1,1)

〉
}. The

only nonzero elements of ρ(3) are (see the derivation in
Appendix C):

ρ
(3)+++
(s′′,0)0 =

∑
s

h+∗
(1,1)(s′′,0)h

+
(1,1)(s,0)g

+
(s,0)

~3
×

|ε(κ)|2ε(κ)e−iωκt

(es − ωκ − iε)(e1 − 2ωκ − iε′)(es′′ + ωκ + iε′′)
. (54)

and

ρ
(3)+++
(1,1)(s′′,0) = −

∑
s

g+∗
(s′′,0)h

+
(1,1)(s,0)g

+
(s,0)

~3
×

|ε(κ)|2ε(κ)e−iωκt

(es − ωκ − iε)(e1 − 2ωκ − iε′)(e1 − es′′ − ωκ − iε′′)
.

(55)

The two-photon induced current is J (3) =∑
ν1
eNe(v(s′′,0)(1,1)ρ

(3)
(s′′,0)(1,1) + ρ

(3)
(1,1)(s′′,0)v(s′′,0)(1,1) +

v(s′′,0)0ρ
(3)
(s′′,0)0 + ρ

(3)
0(s′′,0)v(s′′,0)0). We then need to

resolve the following velocity matrix element:

vν1(1,1) = 〈xν1 | ṙ
∣∣x(1,1)

〉
= − i

~
〈xν1 | [r,H0]

∣∣x(1,1)

〉
= −i(e1 − eν1) 〈xν1 | r

∣∣x(1,1)

〉
. (56)

Hence, we obtain the component parallel to ε̂+

as v(1,1)ν1 = −i(e1 − eν1) 〈xν1 | ε̂− · r
∣∣x(1,1)

〉
ε̂+ =

−i(e1 − eν1)(h+∗
(1,1)ν1

/e)ε̂+. We then use J
(3)
TP =

σ
(3)
TP |E(κ)|2ε̂+E(κ)e−iωκt. We also use the fact that the

two-photon susceptibility is obtained through

∂

∂t
ε0χ

(3)
TP (ωκ ∼ eν)|E(κ)|2E(κ)e−iωκt

= σ
(3)
TP |E(κ)|2E(κ)e−iωκt, (57)

which leads to χ
(3)
TP (ωκ) = σ

(3)
TP /(−iε0ωκ). From all these

we finally obtain the two-photon susceptibility tensor el-
ement

χ
(3)
TP,B,+;+++(ωκ ∼ e1/2) =

∑
s,s′

g+∗
(s′,0)h

+∗
(s′0)(1,1)h

+
(1,1)(s,0)g

+
(s,0)

ωκε0~3deff
×

 −
∑
p1=±1

(e1 − es′)
(es + p1(ωκ + iγB/2)) (e1 + p1(2ωκ + iγB/2)) (e1 − es′ + p1(ωκ + iγB/2))

+
∑
p2=±1

es′

(es + p2(ωκ + iγB/2)) (e1 + p2(2ωκ + iγB/2)) (es′ − p2(ωκ + iγB/2))

 . (58)

The above contains four terms: one resonant term with p1 = −1 from the first sum, and the other three nonres-
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FIG. 10: Calculated χ
(3)
TP,++++(ωκ ∼ e1/2) for the σ+

input light polarization. We plot the ratio

Re[χ
(3)
TP ]/Im[χ

(3)
TP ] (cyan dotted), as well as the linear

absorption (black dotted). Also shown are the
contribution only from the nonresonant term (red and

blue dots).

onant terms (p1 = +1, p2 = ±1). Here, g+
ν = g+

ν /
√
A,

which does not depend on the sample area A (see the
Table I). This is the response from +K valley with both
the input and the output lights in σ+ polarization. As
was before, we ignore the virtual channels through the
unbound excitons, and hence, we obtain the two-photon

response χ
(3)
TP = χ

(3)
TP,B . The response from −K valley

is identical to this since σ± polarizations switch roles,
and both the input and the output from −K valley are
in σ− polarization. All the tensor elements other than

χ
(3)
TP,±;±±± are negligible.

Fig. 10 shows the calculated values of χ
(3)
TP (ωκ ∼ e1/2).

The imaginary value of the two-photon third order sus-
ceptibility is related to the actual two-photon absorption,
implying the loss of the incoming light in pairs. The real
value of the two-photon third order susceptibility is re-
lated to the Kerr nonlinearity where the refractive index
varies proportionally to the incoming light intensity. This
is best seen by the relation47:

χeff = χ(1) + 3χ
(3)
TP |E(ωκ)|2. (59)

The negative sign in equation (58) is physically substan-

tial since it produces a positive imaginary value for χ
(3)
TP

implying real two-photon absorption. The maximum of

the real value χ
(3)
TP (ωκ ∼ e1/2) is 8.5 × 10−19 m2/V2

around e1/2 of A excitons. This value is approximately
six orders of magnitude larger than the typical bulk mate-
rial. The figure shows the influence of the same transition
for the B excitons on the blue side (spin down electrons).
Additionally, it also shows the linear absorption, which
comes from the off-resonant contribution from the near-
est exciton states absorption

∣∣x(0,0)

〉
. The linear absorp-

tion is only order of ∼ 10−5, which is sufficiently small.

The optical Kerr effect is a valuable resource for co-
herent optical switching. Hence, avoiding the incoher-
ent two-photon absorption is important. We plotted the

figure of merit |Re[χ
(3)
TP ]/Im[χ

(3)
TP |] in Fig. 10. Let us

compare the two-photon process results of the monolayer
MoS2 with those of graphene58. The graphene exhibits

χ
(3)
TP (e1/2) ∼ 4.8 × 10−17 m2/V2, which is larger than

the monolayer MoS2. The ratio |Re[χ
(3)
TP ]/Im[χ

(3)
TP |] of

graphene at the same frequency, however, is only 0.06,
whereas the monolayer MoS2 has quite a favorable ratio,
much larger than unity over broadband at certain fre-
quency regions. This is because MoS2 exciton responses
are narrow band resonances whereas that of the graphene
is broadband interband transitions. In addition, the
graphene also suffers from the broadband linear absorp-
tion of 2.3% for the pumping photon58 while such lin-
ear absorption is completely absent from the monolayer
MoS2 thanks to the band gap. This makes the monolayer
MoS2 a superior material for the coherent Kerr optical
nonlinearity.

It is noteworthy that the contribution from the nonres-
onant terms for the two-photon third-order susceptibil-
ity is much larger than others (dotted lines in Fig. 10).
The reason is as follows: the biggest contribution comes
from the term with p2 = −1 from the second term in
equation (58). The magnitude of the resonant denomi-
nators’ real values |es − ωκ| and |e1 − 2ωκ| is relatively
small since ωκ ∼ e1/2. Hence, the contribution from the
nonresonant terms in the two-photon susceptibility is sig-
nificantly larger than other cases. Nevertheless, it is fair
to say that the major contribution still comes from the
resonant term.

IV. CONCLUSION AND DISCUSSIONS

We calculated the linear and nonlinear optical suscep-
tibilities of excitonic states in monolayer MoS2, based
on the second-order corrected Dirac Hamiltonian around
±K points in the first Brillouin zone. We derived and
utilized the second quantized bound and unbound exci-
ton operators and efficiently calculated the perturbative
solutions of the density matrix. This connected to the
induced current, the optical conductivity, and eventu-
ally the optical susceptibilities in a perturbative order.
We showed that the simple higher-order corrected Dirac
gapped Hamiltonian produced linear and second-order
susceptibilities that reasonably match experimental re-
sults. An alternative route would be the detailed com-
putationally heavy DFT-based calculation.

The reasonable agreement of our theoretical results
with experimental data may be somewhat surprising con-
sidering that we have approximated the physical sys-
tem as completely two dimensional, whereas the detailed
atomic positions are indeed in three dimensions, and
hence, the detailed electron density distribution might
have played an important role. However, the exciton is
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a collective excitation spanning the entire sample area
and atomic details may be blurred over the large exciton
size (several times the unit cell). It is thus plausible to
consider our physical system as being approximately cir-
cularly symmetric, and the angular momentum based op-
tical selection rules of our bound exciton solution played
a vital role. We emphasize that such an averaging effect
is indeed a nature of the Wannier excitons with a large
size.

The second-harmonic process of the exciton states from
the monolayer MoS2, on the other hand, is well ex-
pected to be small since the exciton states are approxi-
mately centro-symmetric where only a very minor centro-
symmetry breaking feature is provided through the weak
threefold rotational symmetry, connecting the Fermi sea
and a couple of the high order excitons. We also note that
we resolved quantitatively the previously known opposite
chirality rule for the second-harmonic generation in the
monolayer TMDs materials through directly calculating
the dipole moments and the susceptibilities.

The obtained third-order nonlinear optical susceptibil-
ity of monolayer MoS2 merits further investigation for
potential photonics applications. The excitonic states of
this material are promising for device designs utilizing
coherent nonlinear optical processes, such as the coher-
ent Kerr-type optical operation in an extremely small
strong cavity (9), since one can avoid incoherent linear
loss while strong optical response is provided via collect-
ing the broadband responses of the bands into a narrow
band exciton resonance.

It is worth mentioning that, while the center frequency
of the lowest exciton state of our result is based on empir-
ically measured binding energy, those of higher exciton
states may need to be adjusted slightly according to ei-
ther the more accurate Keldysh-type binding energies of
exciton states or the actual experimental results, albeit
the difference is small as we mentioned above.
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Appendix A: Electronic band structure of MoS2

For the band structure of the monolayer MoS2, we
assume a gapped Dirac cone model that was adopted
in many of the theoretical works of the TMD material
calculations17,20,21,25,59–63. This approach assumes the

tight binding approximation, where the Bloch wave is
ψk,λ(r) = eik·ruk,λ(r) with the band index λ = c, v for
the conduction and the valence bands, respectively. Here,
k is a Bloch wave vector, and the Bloch function is rep-
resented as uk,λ(r) = (1/

√
N)
∑
m eik·(Rm−r)φk,λ(r −

Rm), whereN is the total number of atoms in the sample,
Rm is the lattice site position, and φλ(r) is the atomic or-
bital. At the ±K points, it is conventional17,20,21,25,59–63

to approximate φτK,c(r) = 〈r|dz2〉 and φτK,v(r) =

(1/
√

2)
(〈
r|dx2−y2

〉
+ iτ 〈r|dxy〉

)
where |dz2〉,

∣∣dx2−y2
〉
,

|dxy〉 are the 4d shell atomic orbitals of the Mo atom.
Here, τ = ±1 is the valley index corresponding to ±K
points, respectively. In fact, the conduction and the va-
lence bands at ±K points consist of both the d orbitals
of Mo atoms and the p orbitals of S atoms. The rela-
tive contributions of Mo atom d orbitals are 92% in the
conduction band and 84% in the valence band60.

Let us consider the Bloch waves around either of ±K
points. Adopting the basis {|u0,c〉 , |u0,v〉}, and consider-
ing only the subspace of either up or down electron spin,
the Hamiltonian is given as17

H0 =

(
∆/2 ~v(τqx − iqy)

~v(τqx + iqy) −∆/2

)
, (A1)

where ∆ = Eg ± τEsoc/2 for up or down spin sub-
space, respectively, with the energy band gap Eg and
the spin-orbit coupling energy Esoc. Here q = (qx, qy) =
k− τK. This is a Hamiltonian for a gapped Dirac cone.
The values we use are the results of the detailed DFT
calculations59,60, namely, ~v = 3.82 eV Å (v = 5.8× 105

m/s), Eg = 2.23 eV (DFT-HSE06) (and experimentally
measured64 as 2.15 eV), and Esoc = 146 meV. If we ex-
pand the solution up to the second order with respect
to q, we obtain an analytical formula for the uncorrected
band Hamiltonian H0:

Ec(q) =
∆

2
+

~2v2q2

∆
, Ev(q) = −

(
∆

2
+

~2v2q2

∆

)
,

|uq,c〉 =

(
1− ~2v2q2

∆2

)
|u0,c〉+

~vqτ
∆

eiτφq |u0,v〉 ,

|uq,v〉 = −~vqτ
∆

e−iτφq |u0,c〉+

(
1− ~2v2q2

∆2

)
|u0,v〉 ,

(A2)

where φq = arccos(qx/q). The Dirac cone approximation
inevitably produces the same effective mass for the con-
duction band electron and the valence band hole. For
a more accurate calculation, one may adopt the higher
order correction20,21 such that H = H0 +HC with

HC =(
αq2 κq2e2iτφq − η

2 q
3e−iτφq

κq2e−2iτφq − η
2 q

3eiτφq βq2

)
,

(A3)

where the numerical values of the parameter based on
the DFT calculations are α = 1.72 eV Å2, β = −0.13 eV
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FIG. 11: Band structure of monolayer MoS2 near ±K
points (i.e., q = 0). Only the lowest conduction and

highest valence bands are shown. The conduction band
(red slid) and the valence band (blue solid) are fitted
with quadratic curves (dotted lines) for extracting the

effective masses at each band. Also shown are the
exciton wavefunctions for states

∣∣x(0,0)

〉
(cyan) and∣∣x(1,0)

〉
(orange).

Å2, κ = −1.02 eV Å2, and η = 8.52 eV Å3. The energy
eigenvalues of the band Hamiltonian H = H0 + HC are
analytically solved as follows:

Eλ =

1

2
(α+ β)q2 + λ

1

2

√√√√√√√
4~2v2q2 + 2q2(α− β)∆
+∆2 − 4~vq4η + q6η2

+q4((α− β)2 + 4κ2)
+4q3(2~v − q2η)κ cos(3φq)

, (A4)

where λ = ±1 for the conduction and the valence band,
respectively. The higher order correction does not only
produce different effective masses for the conduction and
the valence bands, but also gives rise to the well-known
threefold rotational symmetry through the dependence
on cos(3φq). This threefold rotational symmetry of the
energy dispersion is common in hexagonal 2D materials.

It is noteworthy that one extracts the effective masses
for the conduction and the valence band through the en-
ergy dispersion (equation (A2)), and use them to solve
the Wannier exciton equation in equation (1). Although
the actual dispersion is not completely parabolic, one of-
ten approximates the band dispersion quadratically. This
approximation is particularly valid for the exciton where
the superposing weight ψν(q) in equation (8) is heavily
concentrated in the valley bottoms. Fig. 11 shows the

quadratic fittings of the conduction and valence bands.
Also shown are the exciton wavefunctions which become
weights to construct an exciton state. We note that the
upper states have more concentrated wavefunctions to
the valley bottom. The quadratic fitting is reasonably
good even for the lowest exciton level within the exciton
wavefunctions. This concretely shows that the effective
mass approach is valid for the monolayer MoS2 excitons,
which is also consistent with literature25,55,65–67.

Appendix B: Exciton creation operator

We derive the creation operators for both the bound
and the unbound exciton states in terms of the band state
basis. We first consider the bound exciton states, starting

with the definition B†ν,Q = |νQ〉 〈0|. The exciton state

|νQ〉 is a dual-particle state where there is an electron-
hole pair. Let us recall that the band pair state is given

by |q,−q′〉 = α†qβ
†
−q′ |0〉. This is a composite state of an

electron Bloch state in the conduction and a hole Bloch
state in the valence band, having the momentum ~q and
−~q′, respectively. Any single particle state lives in a
Hilbert space that is spanned by basis {|q,−q′〉}. In this
subspace, the completeness relation is∑

q,q′

|q,−q′〉 〈q,−q′| = 1. (B1)

Then, we obtain

B†νQ =
∑
q,q′

|q,−q′〉 〈q,−q′|νQ〉 〈0|

=
∑
q,q′

〈q,−q′|νQ〉α†qβ
†
−q′ . (B2)

Following the treatment of Haug et al.18, we then
approximate the band Bloch states by free parti-
cle states such that 〈r, r′|q,−q′〉 ≈ (1/A)eiq·r+iq′·r′ .
Then, we calculate the following using the completeness∫

d2rd2r′ |r, r′〉〈r, r′| = 1:

〈q,−q′|νQ〉 =

∫
A

d2rd2r′ 〈q,−q′|r, r′〉 〈r, r′|νQ〉

=

∫
d2rd2r′

1

A
e−iq·reiq

′·r′ψν(r − r′) 1√
A

eiQ·
r+r′

2 ,

(B3)

where ψν(r′′) is the solution to the exciton Schrödinger
equation in equation (1). Then, we Fourier-transform
ψν(r′′) to obtain
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〈q,−q′|νQ〉

=
1

A2

∑
q′′

∫
d2rd2r′ exp

[
i

(
Q · r + r′

2
− q · r + q′ · r′ + q′′ · (r − r′)

)]
ψν(q′′)

=
1

A2

∑
q′′

∫
d2rd2r′ exp

[
i

(
r ·
(
Q

2
− q + q′′

)
+ r′ ·

(
Q

2
+ q′ − q′′

))]
ψν(q′′)

=
∑
q′′

ψν(q′′)δQ
2 ,q−q′′

δQ
2 ,q
′′−q′ , (B4)

where we used (1/A)
∫

d2rei(q−q
′)·r = δq,q′ . This leads

to

〈q,−q′|νQ〉 = δQ,(q−q′)ψν

(
q + q′

2

)
. (B5)

Hence, we finally obtain

B†νQ =
∑
q,q′

δQ,(q−q′)ψν

(
q + q′

2

)
α†qβ

†
−q′

=
∑
q

ψν

(
q − Q

2

)
α†qβ

†
Q−q. (B6)

We also mention that this result matches other
references20,21. Approximating Q ≈ 0, the exciton cre-

ation operator is B†ν ≡ B
†
ν0.

Next, we consider the unbound exciton states. In the
same line of thought as the bound exciton, we seek the
creation operator for the unbound exciton to be a linear
combination from the band basis:

C†q̃ =
∑
q

φq̃(q)α†qβ
†
−q, (B7)

where q̃ is the canonical conjugate momentum to the rel-
ative coordinate r = re − rh. Here, φq̃(q) is the weight
to be determined. We require the two condition: or-
thogonality with the bound states 〈Cq̃|xν〉 = 0 for all q̃

and ν where |Cq̃〉 = C†q̃ |0〉 and |xν〉 = B†ν |0〉, and nor-

malization 〈Cq̃|Cq̃′〉 = δq̃−q̃′ where q̃, q̃′ are continuous
variables because |Cq̃〉 is an unbound state. The energy
eigenvalue of this unbound exciton state must be

Eq̃ = Eg +
~2q̃2

2mr
. (B8)

We note that this is quite similar to the energy of a band

pair state of an electron and a hole: Eq = Eg + ~2q2

2mr
. Al-

though q̃ is not directly related to the crystal momentum
q, we suggest the replacement q̃ → q and φq̃(q) = δq̃,q
such that

C†q = α†qβ
†
−q. (B9)

We then propose to approximate the unbound exciton
state |C(q)〉 with the band pair state |q,−q〉 such that
|C(q)〉 ≈ |q,−q〉.

The orthogonality from the bound state is then

〈Cq|xν〉 =
∑
q′

ψν(q′) 〈0|αqβqα
†
q′β
†
q′ |0〉 = ψν(q),

(B10)
where we used the usual anticommutation rule for αq

and βq, and the notation |Cq〉 = C†q |0〉, |xν〉 = B†ν |0〉.
We note that ψν(q) ∼ a0/

√
A ∼ 1/

√
N where N is the

number of the unit cells in the sample. Hence, for a
sufficiently large sample, we obtain the approximate or-
thogonality 〈Cq|xν〉 ∼ 1/

√
N → 0. The normalization is

also easily obtained as

〈Cq|Cq′〉 = 〈0|αqβqα
†
q′β
†
q′ |0〉 = δq,q′ . (B11)

In addition, the energy is the same with the replacement
q̃ → q. Hence, we conclude that, for a sufficiently large
sample size A, the creation operator in equation (B9) is
approximately correct.

The operator C†q excites the electron in the valence
bands to the conduction band. Hence, we can interpret
as C†q = (⊗q′ 6=qIq′) ⊗ |cq〉〈vq|, where |cq〉 , |vq〉 are the
single electron Bloch states at the conduction and the
valence band, respectively, with a momentum ~q, and
Iq′ = |cq′〉〈cq′ | + |vq′〉〈vq′ |. Using this representation,
the anti-commutation rule for the bound and the un-
bound exciton creation and annihilation operators are

easily obtained: {Cq, C
†
q′} = δq,q′ , {Bν , B†ν′} = δν,ν′ ,

{C†q, Bν} ∼ 1/
√
N → 0 while all other anti-commutators

are zero. It is also noteworthy that the Hilbert subspace
for the single excitation is spanned by the bound and the
unbound exciton states {|xν〉 , |Cq〉} with all possible ν
and q, and thus, the completeness in this single excita-
tion subspace is∑

ν

|xν〉〈xν |+
∑
q

|Cq〉〈Cq| = 1. (B12)

Appendix C: Density operator matrix elements

In this section, we present derivations of density matrix
elements that are used in the main text.
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1. Second-harmonic generation

We resolve the matrix elements ρ
(2)
(s,1)0, ρ

(2)
(0,0)(s,1), and

ρ
(2)
(0,0)0 with s = 1 or 2, with the polarization configuration

of σ+;σ−σ−, corresponding to the frequencies 2ωκ, ωκ,
ωκ, respectively. Recall that the interaction Hamiltonian
is given as HI +H′I , where HI is given in equation (15)
with an interaction coefficient g−(s,1) and H′I is given in

equation (40), respectively.

We first resolve ρ
(2)
(s,1)0 by considering

ρ̇
(2)
(s,1)0(t) =

− ie(s,1)ρ
(2)
(s,1)0(t)− i

~
〈
x(s,1)

∣∣ [HI +H′I , ρ(1)] |0〉 . (C1)

with the useful fact that the only nonzero matrix ele-
ments in ρ(1) in this situation are

ρ
(1)
(s,1)0 =

〈
x(s,1)

∣∣ ρ(1) |0〉 =
g−(s,1)

~
ε(κ)e−iωκt

(es − ωκ − iε)
(C2)

and its complex conjugate, where s = 1, 2. Using this,
we insert the completeness relation and obtain〈

x(s,1)

∣∣ [HI +H′I , ρ(1)] |0〉 =〈
x(s,1)

∣∣HI +H′I
∣∣x(s,1)〉〈x(s,1)

∣∣ ρ(1) |0〉
−
〈
x(s,1)

∣∣ ρ(1) |0〉〈0|HI +H′I |0〉 . (C3)

Both terms are zero since the diagonal matrix elements

for HI and H′I are zero. This implies that ρ
(2)
(s,1)0(t) = 0

since ρ
(2)
(s,1)0(−∞) = 0.

Next, let us consider the matrix element ρ
(2)
(0,0)(s,1). To

calculate this, we evaluate the following commutator, us-
ing again that the only nonzero matrix elements of ρ(1)

are ρ
(1)
(s,1)0 and its conjugate:〈
x(0,0)

∣∣ [HI +H′I , ρ(1)]
∣∣x(s,1)

〉
=〈

x(0,0)

∣∣HI +H′I |0〉〈0| ρ(1)
∣∣x(s,1)

〉
−
〈
x(0,0)

∣∣ ρ(1)(HI +H′I)
∣∣x(s,1)

〉
. (C4)

The first term is zero since the only nonzero matrix el-
ements for HI are

〈
x(s,1)

∣∣HI |0〉 and its complex conju-
gate, and the only nonzero matrix elements for H′I are〈
x(s,−1)

∣∣H′I ∣∣x(0,0)

〉
where s = 1, 2, · · · and its complex

conjugate. The second term is zero since the bra
〈
x(0,0)

∣∣
eliminates ρ(1). This implies that the matrix element

ρ
(2)
(0,0)(s,1) is zero.

Finally, we resolve the matrix element ρ
(2)
(0,0)0 by solving

ρ̇
(2)
(0,0)0(t) =

− ie(0,0)ρ
(2)
(0,0)0(t)− i

~
〈
x(0,0)

∣∣ [HI +H′I , ρ(1)] |0〉 . (C5)

We calculate the following〈
x(0,0)

∣∣ [HI +H′I , ρ(1)] |0〉 =〈
x(0,0)

∣∣HI +H′I
∣∣x(s,1)〉〈x(s,1)

∣∣ ρ(1) |0〉
−
〈
x(0,0)

∣∣ ρ(1)(HI +H′I) |0〉 . (C6)

The second term is zero since the bra
〈
x(0,0)

∣∣ eliminates

ρ(1). We calculate the following:〈
x(0,0)

∣∣HI +H′I
∣∣x(s,1)

〉
=
〈
x(0,0)

∣∣H′I ∣∣x(s,1)

〉
= −

∑
s′=1,2

h−(0,0)(s,1)ε(κ)e−iωκtρ
(1)
(s,1)0. (C7)

Integrating the equation (C5) using above and equation
(C2), we obtain the final result in equation (41).

2. Third-harmonic generation

We resolve the matrix elements of ρ(3) in the
third-harmonic generation with degenerate fundamen-
tal frequencies, but with polarization configuration
of σ+;σ+σ−σ+, corresponding to the frequencies
3ωκ, ωκ, ωκ, ωκ, respectively. The relevant basis for the
matrix elements is {|0〉 , |(s,±1)〉 , |(s′, 0)〉} where s =
1, 2, · · · and s′ = 0, 1, · · · . We will intensively use the
selection rules (dipole moments) given in Table I and
equation (20).

We first resolve the matrix elements for ρ(1). For σ+

polarization, we find the only nonzero matrix element for
ρ(1) to be

ρ
(1)+
(s,0)0 =

〈
x(s,0)

∣∣ ρ(1) |0〉 =
g+

(s,0)

~
ε(κ)e−iωκt

(es − ωκ − iε)
, (C8)

where s = 0, 1, 2, · · · .
Next, we will resolve the matrix elements of ρ(2).

For σ−σ+ polarization sequence, the first order process
landed on

∣∣x(s,0)

〉
. Then, the second driving from σ−

light will bring the state to
∣∣x(s′,−1)

〉
with s′ = 1, 2, · · · .

Hence, the only nonzero matrix element is ρ
(2)−+
(s′,−1)0,

which is obtained by calculating the following commu-
tator:〈

x(s′,−1)

∣∣ [H−I +H
′−
I , ρ(1)+] |0〉

=
〈
x(s′,−1)

∣∣ (H−I +H
′−
I )
∣∣x(s,0)〉〈x(s,0)

∣∣ ρ(1)+ |0〉

−
〈
x(s′,−1)

∣∣ ρ(1)+(H−I +H
′+
I ) |0〉

=
〈
x(s′,−1)

∣∣H′−I ∣∣x(s,0)

〉
ρ

(1)+
(s,0)0

= −h−(s′,−1)(s,0)ρ
(1)+
(s,0)0E(κ)e−iωκt, (C9)

where the second term in the first equation is zero since〈
x(s′,−1)

∣∣ eliminates ρ(1)+. Here, we clarified that the

interaction Hamiltonian is due to σ− light. In the second

equation, we used the fact that H
′+
I connects

∣∣x(s,0)

〉
and
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x(s′,−1)

∣∣. Then, after integration we obtain the matrix
element

ρ
(2)−+
(s′,−1)0 =

h−(s′,−1)(s,0)g
+
(s,0)

~2

ε2(κ)e−2iωκt

(es − ωκ − iε)(es′ − 2ωκ − iε′)
. (C10)

Next, we resolve the matrix elements for ρ(3)+−+. Be-
cause we are solving for the third-harmonic generation,
we look for the matrix elements proportional to e−i3ωκt.

It is obvious to see that one nonzero matrix element
for ρ(3)+−+ is ρ

(3)+−+
(0,0)0 which is given by

ρ
(3)+−+
(0,0)0 =

∑
s′,s

h+
(0,0)(s′,−1)h

−
(s′,−1)(s,0)g

+
(s,0)

~3
×

ε3(κ)e−3iωκt

(es − ωκ − iε)(es′ − 2ωκ − iε′)(e0 − 3ωκ − iε′′)
. (C11)

To calculate another nonzero matrix element, we consider
the light with frequency ω′κ, which we will set later ω′κ =
−ωκ. Consider the commutator for the matrix element

ρ
(3)+−+
(s′,−1)(0,0):〈

x(s,−1)

∣∣ [H+
I +H

′+
I , ρ

(2)−+]
∣∣x(0,0)

〉
=
〈
x(s,−1)

∣∣ (H+
I +H

′+
I )ρ(2)−+

∣∣x(0,0)

〉
−
〈
x(s,−1)

∣∣ ρ(2)−+ |0〉〈0| (H+
I +H

′+
I )
∣∣x(0,0)

〉
= −ρ(2)−+

(s,−1)0 〈0|H
+
I

∣∣x(0,0)

〉
= g+∗

(0,0)ρ
(2)−+
(s,−1)0E

∗(κ′)eiω
′
κt. (C12)

We first integrate the differential equation. Then, setting
ω′κ = −ωκ, we obtain a result proportional to e−i3ωκt:

ρ
(3)+−+
(s′,−1)(0,0) = −

∑
s′,s

g∗(0,0)h
−
(s′,−1)(s,0)g

+
(s,0)

~3
×

ε3(κ)e−3iωκt

(es − ωκ − iε)(es′ − 2ωκ − iε′)(es′ − e0 + ωκ + iε′′)
.

(C13)

We note that this is a nonresonant contribution due to
the factor e0 + ωκ + iε′′ in the denominator.

Finally, we calculate the matrix element ρ
(3)+−+
(s′,−1)0. For

this, we calculate the following commutator:〈
x(s,−1)

∣∣ [H+
I +H

′+
I , ρ

(2)−+] |0〉

=
〈
x(s,−1)

∣∣ (H+
I +H

′+
I )
∣∣x(s,−1)〉〈x(s,−1)

∣∣ ρ(2)−+ |0〉

−
〈
x(s,−1)

∣∣ ρ(2)−+ |0〉〈0| (H+
I +H

′+
I ) |0〉 . (C14)

Both terms are zero since H+
I and H

′+
I have nonzero

elements only on off-diagonal. This implies that

ρ
(3)+−+
(s′,−1)0(t) = 0.

3. Two-photon transition

We resolve the matrix elements of ρ(3) for the two-
photon transition with degenerate fundamental frequen-
cies, with polarization configuration of σ+;σ+σ+σ+, cor-
responding to 2ωκ, ωκ, ωκ,−ωκ, respectively. We present
the result for the case where 2ωκ ∼ e(1,1). The relevant

basis for the matrix elements is {|0〉 ,
∣∣x(s,0)

〉
,
∣∣x(1,1)

〉
},

where s = 0, 1, 2, · · · .
The only nonzero matrix element for ρ(1) is given in

equation (C8). We now resolve the matrix elements of
ρ(2). The first-order process landed on the state

∣∣x(s,0)

〉
with s = 0, 1, 2, · · · . According to the selection rule,
the second-order process with the polarization sequence
σ+σ+ needs to land on

∣∣x(s′,1)

〉
with s′ = 1, 2, · · · via

e−iωκt term in H′I , or on |0〉 via eiωκt term in HI . Let

us consider ρ
(2)++
(s′,1)0 first. For this, let us calculate the

commutator:〈
x(s′,1)

∣∣ [H+
I +H

′+
I , ρ

(1)+] |0〉

=
〈
x(s′,1)

∣∣ (H+
I +H

′+
I )
∣∣x(s,0)〉〈x(s,0)

∣∣ ρ(1)+ |0〉

−
〈
x(s′,1)

∣∣ ρ(1)+(H+
I +H

′+
I ) |0〉

=
〈
x(s′,1)

∣∣H′+I ∣∣x(s,0)

〉
ρ

(1)+
(s,0)0

= −h+
(s′,1)(s,0)ρ

(1)+
(s,0)0E(κ)e−iωκt. (C15)

From this, it easily follows that

ρ
(2)++
(1,1)0 =

h+
(1,1)(s,0)g

+
(s,0)

~2

ε2(κ)e−2iωκt

(es − ωκ − iε)(e1 − 2ωκ − iε′)
. (C16)

We then consider ρ
(2)
00 . For this, let us calculate the com-

mutator:

〈0| [H+
I +H

′+
I , ρ

(1)+] |0〉

= 〈0| (H+
I +H

′+
I )
∣∣x(s,0)〉〈x(s,0)

∣∣ ρ(1)+ |0〉

− 〈0| ρ(1)+
∣∣x(s,0)〉〈x(s,0)

∣∣ (H+
I +H

′+
I ) |0〉

= 〈0|H
′+
I

∣∣x(s,0)

〉
ρ

(1)+
(s,0)0 − h.c.

= −g+∗
(s,0)ρ

(1)+
(s,0)0E

∗(κ)eiωκt − h.c. (C17)

These terms are DC drives, which is proportional to an
infinitesimal constant ε, and hence, is negligible mathe-
matically. Hence, the only significant nonzero elements

of ρ(2) are ρ
(2)++
(1,1)0 and its complex conjugate.

Next, we resolve the matrix elements for ρ(3)+++. Our
task is to find the matrix elements proportional to e−iωκt.
The last frequency is negative: −ωκ, i.e., moving down-
ward in energy. Since the second-order process landed on
the state

∣∣x(1,1)

〉
, the third-order process must land on a

state
∣∣x(s′′,0)

〉
. One nonzero matrix element is thus given
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by

ρ
(3)+++
(s′′,0)0 =

∑
s

h+∗
(1,1)(s′′,0)h

+
(1,1)(s,0)g

+
(s,0)

~3
×

|ε(κ)|2ε(κ)e−iωκt

(es − ωκ − iε)(e1 − 2ωκ − iε′)(es′′ + ωκ + iε′′)
. (C18)

This is a nonresonant term, due to the last factor in the
denominator.

We can find another nonzero matrix element ρ
(3)+++
(1,1)(s′′,0)

as follows. Let us consider the commutator:

〈
x(1,1)

∣∣ [H+
I +H

′+
I , ρ

(2)++]
∣∣x(s′′,0)

〉
=
〈
x(1,1)

∣∣ (H+
I +H

′+
I )ρ(2)−+

∣∣x(s′′,0)

〉
−
〈
x(1,1)

∣∣ ρ(2)++ |0〉〈0| (H+
I +H

′+
I )
∣∣x(s′′,0)

〉
= −ρ(2)++

(1,1)0 〈0|H
+
I

∣∣x(s′′,0)

〉
= g+∗

(s′′,0)ρ
(2)++
(1,1)0 E

∗(κ)eiωκt. (C19)

After integrating the differential equation, we obtain

ρ
(3)+++
(1,1)(s′′,0) = −

∑
s

g+∗
(s′′,0)h

+
(1,1)(s,0)g

+
(s,0)

~3
×

|ε(κ)|2ε(κ)e−iωκt

(es − ωκ − iε)(e1 − 2ωκ − iε′)(e1 − es′′ − ωκ − iε′′)
.

(C20)

This is a resonant term.

Finally, let us consider the matrix element ρ
(3)+++
(1,1)0 .

Let us consider the commutator

〈
x(1,1)

∣∣ [H+
I +H

′+
I , ρ

(2)++] |0〉

=
〈
x(1,1)

∣∣ (H+
I +H

′+
I )
∣∣x(1,1)〉〈x(1,1)

∣∣ ρ(2)−+ |0〉

−
〈
x(1,1)

∣∣ ρ(2)++ |0〉〈0| (H+
I +H

′+
I ) |0〉 . (C21)

Both terms are zero since H+
I and H

′+
I have nonzero

elements only on off-diagonal. This implies that

ρ
(3)+++
(1,1)0 (t) = 0.

Appendix D: Calculation of the dipole moment
f±
ν (q) = e 〈xν | r · ε̂± |Cq〉

Let us calculate the dipole moment f+
ν (q) using the

Blount formula in equation (17) and the analytical solu-

tion in equation (A2):

f+
ν (q) =− ε̂+ · ie

∑
q′

ψ∗ν(q′)∇q 〈cq′ |cq〉

− ie
∑
q

ψ∗ν(q)(1 + τ)
~2v2

√
2∆2

qeiτφq . (D1)

The contribution coming from the second term on the
right hand side is negligible due to the angular integral,
if ν = (n, 0). We then calculate the contribution from
the first term. To evaluate this, let us use the following
integration by parts.∫

A

d2q
∑
q′

(r(q′)∇q 〈ψq′,λ|ψq,λ〉) s(q)

=

∫
∂A

dnr(q)s(q)−
∫
A

d2qr(q)∇qs(q). (D2)

The first term is the boundary line integral. The contri-
bution from the second term above vanishes due to the
angular integral over φq. This leads to

χ
(2)
U (ωκ ∼ e0/2) =

− ε̂+ ·
∫
∂FBZ

dn

(
ψ∗ν(q)ie

eνd
+
cv(q)g∗ν

8π2ωκε0~2deff
× 1

(ωq−ωκ−i(γU/2))(eν−2ωκ−i(γB/2))

)
(D3)

Performing the boundary line integral involves multi-
plying the factor eiφq since ε̂+ · n̂ = eiφq . Recall that the
threefold rotational symmetry is perturbatively treated.
The zeroth order that does not have the threefold rota-
tional symmetry integrates to zero over φq. The higher-
order perturbative terms involving the threefold rota-
tional symmetry also vanishes as follows. Recall that
the energy ~ωq also has the threefold rotational symme-
try. Hence, the higher order terms in the integrand have
a threefold rotational symmetry. We note that∫ 2π

0

dφe±iφf(cos(3φ)) = 0, (D4)

where f is any analytical function. It is easily seen by
considering cos(3φ) = (1/2)(ei3φ+e−i3φ), and the Taylor
series term cosn(3φ) involves e±i3mφ with an integer m
that the integral of f(cos(3φ)) over φ after multiplying
with e±iφ vanishes. This leads to a conclusion that, re-
gardless of the polarization, this boundary integral term

must be zero. Therefore, χ
(2)
U (ωκ ∼ e0/2) vanishes.

For σ− input polarization, the second term in equation
(D1) vanishes, and the boundary line integral is the same
result, hence, the contribution from the unbound exciton
also vanishes for σ− light. Overall, we conclude that
the unbound exciton does not efficiently couple back to
the bound exciton states. This allows us to ignore any
channel of the unbound exciton virtual states to land on
a bound exciton state.
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