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We perform a microscropic analysis of how the constraints imposed by conservation laws affect
q = 0 Pomeranchuk instabilities in a Fermi liquid. The conventional view is that these instabilities
are determined by the static interaction between low-energy quasiparticles near the Fermi surface,
in the limit of vanishing momentum transfer ¢q. The condition for a Pomeranchuk instability is set
by Flc<5> = —1, where Flc<5> (a Landau parameter) is a properly normalized partial component of the
anti-symmetrized static interaction F(k,k + ¢;p,p — ¢) in a charge (c) or spin (s) sub-channel with
angular momentum [. However, it is known that conservation laws for total spin and charge prevent
Pomeranchuk instabilities for [ = 1 spin- and charge- current order parameters. Our study aims to
understand whether this holds only for these special forms of [ = 1 order parameters, or is a more
generic result. To this end we perform a diagrammatic analysis of spin and charge susceptibilities
for charge and spin density order parameters, as well as perturbative calculations to second order in
the Hubbard U. We argue that for [ = 1 spin-current and charge-current order parameters, certain
vertex functions, which are determined by high-energy fermions, vanish at Flc:(i) = —1, preventing a
Pomeranchuk instability from taking place. For an order parameter with a generic | = 1 form-factor,

the vertex function is not expressed in terms of FZC:<51>, and a Pomeranchuk instability may occur

when Ff(s) = —1. We argue that for other values of I, a Pomeranchuk instability may occur at

FZC(S> = —1 for an order parameter with any form-factor

I. INTRODUCTION

This paper is devoted to the analysis of subtle effects
associated with a Pomeranchuk instability in a Fermi lig-
uid (FL) due to the interplay with conservation laws.
A system of interacting fermions is called a Fermi lig-
uid if its properties differ from those of free fermions in
a quantitative, but not qualitative manner*™. Specif-
ically, the distribution function nj; undergoes a finite
jump at the Fermi momentum, kr, with some jump mag-
nitude Z < 1; the velocity v}y of fermionic excitations
near the Fermi surface (FS) remains finite; and the life-
time of fermionic excitations near a F'S is parametrically
larger than the energy counted from the Fermi level, i.e.,
fermions infinitesimally close to the FS can be viewed as
infinitely long lived. These three features form the basis
for the description of low-energy fermionic states in terms
of quasiparticles, whose distribution function at 7' = 0 is
a step function. The validity of FL postulates has been
verified in microscopic calculations for realistic interac-
tion potentials and was found to hold at small/moderate
couplings in dimensions d > 1.

Stronger interactions can destroy a FL. In general, such
destruction can occur in two ways. One option is the
transformation of a metal into a Mott insulator, once the
interaction U becomes comparable to a fermionic band-
width W. This instability involves fermions located ev-
erywhere in the Brillouin zone. Another option is an
instability driven by fermions only very near the FS,
such as superconductivity and ¢ = 0 instabilities in a
particle-hole channel, often called Pomeranchuk instabil-
ities. The latter leads to either phase separation, or fer-
romagnetism, or a deformation of a F'S and the develop-
ment of a particle-hole order with non-zero angular mo-

mentum (see e.g. RefsdHI3)). A Pomeranchuk instability
in a given channel occurs when the corresponding inter-
action exceeds 1/Np, where N is the density of states
at the FS. When W Np > 1, a Pomeranchuk instability
occurs well inside the metallic regime.

A Pomeranchuk instability is generally expressed
as a condition on a Landau parameter. For a
rotationally-invariant and SU(2) spin-invariant FL, an
anti-symmetrized static interaction between fermions
at the FS and at strictly zero momentum transfer,
I'“(k, k;p,p) can be separated into spin and charge com-
ponents, and each can be further decomposed into sub-
components with different angular momenta [. Landau
parameters are properly normalized dimensionless sub-
components Ff(s), where c(s) selects charge (spin) chan-
nel, and [ = 0,1,2,... 212 Pomeranchuk argued in

his original papert% that a static susceptibility ch(s) scales

as 1/(1 + Flc(s)) and diverges when the corresponding

Flc(s) = —1. The divergence signals an instability to-
wards a ¢ = 0 density-wave order with angular momen-
tum .

The 1/(1 + Flc(s)) form of the susceptibility can be
reproduced diagrammatically by summing up particle-
hole bubbles of free fermions within RPA. The momen-
tum/frequency integration within each bubble is confined
to the FS, hence the dimensionless interaction between
the bubbles is exactly FZC(S). The RPA series are geo-
metric, hence Xig)PA = x10/(1 + Flc(s)), where x;,0 is
a free-fermion susceptibility. This agrees with the exact
forms of the susceptibilities of the [ = 0 order parame-
ters, which correspond to the total charge and the total



spin:

m*/m
6 = 00", )
+ 12
where m* = kp/vj. It is tempting to assume that RPA
works for a generic order parameter with angular mo-
mentum [. However, corrections to RPA are of order one
when FIC(S) = O(1), and it is a priori unclear whether
in the generic case the full susceptibility has the same
functional form as ¥, (};)P A
One can actually go beyond RPA and obtain the exact

expression for a static Xl( *) for a generic order parameter

=2
Z X (k

k,ap

Ck a/2,a%k+a/2,as (2)

ck q/2, a Bck+Q/2ﬁ7 (3)

with any ! and any form-factor )\C( )(k) The exact for-
mula was originally obtained by Leggett”, based on ear-
lier work by Eliashberg!® (we present the diagrammatic
derivation in Sec. . It reads

0 = (47902) 59+ 1. (4)

lyinc

Here
X = *x“ém (5)

is the RPA result with an extra factor of m*/m, often
called the quasiparticle contribution. Other terms in Eq.
describe two contributions that incorporate effects

beyond RPA. First, chy(;g gets multiplied by (AZC(S)Z)Q,

where Z is the quasiparticle residue and Alc(s) accounts
for the renormalization of the vertex containing the form-

factor. Second, there is an extra term XZC(;)C. These ad-
ditional terms come from processes in which at least one
fermion is located away from the F'S.

Although the Z-factor itself comes from fermions away
from the F'S, its presence in can be easily understood

because the fermionic propagator near the FS is

Z
w—vp(k — kp) + idsgnw’

G(w, k) = ZGyp(w, k) = (6)

hence there is a Z2 factor in each bubble (Z? also appears

in the normalization of Fc(s), see below). As long as
Z is a number 0 < Z < 1, it alone does not change

the functional form of ch(s) compared to the RPA result.

The other two terms are potentially more relevant. First,

c(s) c(s)

the vertex function A;""’ may cancel the 1 + F;"" term

and, second, either Alc( or (m)c may diverge on their

own and give rise to a Pomeranchuk-type instability not

associated with FC( V=1 (and with the fermions on
the FS).

Some of these issues were addressed by Landau and
Pitaevskii (see e.g. Refs. [0 and 2) and by Leggett
(Ref. [I7) in the early years of FL theory, by invoking
(i) conservation laws and the corresponding Ward iden-
tities™*# and (ii) the continuity equation and the longi-
tudinal sum rule’®™¥. For a conserved order parame-
ter, conservation laws require that the full susceptibility
coincides with the coherent term, i.e., the correspond-
ing AZ =1 and X4ne = 0. The | = 0 charge and spin
Pomeranchuk order parameters p_, and p;_, with a con-
stant form-factor are conserved quantities, hence the cor-
responding Xf(so) ch(g g 3 i Eq. This is fully
consistent with RPA. For [ = 1 charge or spin-current
order parameters with )\c( )(k) =
tion imposes the relatlon

k the continuity equa-

ZNL) =

(1Y) (7)

m*

such that (ZAj] S))2 c(s)

Xiay (1+Ff:(81)> vanishes at
Flc:(si) = —1 instead of diverging. In addition, the lon-

gitudinal sum rule yields

X1 (51) = X1,0, (8)
i.e. all interaction-induced renormalizations of chisl) can-
cel out, implying,

Xi¥ e = Xi=10 (1 - (1 +F (S))) (9)

We emphasize that this holds even in the presence of
a lattice potential V(r). For a Galilean-invariant FL,
m*/m by itself is expressed via Landau parameters as
m*/m = 1+ Ff. Then, for spin-current susceptibility,
ZAN_y = (L4 F7)/(1+ FF) and Xj_y jne = xi=1,0(Ff —
F$)/(1 + FY), while for charge-current susceptibility,
ZA; ; =1 and xf_;,;,. = 0. This last result is con-
sistent with the fact that for a Galilean-invariant FL,
charge-current coincides with the momentum and is a
conserved quantity.

Eqgs. +(]§D represent a qualitative breakdown of
RPA for spin and charge-current order parameters.
Within RPA, AZ =1, and so to reproduce EqS .+@r[)
one must require m /m = (1+F)! 1+ FY)
Such behavior comes about naturally if one assumes+*
that the dressed interaction remains a function of k — p,
ie., I'“(k,k;p,p) = Uess(Jk — p|). In this situation the
charge component of T (k, k;p, p) is (U(0) — U (k — p)/2
and the spin component is —U(k — p)/2. Then Ff = F}?,
for all [ > 0, including [ = 1. However, in fact, at or-
der U? and higher, the interaction gets renormalized in
both particle-hole and particle-particle channels, and the
renormalized interaction between fermions on the F'S de-
pends on both k —p and k+ p. The terms which depend
on k —p and on k + p behave differently under antisym-
metrization, and, as the consequence, spin and charge
components of I'Y(k, k; p, p) are generally not equivalent
for any [. In this situation, Egs. and @ are obeyed



not because of some some special relation between Lan-
dau parameters, but rather because AZ is expressed via
the particular combination of Landau parameters, such
that for [ = 1 spin current, Aj_,Z cancels out 1 + F7.

This issue has been recently re-analyzed by Kiselev et
al2l. They discussed how the absence of [ = 1 Pomer-
anchuk instability for the spin-current order parameter
places additional constraints on spontaneous generation
of spin-orbit coupling?¥22 often associated with [ =
spin Pomeranchuk order. Kiselev et al also derived a
general formula for the susceptibility of a current of a
conserved order parameter.

The purpose of the current work is three-fold. First,
we provide a transparent diagrammatic derivation of Eq.
and extend it to the case when both ¢ and € are
small, but the ratio vpq/Q is arbitrary. Second, we ana-
lyze Eqgs. and (9) from a microscopic perspective, and
identify what relates the contributions to the susceptibil-
ity from fermions near the FS, which determine Landau
parameters, and fermions away from the FS, which de-
termine Z, Alc(s), and ch(lsn)c (and m™*/m in the absence of
Galilean invariance). Lastly, we investigate how generic
is the statement about the absence of Pomeranchuk in-
stabilities for [ = 1 order parameters, and what happens
for other .

To derive Egs. (4) and diagrammatically, we use
the expansion in the number of fermionic loops, and at
each loop order separate the contributions from fermions
at the FS and away from it. The contributions away from
the FS can be computed by setting ¢ to zero, while for
the contributions from the vicinity of the F'S one needs to
keep q small but finite, because each bubble contribution
to Xl( %) comes from the tiny range near the F'S where the
poles of the two Green’s function in a bubble are in dif-
ferent half-planes of frequency. We then re-arrange the
perturbation series and evaluate partial contributions to
the susceptibility with M = 0,1, 2 etc. cross-sections in
which the contribution comes from the FS. Summing up
terms with all M we reproduce Egs. and . We then
extend the analysis and consider the dynamical suscep-
tibility " (q, ) in the limit when both |q| and € are
small, but the ratio v}|q|/? is arbitrary. We show that
in an arbitrary FL, the form of the dynamical suscep-
tibility is rather complex, except for special cases when
vi|q|/€ is either small or large, or vy|q|/S? is arbitrary,
but only a few Landau parameters are not small.

In order to understand Egs. and @D for current
order parameters, we explicitly compute low-energy and
high-energy components of charge and spin susceptibili-
ties for [ = 1 for the 2D Hubbard model, to second order
in Hubbard U. At this order the dressed interaction be-
tween fermions becomes dynamical, and both low-energy
and high-energy contributions are non-zero. For simplic-
ity, in this calculation we neglect the lattice potential,
i.e., consider a Galilean-invariant system. We show that
there exists a particular identity on the sum of dynamical
polarization bubbles in particle-hole and particle-particle

channels, which relates the contribution to this sum com-
ing from fermions at the F'S and the one from fermions
away from the FS. We use this identity to prove dia-
grammatically Egs. and @D We do the same com-
putation for [ = 0 and verify that for conserved spin and

charge order parameters Xl( ) =0 and Ac(s) =1/Z, ie.,

f( ) e(s)
Xy = Xiqp-

We next consider [ = 2 and investigate an argument
by Kiselev et al 20 that for certain order parameters
with [ = 2, spin and charge susceptibilities again do
not diverge when the corresponding Flc(;) = —1 because
(1+ Flc:(;))* in X;(;qp is canceled out by ZA°(5 . We

argue that ZAl:2 cannot be expressed solely in terms
of Landau parameters. Of particular interest here is the
I = 2 charge order parameter in a Galilean-invariant case.
It is tempting to view this order parameter as a current
of conserved [ = 1 total momentum, and utilize the argu-

ments discussed above to relate ZA;~’ cls ) to Landau param-
eters via the continuity equation. However we show that
the current operator for momentum cannot be expressed
solely in terms of bilinear combination of fermions, and
contains an interaction-induced four-fermion term. As
a result, the [ = 2 charge susceptibility is only a por-
tion of the full current-current correlator, and as such is
not determined by momentum conservation in the same

manner as Z A (s) are determined by charge conservation.

To understand how generic is the statement about the
absence of Pomeranchuk instabilities for [ = 1, we notice
that there exists an infinite set of Pomeranchuk order
parameters in any channel, including [ = 0. These order

parameters contain form-factors )\c(s)(k), which are ob-
tained by multiplying the base form factor (a constant
for | = 0, k for | = 1, etc), by an arbitrary function
fi(k]). When f;(|k|) is not a constant, it changes the
contribution to susceptibility from fermions away from
the FS compared to that from fermions at the FS. We ar—
gue that the identity, which allowed us to express Z Ac *)

in terms of Landau parameters and cancel 1/(1 + Ff( ))

does not hold if f;(|k|) is not a constant. As a result,
ZAj_, no longer necessarily vanishes when F}?; = —1.
We show this non-cancellation explicitly to second order
in the Hubbard U by comparing subceptlblhtles for order
parameters with form-factors k and k:Fk where k is a
unit vector directed along k. We further argue that for a
non-constant f;(|k|), the incoherent contribution to sus-
ceptibility cannot be expressed via Landau parameters
for any [, including [ = 0, and can potentially diverge on
its own, even if the corresponding Landau parameter is
still larger than —1. This opens up a possibility for an
instability of a FL, not associated with the singularity in
the coherent part of the susceptibility. Our results in-
dicate that for both the [ = 2 case, and the [ = 1 case
with a nonconstant f;(|k|), a Pomeranchuk instability
may occur when the appropriate Landau parameter ap-
proaches —1. We note however, that our treatment can-

not exclude the possibility that AZC(S)Z = A(U)(l—i—FlC(S)),



where A(U) is some interaction-modified constant, which
would prevent the instability from occuring.

The paper is organized as follows. In the next Section
we review the diagrammatic formulation of FL theory
and present our diagrammatic derivation of Eq. for
the static susceptibility ch(s) and its extension to finite
vi|ql/Q. In Sec. we discuss the forms of [ = 1 sus-
ceptibilities for the currents of conserved fermionic charge
and spin, and also discuss the relation between the [ = 2
charge order parameter (bilinear in fermions) and the
current of a total fermionic momentum. In Sec. [Vl we
present the results of numerical and analytical calcula-
tions to second order in the Hubbard U. Our key em-
phasis here is to understand why contributions to the
I = 1 susceptibilities from fermions at the FS and away
from it are related. In Sec. [V] we discuss the implica-
tions for susceptibilities of order parameters which con-
tain an additional dependence on k£ beyond symmetry
related overall factors. We summarize our results in Sec.

VT

II. FL THEORY. DIAGRAMMATIC APPROACH

In this section we briefly review the diagrammatic ap-
proach to a FL and present the diagrammatic derivation
of Eq. (| @ We also obtain a more general expression for

C( )(q, Q) when both q and € are small, but the ratio
v Fq/ Q is arbitrary. The full formula is

W@ = (A92) D@ s o)

For arbitrary viq/Q, XlC(S)

ap(@:€2) is a complex func-
tion of all Landau parameters. For definiteness and to
make computational steps less involved, we consider two-
dimensional (2D) Galilean-invariant systems.

Our goal is to distinguish between high-energy and

low-energy contributions to the susceptibility and re-

late Xi(;;, lc(m)c, Z, and A ) to particular sets of di-
agrams. We express dlfferent contributions to the sus-
ceptibility via the vertex function I'“(k,p). Here and
below k denotes a fermionic 3-vector, k = (k,wy) and
g = (q,9) denotes a bosonic 3-vector. We show that

ch,(qs; is expressed via I'(k, p) in which both k and p are

on the FS, ch’(isn)c is expressed via I'“(k, p) in which both

k and p are away from the FS, and Alc(s) is expressed via
I'“(k,p) in which k is on the FS and p is away from it,
or vice versa. We combine our analysis with the Landau-
Pitaevskii equations™™ which relate the inverse quasipar-
ticle residue 1/Z to I'“(k, p) in which k is on the F'S and

p is away from it, similarly to A;(S). The contributions
from away from the FS are insensitive to the ratio /|q]
and can be computed at g = 0 and 2 = 0. The quasi-

particle part Xl ( ) depends on how the limit g, — 0

is taken.

N[

FIG. 1. Free fermion susceptibility, where k& = (k,wy) and
q = (q,9). The black dots on the two sides represent form
factors \;(k).

A. Perturbation theory

The free fermion Hamiltonian is

Hkmf/drzc <u> (1)
= kack’ackﬂ (11)
ko

where & = k?/(2m) — pu, and we set h = 1 through-
out this paper. The corresponding free-fermion Green’s
function is

1

Golk) = wr — &k + 10,

(12)

where J,, = dsgnw and § = 0%. The free-fermion suscep-
tibility XIC(OS)(q) is diagrammatically represented as the
bubble made out of two fermionic propagators (Fig (1))

with form-factors )\f(s) in the vertices:

3
G0 = 2 [ 55 (00) Golh+ §)Golk— 3.

(13)
where the factor 2 comes from spin summation. In 2D,

/\lC(S)(k) — cos l¢k|k|l « flC(S)(|kD (14)

where ¢ is the angle between k and . One may verify
that the frequency integral in is non-zero only if
Sk+q/2 and &y _q/2 have opposite signs, i.e., it comes from
the tiny range near the F'S of width O(q). In explicit form
we have, after integrating over frequency

9 (q) = _2/ d*k nr(§e—g) — np (S a) ()\c(s)(k))Q
1,0 (271’)29+£k_% *gk_,_% + idq !
(15)
where np(§) = O©(—¢) is a unit step function in zero

temperature limit. In the case of vanishingly small |q]
one can integrate over k and obtain,

xio (@) = =2 (Keff O hr))

/ ‘;ijf(cosw

vr|q| cos @i
Q — vr|q| cos ¢ + idq

(16)



FIG. 2. Corrections to ch(s) to first order in U.

In the static limit Q = 0,q — 0 we have

8@ =5 (2) (e Owe) [ e

2

In the static limit 2 =0, q — 0,

c(s 1 m 2 c(s 2
Xl(2b) D) (;) (lefz( )(kF)>
/ dor. A9y cos Iy cos lo,U <2kp| sin n

2 21w

2221 (22

We next include the interaction term

H;: = f/drdr Zc

T/ D U(aD g /0.0 /2,50 +a/2.00-a/2400085,
(18)

L(r)es(r')

U(r—r])e

where the summation is over all momenta and all spin
indices.

1. First order in U(|q|)

To first order in U(q), there are three interaction-
induced corrections to the bubble diagram for the sus-
ceptibility. They are shown in Fig. [2] Diagram 2h repre-
sents a self-energy correction. The self-energy is purely
static (because U(|q|) is static) and gives rise to mass
renormalization m*/m = 1 — (1/vp)d¥/d|k|. One can
easily verify that the integral for ¥ (k) for k near the FS
is determined by q connecting points on the FS. A simple
calculation yields

m* m df .0
= 1- o ZU (2kp 51n2D cos @ (19)
and
. m* (s
i = (" 1) xi@) (20)

Diagram contains two cross-sections with internal k
and p. Because the interaction U(k — p) is static, in each
cross-section the frequency integral is again non-zero only
if the dispersions have opposite signs. The result is that
the integration is again confined to a narrow region near
the FS. Evaluating frequency and momentum integrals,
we obtain

sin

cos ¢y coslp,U (2/<:F @ ) X

vr|g| cos i vp|g| cos ¢,
Q — vp|q|cos ¢ + i0q Q© — vr|q| cos ¢, +

(

Finally, diagram 2c¢ contains U(0) and is non-zero only
for charge susceptibility at [ = 0. It gives

U(0) (Xi=0.0(a))” (fizo(kr))

The sum of the three diagrams can be cast into a known
FL form by re-expressing the results in terms of the Lan-
dau function Fug.s(k,p) = (Z°m*/m)T4s _5(k, k;p, p),
where I'y; _ s(k, k; p, p) is the fully renormalized antisym-

X?:o,zc(Q) = (23)



FIG. 3. The vertex I' 5 ,s(k, k; p, p) to first order in U.

metrized static interaction between fermions on the FS,
taken in the limit of zero momentum transfer. The an-
tisymmetrized interaction to first order in U is shown
graphically in Fig. To this order, Z?m* /7t = m/r.
Combining the diagrams from this figure, we obtain

m
Faﬁ,’y5(k7 p) = ; [U(O)(SaV655 - U(k - p)éoﬂs(sﬁ’)’]

-m [(U(O) - %U(k - p)) Sar0p5 — %U(k — P)0ay08s

(24)

™

The two terms in the last line in are charge and
spin components of the Landau function Fyug s(k,p) =
Fe(k,p)da~y0ps + F*(k,p)oay0oss. Each component can
be further expanded in partial harmonics with different
l as

FO(k,p) = Fg® +2Y Fcosly,  (25)
>0

where ¢ = ¢, — ¢, is the angle between k and p (k| =
|[p| = kr). Using this expansion, one may easily check
that the sum of zero-order and first-order contributions
to the static susceptibility can be cast into

X7 = i (1 +F2, - Ff(s))

~xo L+ FL) (1-FY) (26)
This formula is valid for all [/, including [ = 0. Eq.
trivially fulfils the constraints of Eqgs and @D for the
simple reason that to this order, F}° = F}’ for all [ > 0.

2. Higher orders in U(q), static limit

We now move to higher orders in U, still considering
the static limit Q@ = 0,q — 0. Within RPA, higher-
order diagrams are treated as series of ladder graphs (I >
0) or ladder and bubble graphs (I = 0), Each element
of the ladder/bubble series contains the product of two
fermionic Green’s functions, dressed by static self-energy.
The two Green’s functions have the same frequency and
their momenta differ by q. Within this approximation,
a non-zero contribution to susceptibility from each cross-
section comes from the states very near the F'S, where the
poles in the two fermionic Green’s functions, viewed as
functions of frequency, are shifted in different directions

FIG. 4. Example of a higher order contribution to ch(s>. At
this order, the static interaction acquires dynamics due to
particle-hole screening. The diagram’s computation is split
into three (see Sec. . It belongs to the M = 0 sector
when both bubbles are evaluated away from the FS, to M =1
when one is evaluated on the F'S and one away from it, and
to M = 2 when both are evaluated at the FS.

from the real frequency axis. A simple analysis shows
that the series is geometric and its sum yields

o(s) L+ F,

X = X0y (27)
I,LRPA 1+ cm(‘ )

The RPA susceptibility obviously diverges when F, lc(s) =

—1, except for the special case of Flc(s) = FY, as occurs
e.g. for | =1 if we require that the interaction is purely
static, see the previous section and our comments in the
Introduction.

We next go beyond RPA. A diagram for ch(s) at any
loop order is represented by a series of ladder segments
separated by interactions. In each of these ladders there
is an integration over both high-energy and low-energy
To obtain ch(s), we follow
18123241 and and re-arrange
perturbation series by assembling contributions to ch(s)
from diagrams with a given number M of ladder segments
with poles shifted into different directions from the real
frequency axis, and then sum up contributions from the
sub-sets with different M = 0,1, 2, etc.

We start with M = 0. The corresponding contribu-
tions to the susceptibility contain products of G2(k, wy,).
Taken alone, each such term will vanish after integra-
tion over frequency. The total M = 0 contribution then
vanishes to first order in U(q) because the static inter-
action does not affect the frequency integration. How-
ever, at second and higher orders in U(q), the interac-
tion gets screened by particle-hole bubbles and becomes
a dynamical one. An example of second-order suscep-
tibility diagram with screened interaction inserted into
the bubble is shown in Fig. [ This screened dynami-
cal interaction contains a Landau damping term, which
is non-analytic in both half-planes of complex frequency.
As a result, the product of G?(k,wy) and the dressed
interaction at order U? and higher has both a double
pole and a branch cut. A pole can be avoided by closing
the integration contour in the appropriate frequency half-
plane, but the branch cut is unavoidable, and its presence
renders the frequency integral finite. Since there is no
splitting, relevant fermionic wy and k are not confined
to the FS and are generally of order Er (or bandwidth).

frequencies and momenta.
earlier diagrammatic studies



M=1 M =2

FIG. 5. The ladder series of diagrams for the static sus-
ceptibility ch(s). The exact x; is represented as a series
M =0,1,2,...of bubbles comprised of Green’s functions with
poles on opposite halves of the complex frequency plane, i.e.
whose contributions are computed close to the FS.

Fermions at such high energies have a finite damping, i.e.,
are not fully coherent quasiparticles. By this reason, the

(s)

M = 0 contribution to x; " is labeled as an incoherent

one, ch’(i/[):o = ch,(;zc (although at small U fermions with
energies of order Er are still mostly coherent).

We next move to the M = 1 sector. Here we select
the subset of diagrams with one cross-section, in which
we pick up the contribution from G(k,wy)G(k + q,wy)
from the range where the poles in the two Green’s
functions are in different half-planes of complex fre-
quency. The sum of such diagrams can be graphi-
cally represented by the skeleton diagram in Fig. [5| la-
beled M = 1. The internal part of this diagram gives
Z%(m*/m)xi.0(q), where x;0(q) is given by . The
side vertices contain Af(s))\lc(s) (kp), ie. the product
of the bare form-factor (which we already incorporated
into x;.0(¢q)), and the contributions from all other cross-
sections, in which G(k,wy)G(k + q, wy) is approximated
by G?(k,wy). These contributions would vanish if we
used a static U(|q|) for the interaction, but again be-
come non-zero once we include dynamical screening at
order U? and higher. Similarly to the M = 0 sector, the
difference Alc(s) — 1 is determined by fermions with en-
ergies of order Er. Note, however, that in the M = 0
sector, all internal energies are of order Ep. Inthe M =1
sector, internal energies for the vertices Alc(s) are of order
Er, but external wy are infinitesimally small, and ex-
ternal k are on the FS. Overall, the contribution to the
static susceptibility from the M = 1 sector is

c(s c(s 2 m* c(s
Xz,(M):1 = (ZAz( )) HXI,(O) (28)

Sectors with M = 2, M = 3 are the subsets of diagrams
with 2,3,... cross-sections in which we split the poles
of the Green’s functions with equal frequencies and mo-
menta separated by q. In the cross-sections in between
the selected ones G(k,wy)G(k + q,wy) is again approxi-
mated by G?(k,w). The contribution from the M = 2
sector is represented by the skeleton diagram in Fig. []1a-
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beled M = 2. It contains fully dressed side vertices Af(s)
and a fully dressed anti-symmetrized static interaction
between fermions on the F'S. One can easily verify that
this interaction appears with the prefactor Z2(m*/m),
i.e., the extra factor in the M = 2 sector compared to
M =1 is the product of x;,0 and the corresponding com-
ponent of the Landau function. Using (25) we then ob-
tain

Cl S c(s Ccl s 2 m* c(s Cc(S
Xl,(J\/[):1+Xl,(IVI):2 = (ZAI( )) Exz,(o) (1 - Fz( )) (29)

(the minus sign comes from the number of fermion bub-
bles.) A simple bookkeeping analysis shows that con-
tributions from sectors with larger M form a geometric
series, which transform 1— F°*) into 1/(1 4+ F)). Col-
lecting all contributions, we reproduce Eq. .

3. The susceptibility xlc(s)(q, Q) at finite Q/vi|q|.

We now extend the analysis to the case when both
transferred momentum q and transferred frequency (2 are
vanishingly small, but the ratio Q/vy|q| is finite. The
computational steps are the same as for static suscep-
tibility. The contribution to ch(s)(q) from the M = 0

sector and the vertex function Af(s) do not depend on
the ratio of ©/(vy|q|) and remain the same as in the
static case. However, the integrand in the expression for
x1,0(q), Eq. , now contains a non-trivial angular de-
pendence via vp|q| cos ¢/ (2 — vr|q| cos ¢ + idg). This
makes the computation of series with M = 1,2,... more
involved.

Consider first the limit Q@ < vp|q|. For even I, the
free-fermion susceptibility is

, 2 iQ
ch,(d())(‘I) = % (k%flC(S)(kF» (1 + OélvF|q|)
c(s i§)
= x5 (1 + ay UF|q> (30)

where oy = 1ifl = 0 and oy = 2 if [ = 2m, m > 0.
For odd [, the expansion in  starts with Q2. The total
contribution from the M = 1 sector still is proportional

to X1,0+
c(s m* c(s 2 c(s 2
Xt = 2 (Z8) (ke 7 (k)

o

( m* iQ )
1+ —ao
m  vr|q]

H\2m* s m* i
= (ZA;:(‘)> HXZ’(O) (1 + al) (31)

m vplq|

In the contribution from the M = 2 sector, the i€2/v}|q]
term can be taken from the cross-section on the right or
on the left. This gives a combinatoric factor of 2. Then

X (@) + x5 o(a) ~ (ZA?(S))

1- F) 41— oy, > 32
(1-m9ra-m e ) e

2m* NG
m 1,0




For the contribution from the M = 3 sector the same
reasoning yields the combinatoric factor of 3 and so on.
Using

_ o gels) c(s) _ 1
1= 2R 43 () 4 = TRy (33)

we obtain
W) = (289) D@ s 6
where to order €2/|q|, for even [,

2
(s) (s) m*/m i) m*/m
Xi.qp (@) =X - Qg s
bap ) X0 | T FE®)  opldl (1 +

(35)
For | = 0 this result has been obtained before®
In the opposite limit Q > vi|q| we have

xeola) ~ - (”Fg'{") (kb fr)”

™

/ (cosloy)

i () () (e

Substituting F°*) from Eq. , we obtain

%(cos ¢ )? (36)

J

- (ke f )
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The presence of |q|?/9? in the susceptibility for [ = 0 is
a natural consequence of the fact that the total fermionic
charge and spin are conserved quantities, i.e., they don’t
change when we probe the system at different times.
For free fermions, this holds for all [ because all partial
fermionic densities at a given direction of k are separately
conserved, hence x;0(q = 0,9) must vanish for an any
angle-dependent form-factor. The contribution from the
M =1 sector is,

2 2
) = = (28)" 2 () (i)’

[ coston)?cos in® (37)

The overall m/m* factor is due to one m*/m factor from
the integration over momentum and an (m/m*)? from
the expansion to second order in v5|q|/€Q2. From the M =
2 sector we have, at order |q|?/?

) [ [ G tcostoneosto,)cos ) cos 6,) P (6-,)

(38)

N _ 1 (UFCI|>2 (@) (ZAC(S))‘Z( <o) ))221?6(5)
1=0,M=2 2 Q T l F mr 1

XSz = 3 (“Fﬂq')2 () (289)" (ke S (k)

o(s) _ 1 (vrlq| ’ m c()\? (10 pe(s) ?
Xi>1,M=2 8( Q ) (W)(ZAI ) <kal (kF))

m c(s) c(s))
m* ( ot

™ (5 + £)
m

(39)

The contribution from the sectors with M > 2 contains higher power of |q|/Q. Hence, to order |q|?/Q?2, the full result

for the dynamical susceptibility is

2
c(s) 1 UF|(1\ c(s) c(s)
1=0(2) = 5 (Q) X1=0.0 (ZA )
2
XC(S) (C]) — _§ UF|q‘ Xc(s) (ZAC(S))
=1 1 Q 1=1,0 1
Xc(s)(q) o 7} 'UF|q‘ : Xc(s') (Q) (ZAc(s)
>1 2 Q 1,0

For | = 0 this result has been obtained in Ref. [I7.

For a generic Q/vr|q|, the full expression for XC(S) (q)

2 2 c(s 1 C( S c(s
- <1+F0()+F2”>+xi)

(14 PP 468 e

l=1,inc

3 3

2 1
(1 (e )

(40)

is rather involved for all [, including | = 0. As an il-
lustration, consider the seemingly simplest case [ = 0



and set fy(]k|) =1 (i.e., consider susceptibilities for spin

and charge order parameters). Due to spin/charge con-
c(s c(s)

servation ZAJ" =0.ine = 0, s0 (g =

XiU o (@)-

= 1 and x

The full dynamical y;_" els g 4p(@) 1s given by series of bub-

bles, each is determined by fermions in the vicinity of the
FS. The integration over frequency and over fermionic
dispersion can be performed independently in each bub-
ble, but angular integration is, in general, rather in-

J

X@)=Ko—-2 Y FYK K, x

n,m>0

Z Qn mlFC $) ml7

m1>0
where 0y, ., is Kroneker symbol and
Qn,m = Bn4m + anm- (433‘)
Here
de vi|q| cosd
Knlq)=— | — 0 £
(a) /27r cos Q —vilq| cosf + idq
= no — S (a—Vaz—1)", (43b)

vaz —1+146

and o = Q/v¥|q|. In explicit form

Q
Ko(g) = 1—
(@) V2 — (vild])?2 + @0
Kig) = - [1- L
M=l T e e

Q 2 \?
+¢Q”—@Hqﬁ%46<1_2(ﬁ#ﬂ)> ()

Eq. can be equivalently re-expressed as

X@)=Ko—-2 Y FOKK,S) (45)

n,m>0
where S)" is the solution of the matrix equation
Sl Y Quan B SI = 6nm (46)
m1>0

In the static limit Ky = 1, K50 = 0. Then ¥(q) = 1,
and Eq. reduces to Eq. for the static suscepti-
bility. For a generic 2/v}|q| a closed-form expression for

volved, because the interaction between the bubbles with
internal momenta k and p is expressed via the Landau
function F¢*)(k, p), Eq. , and the latter depends on
¢ = ¢, —¢p. It is sufficient to analyze the first few orders
in the expansion in powers of F°(*)(k, p) to understand
that the full result is

*

c(s) m

VO ) = x(q)

™1+ FLN)

(41)

where ¥(q) is given by series of terms

Z Qm1,7n2F1%; ( ma,m )]] (42)

meo>0

(

ch(so) qp(q) can be obtained if only a few Landau param-

eters are sizable, e.g., if we assume that |F}| < |Fp|, | Fi]
for all I > 1. In this situation, only one term in each
sum in and survives, and these two equations
simplify to

X(a) = Ko — 27 K75} (47)
and

st(1+@Qur®) =1 (48)

Using Q1. = Ko + K» we find 8} = 1/(1 + (Ko +
K5)FE™)). Substituting this into and then substi-

tuting into , we obtain

Y AR <
C(S) m 14+ F°° (K0+K2)
Xi=0,4p(0) = — L (49)
T L O 2RO
0 0T I P (Kot Ka)
The same result has been obtained previously?® using a

Boltzmann equation approach. At Q / v F|q| > 1, we have

Ko(q) = —(1/2)(vrlal/Q)?, K7(q) = (1/4) UF\
Ks(q) =~ —(3/8)(vr|q|/Q)% Substltutlng into We
obtain ) () = —(1/2)(vr|al/Q)2(1 + FF), as in Eq
(40).

III. SUSCEPTIBILITIES OF THE CURRENTS
OF CONSERVED ORDER PARAMETERS

In this section we discuss the relationship between or-
der parameters associated with conserved “charges” (to
be distinguished from the specific electric charge) and
their currents. We review the derivation of the conti-
nuity equation for susceptibilities of these order param-
eters (Refs. [I7 and 20 and show that this equation ex-
plicitly connects high energy properties of a FL, namely



XlC('jz)c’ AC(S) Z, with low-energy properties, namely X 4p-

We dlscuss the implications for the [ = 0,1 channels and
obtain Egs. —@. Finally we discuss the implications
of the continuity equation for the [ > 1,2 channels. Our
focus here is to identify the constraints placed by the
conservation law on high- and low- energy FL properties.
We will then analyze these constraints microscopically in

Sec. V1

A. The continuity equation for charge and current
susceptibilities

A conserved “charge” is an operator p(q,t) that com-
mutes with the Hamiltonian at q = 0, so that it does not
evolve in the Heisenberg picture,

ap 1
— ==[p,H|] =0. 50
5 = ;0 (50)

Examples of such charges are the number (or electric
charge) and spin dens1ty in the model of Sec. l Pi_o
and p;_, from Eq. with constant form-factors. The
continuity equation for a conserved charge p can be de-
rived in the Heisenberg picture:
dp(q,t 1 .o
E?t ) ;[ pla,t), H = Hyin + Hint] = —iq - J. (51)
The continuity equation relates the susceptibilities of or-
der parameters associated with p and J,

X = ([p(a, 1), p(—q,t)]) (52)
xs = (@) (a.t), T (—aq,t')]) (53)

Taking the derivative 9,0y, and transforming to the
frequency domain we obtain

D= amX7
m,n

7(@,0)]gn. (54)

Here, the sum is over spatial indices m,n = {z,y}.
Equivalently we may write,
(/)X (@) = x}5(a) = Xy (@, 0). (55)

Here we have defined the longitudinal component of the
susceptibility ¢ - xs - §. Note, that the RHS of Egs.
—|— includes only the time dependent part of x ;.
This is an automatic consequence of taking the time
derivative of x, and going to the Fourier domain.

Let’s assume that both p and J are expressed via bi-
linear combinations of fermions with some given [. We
then can use Eq. and write

X,O(Q7 Q) = (APZ)QXP’QP((L Q) + Xp,incu (56)
X714, = (A1 2)*X00p(6 ) + Xines  (57)
Combining these expressions and Eq. we express the

current susceptibility via the susceptibility of a conserved
charge.
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FIG. 6. Relation between a 3-leg vertex A and a 4-leg vertex
T", for a conserved charge density.

B. Implication of conservation laws for the
susceptibilities

For a conserved charge yields
Xp(a=0,0) =0. (58)

We also recall that the coherent part of x,, which corre-
sponds to the M = 1,2, ... diagrams of Fig. [5] vanishes

q = 0. Thus, Eq. also implies
Xp,inc = 0. (59)

Finally, the relation A,Z = 1 follows from the fact that
A, and 1/Z are identically expressed via the vertex I',

d3k Atk
Z/ 27‘( 3 ozﬁ aﬁ(kpp7 )(G%)w p(g{;)
(60a)
3
5 hreimir
(60D)
where (G2)* = limo 0G(q, w)G(a,w + Q) = G*(q,w) is

the regular part of the product of two Green’s functions,
For the vertex, Eq. follows from Fig. |§| (and is
valid for a conserved ”charge” in both charge and spin
channels, while for 1/Z the relation is the Ward
identity for a conserved charge with form-factor A,(k).
We recall that A, is defined without the factor A\,(kr).
We plug these results into Eq. , take the limit Q >
vpq — 0, and obtain,
02 q

(AJZ)2XJ7qp(q —0,0) = _?Xp,qp(ﬁ — 0). (61)

We showed in Sec. that for any I, Xfﬁ;g(% — 0)
scales as ¢?/9?, and the prefactor is expressed in terms
of Landau parameters and is not singular. Assuming
that this holds for the conserved charge, we find that
(AsZ)?*X14p(q — 0,0) remains finite when Landau pa-
rameters change and pass through —1. Eq. then
implies that there is no Pomeranchuk instability in the J
channel. It also explicitly connects A,, Az, Z,m*/m and
Xp.ap> XJ,qp via Egs. (56)+(57). This is the essence of
our argument that the continuity equation implies con-
straints that connect low- and high- energy properties of
the FL.



For the specific case of spin and charge density order
parameters, one can easily verify that p¢(q) and p°(q)
commute with Hj;,; so the current density is bilinear in
the creation and annihilation operators:

J (q7 Z ka q/2, ack+q/2 s (62)
J (CL = Z 0' ka a/2, oCk+q/2,6- (63)
k ,af

In this case, the susceptibilities of ﬁc(s),j <(5) correspond
precisely to x;—o and x;=1:

X =% G =t (64)
Eq. then implies
Cc(S 1 A C Ccl s A
(Q/9)*x 5 (q) = —3d [xl(f(q) xl(f(qﬁ)} ~q. (65)

Taking the € > v},q limit, we obtain

. 2
c(s Ur (Vp|4q c(s
% = 00 (E) (14 )+ Oalt /2

Q
(66)
Plugging the result into Eq. yields,

Vp 1 v
1Z)27 s = £

AC,S _F
(A vE 1+ FY° g

1+ F©),  (67)
ie.,

A 7 = ( + P, (68)

vp
which is Eq. .
For the currents of conserved charge and spin there ex-

ists another constraint imposed by the longitudinal sum
rule 9k

X(a,0) = n/m (69)

where n is the number density. The longitudinal sum rule
is analogous to the longitudinal f-sum rule for the imag-
inary part of the inverse dielectric function®” and can be
derived from the gauge-invariance of the electromagnetic
field1?, Tt is exact for a system where the electric current
is proportional to the momentum density (with or with-
out Galilean invariance), which is the case for any model
of the form of Egs. , with or without external
potential V(7). In effective low energy models (e.g. on
a lattice), it is only approximately correct?’. In either
case, its implication is that the total x s is also finite.

C. Conservation of momentum and [ = 2
susceptibility

Finally, we address the issue of the implication of the
continuity equation for momentum in a Galilean invari-
ant system. In this section we will refer to the momentum
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density by the symbol p = p;, and to the energy tensor
by J = J;; where i, j denote spatial indices.

In Sec. [[ITA] we did not specify the nature of charge
density and current. Thus, eq. is equally valid for
the momentum densities and currents, the only change
being that x, = x7(q, Q) is a rank-2 symmetric tensor,
and so is (X!l,)ij = (G- xs(q,9) - §)¥. In the same man-
ner, all arguments relating high frequency behavior of x,
with the static behavior of x; go through, leading to Eq.
(61). Thus (AsZ)2xJep is fully determined by x, and
furthermore is always finite.

However, we now demonstrate that J;; cannot, in gen-
eral, be expressed as a bilinear operator in cf,c. As a
result, X” does not have a simple relationship with g,
e.g. Wlth Xi=2. To see this, it is enough to examine the
Hubbard model, i.e. take U(|q|) = U in Eq. (18). The
current operator Eq. . has the following equation of
motion,

dp(q,t)

o~ J (70)
where
J= jkm + jmt, (71)
with
q- jkzn = [07 Hfree} 5 q- jint = [p7 H’L’I’Lt] (72)
which gives,
i 1
kazn = W Z kikjcifq/26k+Q/27 (73)

Ji, =5, 2§j[|m o] o
n(q/2 +k)n(q/2 — k),

where n(k) = b cL_k/Qcerk/Q, and we expanded jmt to

leading order in small q. If we had had jmt =0, then in-
deed Eq. could be used to constrain the [ = 0,1 = 2
channels, both of which appear in Jhin. However, as it
is, while Eq. does constraint x; to be finite, by
itself it does not constrain any specific [ channels. Inter-
estingly, for the specific case of the Hubbard interaction
U(q) = U the appearance of J;,; does not prevent an
association of a conserved current with Xf=228. However,
we note that for the Hubbard interaction the kinetic en-
ergy (and by association x7_,) diverges logarithmically
for arbitrary U already at order U2, so a regularization
at large momentum is always necessary.

IV. PERTURBATIVE CALCULATIONS FOR
THE HUBBARD MODEL: CHARGE-CURRENT
AND SPIN-CURRENT ORDER PARAMETERS.

In this section we perform perturbative analysis of Eq.
for [ = 1 and Eq. . We have three goals in



our calculation: the first is to show how one can derive
the continuity equation diagrammatically, the second is

to verify the relations between Alc(zsl) Z, ch(;l)m . and Flcz(‘i),
Egs. (7) and @D, in direct expansion in the interaction,
and the third goal is to clarify the origin of the relation
between high- and low- energy contributions to Egs. (|7
and @

We proceed in three steps. First, we derive Eq.
diagrammatically to first-order in U(q). We will see that
although there are no dynamical corrections to this order

(ie. Z, Af(s) = 1), nevertheless self-energy corrections
are crucial, indicating one should go beyond RPA. Then,
we perform a combined analytical and numerical analysis
of X;:Sl) at order U? for the Hubbard model, and explic-
itly verify Eqs. (7), (9). Going to to second order in U
is essential, because only at this order do contributions
away from the FS begin to accumulate, see Sec.
Finally, we demonstrate that the high-energy contribu-
tions to ch(:sl) can be re-expressed as low-energy ones,
due to a special property of the sum of particle-hole and
particle-particle bubbles.

A. Diagrammatic derivation of the continuity
equation

In this subsection we show how Eq. can be re-
produced in a diagrammatic calculation. Already at this
order we will see that one needs to treat self-energy and
vertex corrections on equal footings because the conti-
nuity equation emerges due to a particular cancellations
between these two types of corrections.

To begin with, we re-write Eq. for free-
fermion susceptibility for a current order parameter with
A (k) =k - G as

c(s ko f 4 — f Y
q2Xz(:1),o(Q) =—2/ oy an()k a) —np(&kya) N

Here and later on we omit the || symbol for clarity. We

J
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then rewrite the form factor as:
(k-q)?=(k-q+mQ)(k-q—mQ)+m?Q*  (76)
and obtain

e(s d’k
X ole) = 2 [ Gl (6g) —nr(6irg)

Q2

1
x |—-2——k-q+
{ m 4 Q- Lk -q+idg

(77)

The Q term vanishes after integration over k. The
other two terms are easily identified as ¢> chisl)’o(q, 0) and

szlciao (¢), so that:

2
% (xfff,o(Q) —xi¥ o, 0)) = 0% (). (78)
We now use the same tactics for first order corrections
to X;:Sl) . The corresponding diagrams are given in Fig.
Diagram [2k, the RPA correction, gives

2

e ) = {2/ (d2k ”F(’fk*%i) —nr(Gerg)

X
m2 Ni=1 212 Q— Llk.q+idg
U(q)
(79)
By making use of
k-q msd
- 80
O— Ik q+idg Q- Llk-q+isg (80)
we find
@ cs) 2, e(s)
WX[:])QC((]) =0 Xl:o,gc(Q) (81)

Note that there is no need to subtract the static part
because XICSB,QC((L 0) vanishes.

For the remaining two diagrams in Fig. [2[ we obtain

4 Xi=1,2a

2 c(s) o Pk &Pp [nF(&p—g) — nr(prg)llnr(G-g) — nr(Gerg)]
(@) / (Q— Lk-q+idg)?
Pk dp [nrp-g) —nr(pya)llnr(G-g) —nr(éeg)]

(2m)? (27)?

2. c(s)

U(lp — k|)(k - q)® (82)

q Xz:1,2b(Q) = 2/ (27)2 (27)2

Applying again we find,

2
q (s S c(S S
e O] 50 (@) x5 0y (@) = Q2 (GE 0 (@) + X80 20 (0))
(84)

Q- Lp.-q+ide)(Q—

“q+ %) Ulp—k)(k-a)(p-q) (83)

1
m

(

The static part of the sum of the two contributions cancel

out. Egs. and verify Eq. to order U.

We emphasize that X?Sf 9q(q) and chisl) 95(q), when

taken separately, do not satisfy the continuity equation



, and only the sum of the two terms obeys . This
is an indication that, within diagrammatics, the conti-
nuity equation emerges due to fine cancellations between
self-energy and vertex corrections, and one should go be-
yond RPA at each order in U to reproduce it.

B. Evaluation of x{) to order U?

We now present the results of explicit calculations of
the static susceptibilities to order U2. We identify contri-

+( @ ) 2 )
butions to ch(:él),mc and (A;(:él) Z) , and XZ(;; from each
diagram, and compute them by a combination of ana-

lytical and numerical methods. We also independently
compute the vertex renormalization Afisl) to order U?.

There are nine different diagrams for the current sus-
ceptibility to second order in U(q), see Fig. {7} To simplify
the numerics, we approximate U(q) by a constant U i.e.,
consider U? renormalizations in the Hubbard model. For
a constant U, Landau parameters Flc(s) also only emerge
at order U2, i.e., the incoherent part of the susceptibility,
vertex renormalizion, renormalization of the quasiparti-
cle Z, and Landau parameters are all of order U2. We
make use of previously known results<?

m2 U2 2U2

(6] S — m

J

d3kd3K' dp
— 8U?
Xta =8 / (2m)? (p

Brd3k 3 R
X6e :4U2/7p(p'qu/'

(27)°

BEdPE dPp
=4p? | — ==
Xé6d U / (271_)9 (p

We set 2 = 0 and take q to be small but finite. After
integration over frequency, we split each diagram into
three parts: “high”, “middle”, and “low” (which we label
“H”, “M”, and “L”), depending on whether zero, one, or
two internal fermionic momenta are confined to the FS,

J
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and

m* m2U?
=1+F=1
m T + 82

(86)

which holds for a Galilean-invariant system™*2. The order
U? is the first one in perturbative expansion at which dif-
ferences between the charge and spin channels emerge, in
the form of the Aslamazov-Larkin (AL) diagrams, Figs.
[7c,d. The AL diagrams contribute in the charge channel
and vanish in the spin channel, as can be seen from direct
spin summation.

Consider the charge channel first. It is straightforward
to identify the diagrams in Figs. [7] which give equal
contributions, up to overall factor. One can easily verify
that Xea = —2X6g, X6d = —2Xeb, and Xee = —X6s- In
addition, using the relation

1
/dwp(GO_%)3Gg+% - —§/dwp(Gg_%Gg+%)2, (87)

we find xgrn, = —xsi- In Eq. and throughout this sec-
tion we denote Go(k) = GY for compactness. Summing
up the contributions to the charge-current susceptibility,
we obtain at order U2,

.1 1
OXj=1 = 5 X6a + Xec + 5 Xed (88)

A similar consideration for the spin susceptibility yields

1
OXj—1 = B (X6a — X6d) (89)

In explicit form

-0 (GY_3)’GY Gy GG,

DGy 3G 1G4 GGy Gy, (90)

p p

0 0 0 0 0 0
)GO_ 4G g Gh oG g GO Gy

p

(

e.2. Xe6a = Xeh+x +xk,. In this computational scheme,
AL diagrams contain “H”, “M” and “L” parts, while the
diagram with self-energy renormalization contains “H”
and “M” parts. In explicit form we have
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FIG. 7. Diagrams in second order of U. For constant interaction, (e) and (f), (h) and (i) cancels out. (g) half cancels (a) and
(b) half cancels (d). What remains are half of (a), (c), and half of (d).

i = —8U2/ d*kd*k'd*p . §)? [nr (&) = nr (e —1)][ne (Ep) = nr(€p1d)llnB (€ — & —1) = nB(€p — Epi)]

(2m)0 (6w — &k — &p + Epk)? 910
Xe. = +8U° / d2ké:f)/6d2p p- QK -4 [nr(§x) — nF(ﬁk'k)][nF((gz)—gj_(Eplg [izif_klf()g §iw—x) =15 (€p — Ep—x)]
1b

N / d2k1(c2ljrk);’6d2p LK - gy e = nF(ﬁk%k)HnF(fgk)l__ rg:(fzrgn_g é;g:/);r §iw+i) —n(6p — (éi—k))]

91

XoF = —4U? / dzk(‘;jrk);d% .4)? <1 n |1;’ Zzz zi) () [np (&) — nF(flg{;k—)]g[:,Bfk—/ fpf:g)k);m(fp - €p<—k)?
91d
W = 1802 / W(p DK - () [nF (&) — nF(flgkk—)]g[Z]ifk— f—pii/f:jk—)zma(ﬁp —&p-x)] ((9163

Pkd*K dPp [nr (k) — nr ()] [ (—8 + k) — ne(p — Ep—x)] (91f)

(p- @)X - ) (&p)

Xty = +8U* /

(2m)° (b — i +p — Ep—k)?
d2kd?k d?p [k'| cos ¢ np (e — &—x) —nB(€p — &p-k)
L 2 ~\2 / / P P
= +4U /7p-q —n n / 91g
XG (27{.)6 ( ) ‘p‘ cos ¢p F(SP) F(gk ) gk’ _ gklfk _ gp + gpik ( )
d*kd*K' d*p np(§x — &w-x) —nB(€p — &p-x)
L,:—4U2/7 2§ (K - §)n n / P P 91h
X6c (270 (P )k - @np(&p)nF (&) Ew — &k — &+ Ep—k (91h)
d*kd’k'd’p np(—&k + &w+k) —n(€p — $p-k)
L:74U2/7 - §) (K - @)l (Ep) e (Exr s P__°P 91i
X2d (276 (P )k - @np(&p)nF (&) o — Erik+ Ep — Epik (911)
[
Here np(§) = —O©(=¢) at T = 0. The sum of “H” parts is then the incoherent part of the
The “H” contributions can be evaluated by just setting ~ susceptibility
Q=0and q=0in Eq., e.g.
d3kd3K'd®p
Y2 = U2 / WpQ(Gg)3Gg_kGO,_kG2, (92) A (93)



FIG. 8. The two AL vertex correction diagrams for three-leg
vertex.

The “M” and “L” parts determine

c(s )M c(s m* c(s) 2
OX1— —Xz(1)0<m (Az;Z) _1)

X = =X o B (94)
The “L” part can be computed analytically and yields
Xba = X6e = 0, (95)
and
2772
I m-U
= ———XI= 96
X6d 12 Xi=10 (96)

where x; 0 is a free-fermion susceptibility, given by (17| .
Using (88). (89) and (85), we find 6x;1)" = —; ) ,F(Y
as in (94). The “M” and “H” terms in Eq. (| . are high
dimensional principal value integrals, which we evaluate
numerically. Details of our numerics can be found in the
Appendix.

According to Egs. and @7 the total “H” contri-
butions to charge-current susceptibility, dx;_; 5 should

vanish, while other contributions should obey, to order
U2,

m
OXi=1,M = (%(1 + Ff)? — 1) Xi=1,0 = F{X1=1,0

m
Ozt = (e (L F)? = 1) ximio = (2FF = Fximio

m*

5XZS=1,H = ( m

Using Eq. for Fl( and x=1,0 = mk%/(2m) (re-

call that for spin and charge currents flzl)(kp) =1), we
obtain

1 ﬂ) Yicto ~ (Ff — F)xie10 (97)

(lec:l,H =0,
5X?:1 JH = 2%7

5ch:1,M =X,

. _ (98)
OXj=1,m = —3X,

where ¥ = m3U?k% /1673, In Table I We list 6 (SI)H,

c(s) c(s)

OXj=1 s and 5Xz:1,L in units of Y. We also computed

Alc(zsl) independently, by collecting vertex correction dia-
grams, keeping external particles at the F'S. Applying the
same tactics as before, i.e., identifying equivalent contri-
butions to reduce the number of diagrams, we find that

1
Aoy =1+ A7+ §A7b
Al =1-

1
§A7b (99)

15

a Y 9
p p P q
a9 S a4 q P
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k Yy o« k 5
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B gq+p-k & B q+p—k & B g+p—k v

FIG. 9. Diagrams for I'” to second order, for a constant U.

where A7, and A7, are two vertex corrections in Fig
In explicit form

2U2 d3kdp R
A7a = _E (27‘()6 (p q)(G2)2Ggka2Fﬁfk
(100)
22 [ PrdPp,
A7y = _ﬁ/ 2r)° (p- Q)(G2)2G27k02m+k

where 7 is a unit vector. We evaluated the integrals in the
RHS of (100) numerically and the results are presented

in Table [l From @ and we expect
F.—1=139A, Aj_, —1=-0.61A (101)

where A = mﬂ(f. We see that these relations are satis-
fied, as they should be.

C. Microscopic explanation for the absence of [ =1
Pomerachuk instabilities

We now present microscopic arguments as to why AZ
and X;=1,inc, for charge-current and spin-current suscep-
tibilities are expressed via Landau parameters. We will
analyze Eq. for the spin channel, where AZ =
1+ Ff — F¢.

The quasiparticle residue Z can be expressed via
I8 ap using a Ward identity for any conserved
” charge” 1280, For our purpose it is best to use the Ward
identity associated with conservation of total momen-
tum (recall that we consider a Galilean invariant system).
Substituting A,(k) = k into (60b|) we obtain

Z/ om)i asan(krp, a)(G9)“p-q

(102)
The renormalization of the spin-current vertex can be
written as

Aim103s = Uéﬂ—
Z/ 27‘( 3 045 Ozﬁ(kav )(Gg)wﬁ'qaza
(103)



channel dxi=1.z  Oxi=1.m OXi=1,H IXi=1

charge —1  40.99 £0.02 +0.01 £ 0.04 0.01 + 0.04
spin +1 —-2.97+£0.02 +1.98£0.02 0.01 = 0.02
TABLE 1. The contributions to susceptibilities for

charge-current and spin-current order parameters (I = 1
c

orders with form factor /\lisf (p) = p) at order U?, from
fermions at high (“H”), middle (“M”) and low (“L”) en-
ergies. The “L” contribution was obtained analytically,
and the “M” and “H” contributions were obtained numer-
ically. The numbers are in units of ¥ = m3U?k% /167
The results agree with Eq. and, hence, with Egs. (8]

and @D

where p - q is now simply the form-factor for the cur-

16

channel from Eq.(100) from dx;=1,m
charge +1.39£0.02 +1.38£0.01
spin —0.604 £+ 0.008 —0.60 & 0.01

TABLE II. Numerical results for Affl) — 1 for the case
when the form factor is )\lcfl) (p) = p. The results are in
units of A = ";ng, The first column is obtained from
a direct evaluation of Eq. and the second one is ex-
tracted from our calculation of Jxlci‘? o Via Eq. . The
results are in agreement with Eq.(101) and, hence, with

Eq..

rent. The vertex function I' to order U? is given by the
diagrams in Fig. [9] In explicit form

d®k

. 1 .
FZﬂmi(p = (ka7 0)>Q) = §6a75ﬁ5 [U + ZU2/ (2m)3 (QGquprrk + Gquﬂ)k)]

1
2

Summing up contributions from both Z and I we ob-
tain, to order U?,

=12 =1-
U? [ d*kd®q ; w
i | G (CGapin + GaGarpi) - a(G))
(105)

As written, the integral in the RHS of Eq. is not
confined to the FS. However, the sum can be re-expressed
as an integral over the FS. The reason for this is the
identity“?,

d3kd®q
/ (ZT)G (Gqu—p+k + Gqu+p—k) (Gq-&-pe - Gq) =0,
(106)

J

ke ) @ry

Substituting into ((105)), we recover Eq. (101)).

We emphasize that only the product A; ;Z is ex-
pressed via the integral over the FS. Taken separately,
Aj_, and Z are determined by integrals which are not
confined to the FS. We also note that the same Eq.
allows one to express the effective mass, computed to or-

— 50ay " 085 [U +iU? / (27r)3Gqu+pk} .

3
d’k (104)

U? dBkd® N . o . <
[ et (GuGumpis + GGy (@25 a = [ 57 (F(0) ~ F*(0)) cost = F, — Fi,

(

where p. = €(kpp,Q) and € — 0. This identity can be
proven by a simple relabeling of indices on the p-h bub-
ble. Choosing 2 = 0 and expanding to first order in e,
we obtain

d3kd? .
/ (QT)(;q (GrGg—ptk + GrGip—i) (G2)*p-q =0,
(107)
where (G2)* = lime,0G(q + k,Q)G(q, Q). This (G2)"
has a regular piece, equal to (Gg)‘*’, and an extra piece
which comes from the FS. Using the known relation?

2w Z>?
- *
F

substituting into (107), and using Eq. (104) to extract
the Landau parameters, we obtain

(GF = (G d(w)d(lal —kr),  (108)

d0 (109)
2T

(

der U? in a direct perturbation theory, as the integral
over the FS in Eq. (86) (see Ref. % for details).



V. ARBITRARY FORM-FACTOR X (k) AND
OTHER VALUES OF [

The purpose of this final section is to clarify how
generic are the constraints imposed by Egs. @, ,
which prevent a Pomeranchuk instability for charge-
current and spin-current order parameters. In this sec-
tion we first study the case of an order parameter
plcisl) with form factor \j—1(k) = kflcz(sl)(|k:|) for which
fi=1(|k|) # 1. We argue that in this case there is no re-
lation Alc(s)Z x (1+ F)) and therefore a Pomeranchuk
instability does occur when Ff®) = —1.

The argument is quite straightforward — plcfl) with
fi=1(]k|) # 1 is not a current of a conserved quantity,
hence it is not related by a continuity equation to a quan-
tity, such as a conserved charge, whose susceptibility is
expressed in terms of Landau parameters. Rather, it has
two pieces and is of the form,

N = ) + ot (110)
J

17
where )fol)
Landau parameters at Q/vr|q| — 0, but 5X;:S1) cannot.

As a result,while )2;:(51) remains finite when Flc:(‘;) = -1,

is finite and can be expressed in terms of

6)(16(:51) diverges, signaling a Pomeranchuk instabilitiy.

An indication of this appears already at first order in
U. To see this, we evaluate the diagrams of Fig. [2]in Sec.
for the more general case f;(|k|) # 1. Then we find
the contribution of diagrams [2h,b is:

202
(s) (s) ) _ M (s ~c(s) (s)
(ch=1,2a + XlC=31,2b) T (ch=0,2a + ch=0,2b) + 5sz:§17

(111)

Here, )ZICLSO) is the susceptibility of a channel with [ = 0

symmetry, but with f;—;(]k|) in the form-factor, and

Sves) — 2/ d’kd’p [nF (fpfqﬂ) —nr <§p+q/2)] [nF <§k*q/2) —nr (€k+q/2)}

Xi=t =2 | "on)2

U(p — k) [fiz1([K|) fizi () = f221 (D) (1 - Q_,ff—zlkq> ’

is an additional term which is exactly zero for f; = 1. The
results to order U are somewhat special because each of
the three terms in Eq. has an additional ¢2 factor
in the Q/¢ — 0 limit.

Nevertheless, the appearance of §x;—1 already at this
order indicates that (5chle) is not expressed via (5)(?50),
taken in the ¢/2 — 0 limit, as it was the case for a
current of a conserved order parameter.

To see explicitly that for f; # 1 Eqgs. and @D are
no longer valid we perform the same calculations as in
Sec. for f,2% (|k|) # constant. For definiteness, we
consider f%)(jk|) = kp/|K]|, i.e., AC) (k) = kpk-@. The
cancellation between different diagrams for susceptibility
still holds, and the results for dxj_; and dxj_, to order
U? are still given by Eqgs and , and the contribu-
tion from each diagram can again be split into “H”, “M”,
and “L” parts. However, now each contribution has to be
computed with different prefactors. This does not affect
the “L” contribution as, by construction, ff:(sl)(kp) =1,
but the modification of flcz(sl)(k) does affect “M” and “H”
contributions. In Table [l we present the results for “H”,
“M”, and “L” contributions to dxj_; and dx;_; in units
of ¥. We also computed Alcisl) by evaluating the renor-
malization of the three-leg vertex. We show the results
in Table again in units of A. We see that neither

(m~1q)?

(112)

(

the constraints on the components of the susceptibili-
are

ties, Eq. , nor the conditions on Alc(:sl), Eq.
obeyed. Therefore, Alciél) does not scale with (1 + F} (s))
and does not cancel 1/(1 + F*)) in the quasiparticle
part of the susceptibility. Since there is no cancellation
of the diverging part, the most natural outcome, in our
view, is that for any order parameter with flcz(sl) 1, a
Pomeranchuk instability does occur when F{®) = —1.
However, our treatment is perturbative, and we cannot
rule out a possibility that Alc(:l) = A1 + F£9) with
A some interaction-dependent factor, via an effect that
is not captured in the form of Eq. .

We also explicitly calculated “L”, “M”, and “H” con-
tributions to susceptibility in [ = 2 with flC:(SQ)(k) =1and
flog = ‘% For | = 2, F§ = —F§ = Y/2, such that the
low-energy contributions to the I = 2 charge and spin
susceptibilities are dxj_ ; = —0Xj_a 1 = —X'/2, where
X = xk% = m3U?k%/1673. For the Hubbard inter-
action that we used, we find that Xg{z 1—o and ngi =2
are logarithmically divergent when the form factor is
|k|? cos 2¢ (which means fi—, = 1). Specifically, x&L
diverges when p ~ k — oo and x{ diverges when
p~k~k — oco Ifweassume an UV cutoff s we



OXi=1,M OXi=1,H OXi=1
+0.36 & 0.04 4+0.12 4+ 0.04 —0.52 £+ 0.06
—2.86 +0.02 +1.50 £0.04 —0.36 £0.04

channel dy;=1,z
charge -1
spin +1

TABLE III. Numerical results for high- and middle- energy
contributions to charge and spin susceptibilities for | = 1
order parameters with the form factor )\lcfl) (p) = krp/|p|
(“M” and “H” terms), together with the analytical result for
the low-energy “L” contribution. The numbers are in units
of X = m*U?k% /167>, The results clearly deviate from those

in Table [I| and do not satisfy Egs. and @D
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channel from Eq.(100) from 0x;=1,m
charge +1.07+£0.01 +1.07+£0.01
spin —0.548 £+ 0.008 —0.538 £ 0.008

TABLE IV. Numerical results of Algfl) — 1 for the case when
c(s)

the form factor is A=} (p) = krp/|p|. The numbers are in
units of A = "f[f, The first column is obtained from a di-

rect evaluation 7Tusing Eq.(in which p is replaced with
krp/|p|, and the second column is extracted from our calcu-
lation of dxi=1,am via Eq.. The results show that Eq.
is not satisfied if the form-factor is different from k.

channel OXi=2,L  OXi=2,M OXi=2,H Oxi=2
charge, fi—2 =1 +1  —1.98£0.02 %logs % log s
spin, fi—o =1 —5 —1.004£0.02 +1.32£0.04 —0.18 +0.04
2
charge, fi—2 = I;—TQ +% —1.96 +£0.02 +1.18 +£0.04 —0.28 +0.04
2
spin, fi—o = ‘k% —% —1.16 £0.02 +0.70 £ 0.04 —0.96 + 0.04

TABLE V. Charge and spin susceptibilities in the quadrupolar I = 2 channel, calculated from Eqs. using two different form
factors. The numbers are in units of ¥’ = m3U%k% / 167, and s is the UV cutoff. The results show no connection between
high-energy and middle-energy contributions and the low-energy contribution. Different form factors depend on f;—2 through

our definition in Eq.(T4).

obtain

mSUzk%
BETrE log s

Then, according to and the | = 2 susceptibil-
ity with fi—o = 1 diverges in charge channel while re-
mains finite in spin channel. However, this logarithmical
divergence will be removed once we consider a generic
interaction which tends to zero at large momentum. We
show the results in Table [V] We didn’t find any relation
between “M” and “H” contributions to both spin and
charge susceptibilities and 1 4 FIC:(;). In particular, we
checked the expressions for | = 2 case presented in Ref.
20 and did not reproduce them. This can be also seen
by comparing the results in Ref. 20l with our expressions
for susceptibility to first order in momentum-dependent

Xé{z,lzz ~ Xgi,lzz ~ (113)

VI. SUMMARY

In this paper we studied the constraints placed by
conservation laws on Pomeranchuk transitions, particu-
larly the role of the continuity equation and longitudinal
sum rule. This issue has been previously considered by
Leggett!” back in 1965, and was re-analyzed recently by
Kiselev et al?l. The continuity equation and the sum
rule reveal interesting properties of susceptibilities of cur-
rents of conserved total charge and spin. Namely, high
energy features of a system, such as Alcfl) Z, and the in-
coherent piece of the susceptibility, le(;l)m > can be ex-

pressed in terms of the Landau parameters Flc(s), which
describe the interaction between fermions on the FS. In

particular, Alcfl) Z scales as (1 + Fy (S)) and vanishes at
Fy &) — —1, when the quasiparticle contribution to sus-
ceptibility diverges as 1/(1 + Fy (S)). The vanishing of
AIC(:SBZ cancels out the divergence, and, as a result, the
system does not undergo a p-wave Pomeranchuk insta-
bility. Our aim was to verify this in diagrammatic per-
turbation theory, present a microscopic explanation why
high-energy and low-energy contributions to susceptibil-
ity are related, and check how general such constraints
are.

We showed that the constraints work only for [ = 1
and for the specific [ = 1 order parameter with form-
factor )\fisl) (k) = k. Such an order parameter describes
currents of the fermionic number and spin - both of
which are conserved quantities. For any form factor
with [ = 1 symmetry, but different functional behavior,
A (k) = £ (Ik|)k with f(|k|) # 1, high-energy and
low-energy contributions to the susceptibility are not di-
rectly correlated. The same is true for other values of
l. As a result, the susceptibility for any other order pa-
rameter with either | = 1 or other [ may diverge when
Flc(s) = —1 signaling the onset of a Pomeranchuk insta-
bility.
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APPENDIX: DETAILS OF THE NUMERICAL
EVALUATION

For our numerical evaluation of the high energy and
middle energy contributions to the second order dia-
grams, Egs. and we used Mathematica 11.1.1
with the built-in algorithm NIntegrate, using the Monte
Carlo integration strategy. In our evaluation of diagrams
we used polar coordinates and cut off the momentum at
15kp, e.g. {|p|,0,15kr}. The UV divergence in Egs.
is avoided by the symmetry factor cosl¢ and this
15kE truncation is large enough to obtain our results ac-
curately. Since only the angle differences of three the
momenta(p, k and k') enter our integrals, one can inte-
grate out one of these three angles by hand to achieve
higher accuracy.

In evaluations of the high energy Contributions(xﬁﬁa,
Xi%e and x[%,), the integral region {|p|,0,15kp} x
{|k|,0,15kp} x {|k'|,0,15kp} is divided into 8 parts:
every dimension of momentum is divided into (0,3kr)
and (3kp,15kr), e.g. {|p|,0,15kr} = {|p|,0,3kr} +
{Ip|, 3kF, 15kFr} In evaluations of mixed energy
contributions(x%a, X%c and X%d), the integral region
{|k|,0,15kr} x {|K'|,0,15kF} is divided into 9 parts in-
stead. Each momentum dimension is divided as (0, 3k ),
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(3kp,6kr) and (3kp,15kr). Every subregion was sam-
pled using a maximum of 10° points. We evaluated each
subregion 10 times to ensure the convergence of the nu-
merical sums. The various XC(S),AZC(S)Z we needed are
readily found from the numerical expressions for the “H”
and “M” diagrams as detailed in the text. The deviation
of these 10 evaluations are the basis for computing the
error brackets of Tables V1

As a check of the reliability of our numerical scheme
we computed the qua&particle residue Z, which is known

tobe Z =1— 1397 mU” (see text). Our calculation for
Z is based on Pitaevskii-Landau relations, Eq. of
the text and

Z/ 27_‘, 3 aﬁ Ba kav )(Gg)w

Eq. (114) and Eq.

Numerically we found,

(114)

(102) must give the same result.

2U2
Z =1-(1.389 £ 0.045) —— 82 based on Equation (114)),
T
m2U?
Z =1-(1.390 + 0.028)872 based on Equation (102)),
T

which gives us confidence our integrals are accurate.
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TABLE VI. Numerical results of high energy and mixed energy contributions for different form factors. The unit here are

k%% for the first two lines and k F% for the last two lines.
Form factor 3 X160 Xl6e 3X1 6 3 X160 Xl6e 3X1.64
Ap = |P| cos ¢p 0.613 £0.008 —0.226 £0.017 —0.379£0.005 —0.879 £0.008 0.767 4 0.006 0.608 £ 0.005
Ap = kF cOS ¢p 0.500 £0.013  —0.193 +£0.008 —0.250 £0.008 —0.879 +0.008  0.508 +0.013 0.548 4+ 0.005
A = |p|?cos2¢p  1.956£0.015  —0.052 & 0.008 1.292 £+ 0.014 —0.879 £0.008 0.266 £0.006  —0.379 4+ 0.006
\p = k% cos 26p 0.500 +0.013  —0.058 + 0.006 0.147 +£0.012 —0.879 £0.008 0.202 £0.008 —0.303 &+ 0.005




	The Conditions for l=1 Pomeranchuk Instability in a Fermi Liquid
	Abstract
	Introduction
	FL theory. Diagrammatic approach
	Perturbation theory
	First order in U(|q|)
	Higher orders in U(q), static limit
	The susceptibility c(s)l (q, ) at finite /v*F|q|.


	Susceptibilities of the currents of conserved order parameters
	The continuity equation for charge and current susceptibilities
	Implication of conservation laws for the susceptibilities
	Conservation of momentum and l=2 susceptibility

	Perturbative calculations for the Hubbard model: charge-current and spin-current order parameters.
	Diagrammatic derivation of the continuity equation
	Evaluation of l=1c(s) to order U2
	Microscopic explanation for the absence of l=1 Pomerachuk instabilities

	 Arbitrary form-factor c(s)l=1 (k) and other values of l
	Summary
	Acknowledgements
	References
	Appendix: Details of the numerical evaluation


