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We perform a microscropic analysis of how the constraints imposed by conservation laws affect
q = 0 Pomeranchuk instabilities in a Fermi liquid. The conventional view is that these instabilities
are determined by the static interaction between low-energy quasiparticles near the Fermi surface,
in the limit of vanishing momentum transfer q. The condition for a Pomeranchuk instability is set

by F
c(s)
l = −1, where F

c(s)
l (a Landau parameter) is a properly normalized partial component of the

anti-symmetrized static interaction F (k, k + q; p, p− q) in a charge (c) or spin (s) sub-channel with
angular momentum l. However, it is known that conservation laws for total spin and charge prevent
Pomeranchuk instabilities for l = 1 spin- and charge- current order parameters. Our study aims to
understand whether this holds only for these special forms of l = 1 order parameters, or is a more
generic result. To this end we perform a diagrammatic analysis of spin and charge susceptibilities
for charge and spin density order parameters, as well as perturbative calculations to second order in
the Hubbard U . We argue that for l = 1 spin-current and charge-current order parameters, certain

vertex functions, which are determined by high-energy fermions, vanish at F
c(s)
l=1 = −1, preventing a

Pomeranchuk instability from taking place. For an order parameter with a generic l = 1 form-factor,

the vertex function is not expressed in terms of F
c(s)
l=1 , and a Pomeranchuk instability may occur

when F
c(s)
1 = −1. We argue that for other values of l, a Pomeranchuk instability may occur at

F
c(s)
l = −1 for an order parameter with any form-factor

I. INTRODUCTION

This paper is devoted to the analysis of subtle effects
associated with a Pomeranchuk instability in a Fermi liq-
uid (FL) due to the interplay with conservation laws.
A system of interacting fermions is called a Fermi liq-
uid if its properties differ from those of free fermions in
a quantitative, but not qualitative manner1–3. Specif-
ically, the distribution function nk undergoes a finite
jump at the Fermi momentum, kF , with some jump mag-
nitude Z < 1; the velocity v∗F of fermionic excitations
near the Fermi surface (FS) remains finite; and the life-
time of fermionic excitations near a FS is parametrically
larger than the energy counted from the Fermi level, i.e.,
fermions infinitesimally close to the FS can be viewed as
infinitely long lived. These three features form the basis
for the description of low-energy fermionic states in terms
of quasiparticles, whose distribution function at T = 0 is
a step function. The validity of FL postulates has been
verified in microscopic calculations for realistic interac-
tion potentials and was found to hold at small/moderate
couplings in dimensions d > 1.

Stronger interactions can destroy a FL. In general, such
destruction can occur in two ways. One option is the
transformation of a metal into a Mott insulator, once the
interaction U becomes comparable to a fermionic band-
width W . This instability involves fermions located ev-
erywhere in the Brillouin zone. Another option is an
instability driven by fermions only very near the FS,
such as superconductivity and q = 0 instabilities in a
particle-hole channel, often called Pomeranchuk instabil-
ities. The latter leads to either phase separation, or fer-
romagnetism, or a deformation of a FS and the develop-
ment of a particle-hole order with non-zero angular mo-

mentum (see e.g. Refs 4–13). A Pomeranchuk instability
in a given channel occurs when the corresponding inter-
action exceeds 1/NF , where NF is the density of states
at the FS. When WNF � 1, a Pomeranchuk instability
occurs well inside the metallic regime.

A Pomeranchuk instability is generally expressed
as a condition on a Landau parameter. For a
rotationally-invariant and SU(2) spin-invariant FL, an
anti-symmetrized static interaction between fermions
at the FS and at strictly zero momentum transfer,
Γω(k, k; p, p) can be separated into spin and charge com-
ponents, and each can be further decomposed into sub-
components with different angular momenta l. Landau
parameters are properly normalized dimensionless sub-

components F
c(s)
l , where c(s) selects charge (spin) chan-

nel, and l = 0, 1, 2, ... 1,2,14,15. Pomeranchuk argued in

his original paper16 that a static susceptibility χ
c(s)
l scales

as 1/(1 + F
c(s)
l ) and diverges when the corresponding

F
c(s)
l = −1. The divergence signals an instability to-

wards a q = 0 density-wave order with angular momen-
tum l.

The 1/(1 + F
c(s)
l ) form of the susceptibility can be

reproduced diagrammatically by summing up particle-
hole bubbles of free fermions within RPA. The momen-
tum/frequency integration within each bubble is confined
to the FS, hence the dimensionless interaction between

the bubbles is exactly F
c(s)
l . The RPA series are geo-

metric, hence χ
c(s)
l,RPA = χl,0/(1 + F

c(s)
l ), where χl,0 is

a free-fermion susceptibility. This agrees with the exact
forms of the susceptibilities of the l = 0 order parame-
ters, which correspond to the total charge and the total
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spin:

χ
c(s)
l=0 = χl=0,0

m∗/m

1 + F
c(s)
l=0

, (1)

where m∗ = kF /v
∗
F . It is tempting to assume that RPA

works for a generic order parameter with angular mo-
mentum l. However, corrections to RPA are of order one

when F
c(s)
l = O(1), and it is a priori unclear whether

in the generic case the full susceptibility has the same

functional form as χ
c(s)
l,RPA.

One can actually go beyond RPA and obtain the exact

expression for a static χ
c(s)
l for a generic order parameter

ρ̂cl (q) =
∑
k,α

λcl (k)c†k−q/2,αck+q/2,α, (2)

ρ̂sl (q) =
∑
k,αβ

λsl (k)c†k−q/2,ασ
αβck+q/2,β , (3)

with any l and any form-factor λ
c(s)
l (k). The exact for-

mula was originally obtained by Leggett17, based on ear-
lier work by Eliashberg18 (we present the diagrammatic
derivation in Sec. II). It reads

χ
c(s)
l =

(
Λ
c(s)
l Z

)2

χ
c(s)
l,qp + χ

c(s)
l,inc. (4)

Here

χ
c(s)
l,qp =

m∗

m
χ
c(s)
l,RPA (5)

is the RPA result with an extra factor of m∗/m, often
called the quasiparticle contribution. Other terms in Eq.
(4) describe two contributions that incorporate effects

beyond RPA. First, χ
c(s)
l,qp gets multiplied by (Λ

c(s)
l Z)2,

where Z is the quasiparticle residue and Λ
c(s)
l accounts

for the renormalization of the vertex containing the form-

factor. Second, there is an extra term χ
c(s)
l,inc. These ad-

ditional terms come from processes in which at least one
fermion is located away from the FS.

Although the Z-factor itself comes from fermions away
from the FS, its presence in (4) can be easily understood
because the fermionic propagator near the FS is

G(ω, k) ≈ ZGqp(ω, k) =
Z

ω − v∗F (k − kF ) + iδsgnω
, (6)

hence there is a Z2 factor in each bubble (Z2 also appears

in the normalization of F
c(s)
l , see below). As long as

Z is a number 0 < Z < 1, it alone does not change

the functional form of χ
c(s)
l compared to the RPA result.

The other two terms are potentially more relevant. First,

the vertex function Λ
c(s)
l may cancel the 1 + F

c(s)
l term

and, second, either Λ
c(s)
l or χ

c(s)
l,inc may diverge on their

own and give rise to a Pomeranchuk-type instability not

associated with F
c(s)
l = −1 (and with the fermions on

the FS).

Some of these issues were addressed by Landau and
Pitaevskii (see e.g. Refs. 1 and 2) and by Leggett
(Ref. 17) in the early years of FL theory, by invoking
(i) conservation laws and the corresponding Ward iden-
tities1,2 and (ii) the continuity equation and the longi-
tudinal sum rule17,19. For a conserved order parame-
ter, conservation laws require that the full susceptibility
coincides with the coherent term, i.e., the correspond-
ing ΛZ = 1 and χinc = 0. The l = 0 charge and spin
Pomeranchuk order parameters ρ̂cl=0 and ρ̂sl=0 with a con-
stant form-factor are conserved quantities, hence the cor-

responding χ
c(s)
l=0 = χ

c(s)
l=0,qp, as in Eq. (1). This is fully

consistent with RPA. For l = 1 charge- or spin-current

order parameters with λ
c(s)
l=1 (k) = k the continuity equa-

tion imposes the relation

ZΛ
c(s)
l=1 =

m

m∗

(
1 + F

c(s)
l=1

)
(7)

such that (ZΛ
c(s)
l=1 )2χ

c(s)
l,qp ∝

(
1 + F

c(s)
l=1

)
vanishes at

F
c(s)
l=1 = −1 instead of diverging. In addition, the lon-

gitudinal sum rule yields

χ
c(s)
l=1 = χ1,0, (8)

i.e. all interaction-induced renormalizations of χ
c(s)
l=1 can-

cel out, implying,

χ
c(s)
l=1,inc = χl=1,0

(
1− m

m∗

(
1 + F

c(s)
l=1

))
(9)

We emphasize that this holds even in the presence of
a lattice potential V (r). For a Galilean-invariant FL,
m∗/m by itself is expressed via Landau parameters as
m∗/m = 1 + F c1 . Then, for spin-current susceptibility,
ZΛsl=1 = (1 + F s1 )/(1 + F c1 ) and χsl=1,inc = χl=1,0(F c1 −
F s1 )/(1 + F c1 ), while for charge-current susceptibility,
ZΛcl=1 = 1 and χcl=1,inc = 0. This last result is con-
sistent with the fact that for a Galilean-invariant FL,
charge-current coincides with the momentum and is a
conserved quantity.

Eqs. (7)+(9) represent a qualitative breakdown of
RPA for spin and charge-current order parameters.
Within RPA, ΛZ = 1, and so to reproduce Eqs. (7)+(9)
one must require m∗/m = (1 + F c1 )−1 = (1 + F s1 )−1.
Such behavior comes about naturally if one assumes10

that the dressed interaction remains a function of k−p,
i.e., Γω(k, k; p, p) = Ueff (|k − p|). In this situation the
charge component of Γω(k, k; p, p) is (U(0)− U(k − p)/2
and the spin component is −U(k− p)/2. Then F cl = F sl ,
for all l > 0, including l = 1. However, in fact, at or-
der U2 and higher, the interaction gets renormalized in
both particle-hole and particle-particle channels, and the
renormalized interaction between fermions on the FS de-
pends on both k−p and k+p. The terms which depend
on k−p and on k+p behave differently under antisym-
metrization, and, as the consequence, spin and charge
components of Γω(k, k; p, p) are generally not equivalent
for any l. In this situation, Eqs. (7) and (9) are obeyed
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not because of some some special relation between Lan-
dau parameters, but rather because ΛZ is expressed via
the particular combination of Landau parameters, such
that for l = 1 spin current, Λsl=1Z cancels out 1 + F s1 .

This issue has been recently re-analyzed by Kiselev et
al20. They discussed how the absence of l = 1 Pomer-
anchuk instability for the spin-current order parameter
places additional constraints on spontaneous generation
of spin-orbit coupling21,22, often associated with l = 1
spin Pomeranchuk order. Kiselev et al also derived a
general formula for the susceptibility of a current of a
conserved order parameter.

The purpose of the current work is three-fold. First,
we provide a transparent diagrammatic derivation of Eq.
(4) and extend it to the case when both q and Ω are
small, but the ratio vF q/Ω is arbitrary. Second, we ana-
lyze Eqs. (7) and (9) from a microscopic perspective, and
identify what relates the contributions to the susceptibil-
ity from fermions near the FS, which determine Landau
parameters, and fermions away from the FS, which de-

termine Z, Λ
c(s)
l , and χ

c(s)
l,inc (and m∗/m in the absence of

Galilean invariance). Lastly, we investigate how generic
is the statement about the absence of Pomeranchuk in-
stabilities for l = 1 order parameters, and what happens
for other l.

To derive Eqs. (4) and (5) diagrammatically, we use
the expansion in the number of fermionic loops, and at
each loop order separate the contributions from fermions
at the FS and away from it. The contributions away from
the FS can be computed by setting q to zero, while for
the contributions from the vicinity of the FS one needs to
keep q small but finite, because each bubble contribution

to χ
c(s)
l,qp comes from the tiny range near the FS where the

poles of the two Green’s function in a bubble are in dif-
ferent half-planes of frequency. We then re-arrange the
perturbation series and evaluate partial contributions to
the susceptibility with M = 0, 1, 2 etc. cross-sections in
which the contribution comes from the FS. Summing up
terms with all M we reproduce Eqs. (4) and (5). We then
extend the analysis and consider the dynamical suscep-

tibility χ
c(s)
l (q,Ω) in the limit when both |q| and Ω are

small, but the ratio v∗F |q|/Ω is arbitrary. We show that
in an arbitrary FL, the form of the dynamical suscep-
tibility is rather complex, except for special cases when
v∗F |q|/Ω is either small or large, or v∗F |q|/Ω is arbitrary,
but only a few Landau parameters are not small.

In order to understand Eqs. (7) and (9) for current
order parameters, we explicitly compute low-energy and
high-energy components of charge and spin susceptibili-
ties for l = 1 for the 2D Hubbard model, to second order
in Hubbard U . At this order the dressed interaction be-
tween fermions becomes dynamical, and both low-energy
and high-energy contributions are non-zero. For simplic-
ity, in this calculation we neglect the lattice potential,
i.e., consider a Galilean-invariant system. We show that
there exists a particular identity on the sum of dynamical
polarization bubbles in particle-hole and particle-particle

channels, which relates the contribution to this sum com-
ing from fermions at the FS and the one from fermions
away from the FS. We use this identity to prove dia-
grammatically Eqs. (7) and (9). We do the same com-
putation for l = 0 and verify that for conserved spin and

charge order parameters χ
c(s)
l,inc = 0 and Λ

c(s)
l = 1/Z, i.e.,

χ
c(s)
l = χ

c(s)
l,qp .

We next consider l = 2 and investigate an argument
by Kiselev et al 20 that for certain order parameters
with l = 2, spin and charge susceptibilities again do

not diverge when the corresponding F
c(s)
l=2 = −1 because

(1 + F
c(s)
l=2 )−1 in χ

c(s)
l=2,qp is canceled out by ZΛ

c(s)
l=2 . We

argue that ZΛ
c(s)
l=2 cannot be expressed solely in terms

of Landau parameters. Of particular interest here is the
l = 2 charge order parameter in a Galilean-invariant case.
It is tempting to view this order parameter as a current
of conserved l = 1 total momentum, and utilize the argu-

ments discussed above to relate ZΛ
c(s)
l=2 to Landau param-

eters via the continuity equation. However, we show that
the current operator for momentum cannot be expressed
solely in terms of bilinear combination of fermions, and
contains an interaction-induced four-fermion term. As
a result, the l = 2 charge susceptibility is only a por-
tion of the full current-current correlator, and as such is
not determined by momentum conservation in the same

manner as ZΛ
c(s)
l=1 are determined by charge conservation.

To understand how generic is the statement about the
absence of Pomeranchuk instabilities for l = 1, we notice
that there exists an infinite set of Pomeranchuk order
parameters in any channel, including l = 0. These order

parameters contain form-factors λ
c(s)
l (k), which are ob-

tained by multiplying the base form factor (a constant
for l = 0, k for l = 1, etc), by an arbitrary function
fl(|k|). When fl(|k|) is not a constant, it changes the
contribution to susceptibility from fermions away from
the FS compared to that from fermions at the FS. We ar-

gue that the identity, which allowed us to express ZΛ
c(s)
l=1

in terms of Landau parameters and cancel 1/(1 +F
c(s)
l=1 ),

does not hold if fl(|k|) is not a constant. As a result,
ZΛsl=1 no longer necessarily vanishes when F sl=1 = −1.
We show this non-cancellation explicitly to second order
in the Hubbard U by comparing susceptibilities for order

parameters with form-factors k and kF k̂, where k̂ is a
unit vector directed along k. We further argue that for a
non-constant fl(|k|), the incoherent contribution to sus-
ceptibility cannot be expressed via Landau parameters
for any l, including l = 0, and can potentially diverge on
its own, even if the corresponding Landau parameter is
still larger than −1. This opens up a possibility for an
instability of a FL, not associated with the singularity in
the coherent part of the susceptibility. Our results in-
dicate that for both the l = 2 case, and the l = 1 case
with a nonconstant fl(|k|), a Pomeranchuk instability
may occur when the appropriate Landau parameter ap-
proaches −1. We note however, that our treatment can-

not exclude the possibility that Λ
c(s)
l Z = A(U)(1+F

c(s)
l ),
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where A(U) is some interaction-modified constant, which
would prevent the instability from occuring.

The paper is organized as follows. In the next Section
we review the diagrammatic formulation of FL theory
and present our diagrammatic derivation of Eq. (4) for

the static susceptibility χ
c(s)
l and its extension to finite

v∗F |q|/Ω. In Sec. III we discuss the forms of l = 1 sus-
ceptibilities for the currents of conserved fermionic charge
and spin, and also discuss the relation between the l = 2
charge order parameter (bilinear in fermions) and the
current of a total fermionic momentum. In Sec. IV we
present the results of numerical and analytical calcula-
tions to second order in the Hubbard U . Our key em-
phasis here is to understand why contributions to the
l = 1 susceptibilities from fermions at the FS and away
from it are related. In Sec. V we discuss the implica-
tions for susceptibilities of order parameters which con-
tain an additional dependence on k beyond symmetry
related overall factors. We summarize our results in Sec.
VI

II. FL THEORY. DIAGRAMMATIC APPROACH

In this section we briefly review the diagrammatic ap-
proach to a FL and present the diagrammatic derivation
of Eq. (4). We also obtain a more general expression for

χ
c(s)
l (q,Ω) when both q and Ω are small, but the ratio
v∗F q/Ω is arbitrary. The full formula is

χ
c(s)
l (q,Ω) =

(
Λ
c(s)
l Z

)2

χ
c(s)
l,qp(q,Ω) + χ

c(s)
l,inc (10)

For arbitrary v∗F q/Ω, χ
c(s)
l,qp(q,Ω) is a complex func-

tion of all Landau parameters. For definiteness and to
make computational steps less involved, we consider two-
dimensional (2D) Galilean-invariant systems.

Our goal is to distinguish between high-energy and
low-energy contributions to the susceptibility and re-

late χ
c(s)
l,qp , χ

c(s)
l,inc, Z, and Λ

c(s)
l to particular sets of di-

agrams. We express different contributions to the sus-
ceptibility via the vertex function Γω(k, p). Here and
below k denotes a fermionic 3-vector, k = (k, ωk) and
q = (q,Ω) denotes a bosonic 3-vector. We show that

χ
c(s)
l,qp is expressed via Γω(k, p) in which both k and p are

on the FS, χ
c(s)
l,inc is expressed via Γω(k, p) in which both

k and p are away from the FS, and Λ
c(s)
l is expressed via

Γω(k, p) in which k is on the FS and p is away from it,
or vice versa. We combine our analysis with the Landau-
Pitaevskii equations1,2 which relate the inverse quasipar-
ticle residue 1/Z to Γω(k, p) in which k is on the FS and

p is away from it, similarly to Λ
c(s)
l . The contributions

from away from the FS are insensitive to the ratio Ω/|q|
and can be computed at q = 0 and Ω = 0. The quasi-

particle part χ
c(s)
l,qp(q) depends on how the limit q,Ω→ 0

is taken.

𝑘 −
𝑞
2

𝑘 +
𝑞
2

FIG. 1. Free fermion susceptibility, where k = (k, ωk) and
q = (q,Ω). The black dots on the two sides represent form
factors λl(k).

A. Perturbation theory

The free fermion Hamiltonian is

Hkin =

∫
dr
∑
α

c†α(r)

(
−∇2

2m
− µ

)
cα(r)

=
∑
kα

ξkc
†
k,αck,α (11)

where ξk = k2/(2m) − µ, and we set ~ = 1 through-
out this paper. The corresponding free-fermion Green’s
function is

G0(k) =
1

ωk − ξk + iδω
(12)

where δω = δsgnω and δ = 0+. The free-fermion suscep-

tibility χ
c(s)
l,0 (q) is diagrammatically represented as the

bubble made out of two fermionic propagators (Fig 1)

with form-factors λ
c(s)
l in the vertices:

χ
c(s)
l,0 (q) = −2

∫
d3k

(2π)3

(
λ
c(s)
l (k)

)2

G0(k +
q

2
)G0(k − q

2
),

(13)
where the factor 2 comes from spin summation. In 2D,

λ
c(s)
l (k) = cos lφk|k|l × f c(s)l (|k|) (14)

where φk is the angle between k and q. One may verify
that the frequency integral in (13) is non-zero only if
ξk+q/2 and ξk−q/2 have opposite signs, i.e., it comes from
the tiny range near the FS of width O(q). In explicit form
we have, after integrating over frequency

χ
c(s)
l,0 (q) = −2

∫
d2k

(2π)2

nF (ξk− q
2
)− nF (ξk+ q

2
)

Ω + ξk− q
2
− ξk+ q

2
+ iδΩ

(
λ
c(s)
l (k)

)2

(15)
where nF (ξ) = Θ(−ξ) is a unit step function in zero
temperature limit. In the case of vanishingly small |q|
one can integrate over k and obtain,

χ
c(s)

l,0 (q) = −m
π

(
klF f

c(s)
l (kF )

)2

∫
dφk
2π

(cos lφk)2 vF |q| cosφk
Ω− vF |q| cosφk + iδΩ

(16)
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𝑝 −
𝑞
2

2×

𝑝 −
𝑞
2

𝑝 +
𝑞
2

𝑘 −
𝑞
2

𝑘 +
𝑞
2

𝑝 −
𝑞
2

𝑝 +
𝑞
2

𝑘 −
𝑞
2

𝑝 −
𝑞
2

𝑝 +
𝑞
2

𝑘 −
𝑞
2

𝑘 +
𝑞
2

(a) (b)

(c)

FIG. 2. Corrections to χ
c(s)
l to first order in U .

In the static limit Ω = 0,q→ 0 we have

χ
c(s)
l=0,0 =

m

π

(
f
c(s)
l=0 (kF )

)2

χ
c(s)
l,0 =

m

2π

(
klF f

c(s)
l (kF )

)2

, l > 0 (17)

We next include the interaction term

Hint =
1

2

∫
drdr′

∑
α,β

c†α(r)cα(r)U (|r− r′|) c†β(r′)cβ(r′)

=
1

2V

∑
U(|q|)c†k+q/2,αc

†
p−q/2,βcp+q/2,δck−q/2,γδαγδβδ,

(18)

where the summation is over all momenta and all spin
indices.

1. First order in U(|q|)

To first order in U(q), there are three interaction-
induced corrections to the bubble diagram for the sus-
ceptibility. They are shown in Fig. 2. Diagram 2a repre-
sents a self-energy correction. The self-energy is purely
static (because U(|q|) is static) and gives rise to mass
renormalization m∗/m = 1 − (1/vF )dΣ/d|k|. One can
easily verify that the integral for Σ(k) for k near the FS
is determined by q connecting points on the FS. A simple
calculation yields

m∗

m
= 1− m

2π

∫
dθ

2π
U

(
2kF

∣∣∣∣sin θ2
∣∣∣∣) cos θ (19)

and

χ
c(s)
l,2a(q) =

(
m∗

m
− 1

)
χ
c(s)
l,0 (q) (20)

Diagram 2b contains two cross-sections with internal k
and p. Because the interaction U(k−p) is static, in each
cross-section the frequency integral is again non-zero only
if the dispersions have opposite signs. The result is that
the integration is again confined to a narrow region near
the FS. Evaluating frequency and momentum integrals,
we obtain

χ
c(s)
l,2b (q) =

1

2

(m
π

)2 (
klF f

c(s)
l (kF )

)2
∫
dφk
2π

dφp
2π

cos lφk cos lφpU

(
2kF

∣∣∣∣sin φk − φp2

∣∣∣∣)×
vF |q| cosφk

Ω− vF |q| cosφk + iδΩ

vF |q| cosφp
Ω− vF |q| cosφp + iδΩ

(21)

In the static limit Ω = 0, q→ 0,

χ
c(s)
l,2b =

1

2

(m
π

)2 (
klF f

c(s)
l (kF )

)2

∫
dφk
2π

dφp
2π

cos lφk cos lφpU

(
2kF | sin

φk − φp
2

|
)

(22)

Finally, diagram 2c contains U(0) and is non-zero only
for charge susceptibility at l = 0. It gives

χcl=0,2c(q) = U(0)
(
χcl=0,0(q)

)2
(f cl=0(kF ))

−2
(23)

The sum of the three diagrams can be cast into a known
FL form by re-expressing the results in terms of the Lan-
dau function Fαβ,γδ(k,p) = (Z2m∗/π)Γωαβ,γδ(k, k; p, p),

where Γωαβ,γδ(k, k; p, p) is the fully renormalized antisym-
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FIG. 3. The vertex Γωαβ,γδ(k,k;p,p) to first order in U .

metrized static interaction between fermions on the FS,
taken in the limit of zero momentum transfer. The an-
tisymmetrized interaction to first order in U is shown
graphically in Fig. 3. To this order, Z2m∗/π = m/π.
Combining the diagrams from this figure, we obtain

Fαβ,γδ(k,p) =
m

π
[U(0)δαγδβδ − U(k− p)δαδδβγ ] (24)

=
m

π

[(
U(0)− 1

2
U(k− p)

)
δαγδβδ −

1

2
U(k− p)σαγσβδ

]
The two terms in the last line in (24) are charge and
spin components of the Landau function Fαβ,γδ(k,p) =
F c(k,p)δαγδβδ + F s(k,p)σαγσβδ. Each component can
be further expanded in partial harmonics with different
l as

F c(s)(k,p) = F
c(s)
0 + 2

∑
l>0

F
c(s)
l cos lφ, (25)

where φ = φk − φp is the angle between k and p (|k| =
|p| = kF ). Using this expansion, one may easily check
that the sum of zero-order and first-order contributions
to the static susceptibility can be cast into

χ
c(s)
l = χl,0

(
1 + F cl=1 − F

c(s)
l

)
≈ χl,0 (1 + F cl=1)

(
1− F c(s)l

)
(26)

This formula is valid for all l, including l = 0. Eq. (26)
trivially fulfils the constraints of Eqs (7) and (9) for the
simple reason that to this order, F cl = F sl for all l > 0.

2. Higher orders in U(q), static limit

We now move to higher orders in U , still considering
the static limit Ω = 0,q → 0. Within RPA, higher-
order diagrams are treated as series of ladder graphs (l >
0) or ladder and bubble graphs (l = 0), Each element
of the ladder/bubble series contains the product of two
fermionic Green’s functions, dressed by static self-energy.
The two Green’s functions have the same frequency and
their momenta differ by q. Within this approximation,
a non-zero contribution to susceptibility from each cross-
section comes from the states very near the FS, where the
poles in the two fermionic Green’s functions, viewed as
functions of frequency, are shifted in different directions

FIG. 4. Example of a higher order contribution to χ
c(s)
l . At

this order, the static interaction acquires dynamics due to
particle-hole screening. The diagram’s computation is split
into three (see Sec. II A 2). It belongs to the M = 0 sector
when both bubbles are evaluated away from the FS, to M = 1
when one is evaluated on the FS and one away from it, and
to M = 2 when both are evaluated at the FS.

from the real frequency axis. A simple analysis shows
that the series is geometric and its sum yields

χ
c(s)
l,RPA = χl,0

1 + F cl=1

1 + F
c(s)
l

(27)

The RPA susceptibility obviously diverges when F
c(s)
l =

−1, except for the special case of F
c(s)
l = F c1 , as occurs

e.g. for l = 1 if we require that the interaction is purely
static, see the previous section and our comments in the
Introduction.

We next go beyond RPA. A diagram for χ
c(s)
l at any

loop order is represented by a series of ladder segments
separated by interactions. In each of these ladders there
is an integration over both high-energy and low-energy

frequencies and momenta. To obtain χ
c(s)
l , we follow

earlier diagrammatic studies18,23,24 and and re-arrange

perturbation series by assembling contributions to χ
c(s)
l

from diagrams with a given numberM of ladder segments
with poles shifted into different directions from the real
frequency axis, and then sum up contributions from the
sub-sets with different M = 0, 1, 2, etc.

We start with M = 0. The corresponding contribu-
tions to the susceptibility contain products of G2(k, ωk).
Taken alone, each such term will vanish after integra-
tion over frequency. The total M = 0 contribution then
vanishes to first order in U(q) because the static inter-
action does not affect the frequency integration. How-
ever, at second and higher orders in U(q), the interac-
tion gets screened by particle-hole bubbles and becomes
a dynamical one. An example of second-order suscep-
tibility diagram with screened interaction inserted into
the bubble is shown in Fig. 4. This screened dynami-
cal interaction contains a Landau damping term, which
is non-analytic in both half-planes of complex frequency.
As a result, the product of G2(k, ωk) and the dressed
interaction at order U2 and higher has both a double
pole and a branch cut. A pole can be avoided by closing
the integration contour in the appropriate frequency half-
plane, but the branch cut is unavoidable, and its presence
renders the frequency integral finite. Since there is no
splitting, relevant fermionic ωk and k are not confined
to the FS and are generally of order EF (or bandwidth).
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FIG. 5. The ladder series of diagrams for the static sus-

ceptibility χ
c(s)
l . The exact χl is represented as a series

M = 0, 1, 2, . . . of bubbles comprised of Green’s functions with
poles on opposite halves of the complex frequency plane, i.e.
whose contributions are computed close to the FS.

Fermions at such high energies have a finite damping, i.e.,
are not fully coherent quasiparticles. By this reason, the

M = 0 contribution to χ
c(s)
l is labeled as an incoherent

one, χ
c(s)
l,M=0 = χ

c(s)
l,inc (although at small U fermions with

energies of order EF are still mostly coherent).
We next move to the M = 1 sector. Here we select

the subset of diagrams with one cross-section, in which
we pick up the contribution from G(k, ωk)G(k + q, ωk)
from the range where the poles in the two Green’s
functions are in different half-planes of complex fre-
quency. The sum of such diagrams can be graphi-
cally represented by the skeleton diagram in Fig. 5 la-
beled M = 1. The internal part of this diagram gives
Z2(m∗/m)χl,0(q), where χl,0(q) is given by (16). The

side vertices contain Λ
c(s)
1 λ

c(s)
l (kF ), i.e. the product

of the bare form-factor (which we already incorporated
into χl,0(q)), and the contributions from all other cross-
sections, in which G(k, ωk)G(k + q, ωk) is approximated
by G2(k, ωk). These contributions would vanish if we
used a static U(|q|) for the interaction, but again be-
come non-zero once we include dynamical screening at
order U2 and higher. Similarly to the M = 0 sector, the

difference Λ
c(s)
l − 1 is determined by fermions with en-

ergies of order EF . Note, however, that in the M = 0
sector, all internal energies are of order EF . In the M = 1

sector, internal energies for the vertices Λ
c(s)
l are of order

EF , but external ωk are infinitesimally small, and ex-
ternal k are on the FS. Overall, the contribution to the
static susceptibility from the M = 1 sector is

χ
c(s)
l,M=1 =

(
ZΛ

c(s)
l

)2 m∗

m
χ
c(s)
l,0 (28)

Sectors with M = 2, M = 3 are the subsets of diagrams
with 2, 3, . . . cross-sections in which we split the poles
of the Green’s functions with equal frequencies and mo-
menta separated by q. In the cross-sections in between
the selected ones G(k, ωk)G(k + q, ωk) is again approxi-
mated by G2(k, ωk). The contribution from the M = 2
sector is represented by the skeleton diagram in Fig. 5 la-

beled M = 2. It contains fully dressed side vertices Λ
c(s)
l

and a fully dressed anti-symmetrized static interaction
between fermions on the FS. One can easily verify that
this interaction appears with the prefactor Z2(m∗/m),
i.e., the extra factor in the M = 2 sector compared to
M = 1 is the product of χl,0 and the corresponding com-
ponent of the Landau function. Using (25) we then ob-
tain

χ
c(s)
l,M=1+χ

c(s)
l,M=2 =

(
ZΛ

c(s)
l

)2 m∗

m
χ
c(s)
l,0

(
1− F c(s)l

)
(29)

(the minus sign comes from the number of fermion bub-
bles.) A simple bookkeeping analysis shows that con-
tributions from sectors with larger M form a geometric

series, which transform 1−F c(s)l into 1/(1 +F
c(s)
l ). Col-

lecting all contributions, we reproduce Eq. (4).

3. The susceptibility χ
c(s)
l (q,Ω) at finite Ω/v∗F |q|.

We now extend the analysis to the case when both
transferred momentum q and transferred frequency Ω are
vanishingly small, but the ratio Ω/v∗F |q| is finite. The
computational steps are the same as for static suscep-

tibility. The contribution to χ
c(s)
l (q) from the M = 0

sector and the vertex function Λ
c(s)
l do not depend on

the ratio of Ω/(v∗F |q|) and remain the same as in the
static case. However, the integrand in the expression for
χl,0(q), Eq. (16), now contains a non-trivial angular de-
pendence via vF |q| cosφk/(Ω− vF |q| cosφk + iδΩ). This
makes the computation of series with M = 1, 2, . . . more
involved.

Consider first the limit Ω � vF |q|. For even l, the
free-fermion susceptibility is

χ
c(s)
l,0 (q) =

m

αlπ

(
klF f

c(s)
l (kF )

)2
(

1 + αl
iΩ

vF |q|

)
= χ

c(s)
l,0

(
1 + αl

iΩ

vF |q|

)
(30)

where αl = 1 if l = 0 and αl = 2 if l = 2m, m > 0.
For odd l, the expansion in Ω starts with Ω2. The total
contribution from the M = 1 sector still is proportional
to χl,0:

χ
c(s)
l,M=1(q) ≈ m∗

αlπ

(
ZΛ

c(s)
l

)2 (
klF f

c(s)
l (kF )

)2

(
1 +

m∗

m
αl

iΩ

vF |q|

)
=
(
ZΛ

c(s)
l

)2 m∗

m
χ
c(s)
l,0

(
1 +

m∗

m
αl

iΩ

vF |q|

)
(31)

In the contribution from the M = 2 sector, the iΩ/v∗F |q|
term can be taken from the cross-section on the right or
on the left. This gives a combinatoric factor of 2. Then

χ
c(s)
l,M=1(q) + χ

c(s)
l,M=2(q) ≈

(
ZΛ

c(s)
l

)2 m∗

m
χ
c(s)
l,0(

1− F c(s)l + (1− 2F
c(s)
l )

m∗

m
αl

iΩ

vF |q|

)
(32)
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For the contribution from the M = 3 sector the same
reasoning yields the combinatoric factor of 3 and so on.
Using

1− 2F
c(s)
l + 3

(
F
c(s)
l

)
+ ... =

1

(1 + F
c(s)
l )2

(33)

we obtain

χ
c(s)
l (q) =

(
ZΛ

c(s)
l

)2

χ
c(s)
l,qp(q) + χ

c(s)
l,inc (34)

where to order Ω/|q|, for even l,

χ
c(s)
l,qp(q) = χ

c(s)
l,0

 m∗/m

(1 + F
c(s)
l )

+ αl
iΩ

vF |q|

(
m∗/m

1 + F
c(s)
l

)2


(35)
For l = 0 this result has been obtained before25.

In the opposite limit Ω� v∗F |q| we have

χl,0(q) ≈ −m
π

(
vF |q|

Ω

)2 (
klF fl(kF )

)2
∫
dφk
2π

(cos lφk)2(cosφk)2 (36)

The presence of |q|2/Ω2 in the susceptibility for l = 0 is
a natural consequence of the fact that the total fermionic
charge and spin are conserved quantities, i.e., they don’t
change when we probe the system at different times.
For free fermions, this holds for all l because all partial
fermionic densities at a given direction of k are separately
conserved, hence χl,0(q = 0,Ω) must vanish for an any
angle-dependent form-factor. The contribution from the
M = 1 sector is,

χ
c(s)
l,M=1(q) ≈ −m

π

(
ZΛ

c(s)
l

)2 m

m∗

(
vF |q|

Ω

)2 (
klF fl(kF )

)2×∫
dφk
2π

(cos lφk)2(cosφk)2. (37)

The overall m/m∗ factor is due to one m∗/m factor from
the integration over momentum and an (m/m∗)2 from
the expansion to second order in v∗F |q|/Ω. From the M =
2 sector we have, at order |q|2/Ω2

χ
c(s)
l,M=2 = −

(
vF |q|

Ω

)2 (m
π

)(
ZΛ

c(s)
l

)2 m

m∗

(
klF f

c(s)
l (kF )

)2
∫ ∫

dφk
2π

dφp
2π

(cos lφk)(cos lφp)(cosφk)(cosφp)F
c(s)(φk−φp)

(38)
Substituting F c(s) from Eq. (25), we obtain

χ
c(s)
l=0,M=2 = −1

2

(
vF |q|

Ω

)2 (m
π

)(
ZΛ

c(s)
l

)2 (
f
c(s)
l=0 (kF )

)2 m

m∗
F
c(s)
1

χ
c(s)
l=1,M=2 = −1

8

(
vF |q|

Ω

)2 (m
π

)(
ZΛ

c(s)
l

)2 (
kF f

c(s)
l=1 (kF )

)2 m

m∗

(
2F

c(s)
0 + F

c(s)
2

)
χ
c(s)
l>1,M=2 = −1

8

(
vF |q|

Ω

)2 (m
π

)(
ZΛ

c(s)
l

)2 (
klF f

c(s)
l (kF )

)2 m

m∗

(
F
c(s)
l−1 + F

c(s)
l+1

)
(39)

The contribution from the sectors with M > 2 contains higher power of |q|/Ω. Hence, to order |q|2/Ω2, the full result
for the dynamical susceptibility is

χ
c(s)
l=0 (q) = −1

2

(
vF |q|

Ω

)2

χ
c(s)
l=0,0

(
ZΛ

c(s)
l

)2 m

m∗

(
1 + F

c(s)
1

)
+ χ

c(s)
l=0,inc

χ
c(s)
l=1 (q) = −3

4

(
vF |q|

Ω

)2

χ
c(s)
l=1,0

(
ZΛ

c(s)
l

)2 m

m∗

(
1 +

2

3
F
c(s)
0 +

1

3
F
c(s)
2

)
+ χ

c(s)
l=1,inc

χ
c(s)
l>1 (q) = −1

2

(
vF |q|

Ω

)2

χ
c(s)
l,0 (q)

(
ZΛ

c(s)
l

)2 m

m∗

(
1 +

1

2

(
F
c(s)
l−1 + F

c(s)
l+1

))
+ χ

c(s)
l,inc

(40)

For l = 0 this result has been obtained in Ref. 17.

For a generic Ω/vF |q|, the full expression for χ
c(s)
l (q)

is rather involved for all l, including l = 0. As an il-
lustration, consider the seemingly simplest case l = 0
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and set f0(|k|) = 1 (i.e., consider susceptibilities for spin
and charge order parameters). Due to spin/charge con-

servation ZΛ
c(s)
l=0 = 1 and χ

c(s)
l=0,inc = 0, so χ

c(s)
l=0 (q) =

χ
c(s)
l=0,qp(q).

The full dynamical χ
c(s)
l=0,qp(q) is given by series of bub-

bles, each is determined by fermions in the vicinity of the
FS. The integration over frequency and over fermionic
dispersion can be performed independently in each bub-
ble, but angular integration is, in general, rather in-

volved, because the interaction between the bubbles with
internal momenta k and p is expressed via the Landau
function F c(s)(k,p), Eq. (25), and the latter depends on
φ = φk−φp. It is sufficient to analyze the first few orders

in the expansion in powers of F c(s)(k,p) to understand
that the full result is

χ
c(s)
l=0,qp(q) =

m∗

π

χ̄(q)

1 + F
c(s)
l=0 χ̄(q)

(41)

where χ̄(q) is given by series of terms

χ̄(q) = K0 − 2
∑
n,m>0

F c(s)n KnKm ×[
δn,m −

∑
m1>0

Qn,m1
F c(s)m1

[
δm1,m −

∑
m2>0

Qm1,m2
F c(s)m2

(δm2,m − ...)

]]
(42)

where δn,m is Kroneker symbol and

Qn,m = Kn+m +Kn−m. (43a)

Here

Kn(q) = −
∫

dθ

2π
cosnθ

v∗F |q| cos θ

Ω− v∗F |q| cos θ + iδΩ

= δn,0 −
α√

α2 − 1 + iδ
(α−

√
α2 − 1)|n|, (43b)

and α = Ω/v∗F |q|. In explicit form

K0(q) = 1− Ω√
Ω2 − (v∗F |q|)2 + iδ

K1(q) =
Ω

v∗F |q|

(
1− Ω√

Ω2 − (v∗F |q|)2 + iδ

)

K2(q) = 2

(
Ω

v∗F |q|

)2

+
Ω√

Ω2 − (v∗F |q|)2 + iδ

(
1− 2

(
Ω

v∗F |q|

)2
)

(44)

Eq. (42) can be equivalently re-expressed as

χ̄(q) = K0 − 2
∑
n,m>0

F c(s)n KnKmS
m
n (45)

where Smn is the solution of the matrix equation

Smn +
∑
m1>0

Qn,m1
F c(s)m1

Smm1
= δn,m (46)

In the static limit K0 = 1, Kn>0 = 0. Then χ̄(q) = 1,
and Eq. (41) reduces to Eq. (1) for the static suscepti-
bility. For a generic Ω/v∗F |q| a closed-form expression for

χ
c(s)
l=0,qp(q) can be obtained if only a few Landau param-

eters are sizable, e.g., if we assume that |Fl| � |F0|, |F1|
for all l > 1. In this situation, only one term in each
sum in (45) and (46) survives, and these two equations
simplify to

χ̄(q) = K0 − 2F
c(s)
1 K2

1S
1
1 (47)

and

S1
1

(
1 +Q1,1Γ

c(s)
1

)
= 1 (48)

Using Q1,1 = K0 + K2 we find S1
1 = 1/(1 + (K0 +

K2)F
c(s)
1 ). Substituting this into (47) and then substi-

tuting (47) into (41), we obtain

χ
c(s)
l=0,qp(q) =

m∗

π

K0 − 2F
c(s)
1 K2

1

1+F
c(s)
1 (K0+K2)

1 + F
c(s)
0 K0 − 2F

c(s)
0 F

c(s)
1 K2

1

1+F
c(s)
1 (K0+K2)

(49)

The same result has been obtained previously26 using a
Boltzmann equation approach. At Ω/v∗F |q| � 1, we have
K0(q) ≈ −(1/2)(vF |q|/Ω)2, K2

1 (q) ≈ (1/4)(vF |q|/Ω)2,
K2(q) ≈ −(3/8)(vF |q|/Ω)2. Substituting into (49) we

obtain χ
c(s)
l=0 (q) = −(1/2)(vF |q|/Ω)2(1 +F

c(s)
1 ), as in Eq.

(40).

III. SUSCEPTIBILITIES OF THE CURRENTS
OF CONSERVED ORDER PARAMETERS

In this section we discuss the relationship between or-
der parameters associated with conserved “charges” (to
be distinguished from the specific electric charge) and
their currents. We review the derivation of the conti-
nuity equation for susceptibilities of these order param-
eters (Refs. 17 and 20 and show that this equation ex-
plicitly connects high energy properties of a FL, namely
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χ
c(s)
l,inc,Λ

c(s)
l , Z, with low-energy properties, namely χl,qp.

We discuss the implications for the l = 0, 1 channels and
obtain Eqs. (7)-(9). Finally we discuss the implications
of the continuity equation for the l ≥ 1, 2 channels. Our
focus here is to identify the constraints placed by the
conservation law on high- and low- energy FL properties.
We will then analyze these constraints microscopically in
Sec. IV.

A. The continuity equation for charge and current
susceptibilities

A conserved “charge” is an operator ρ̂(q, t) that com-
mutes with the Hamiltonian at q = 0, so that it does not
evolve in the Heisenberg picture,

∂ρ̂

∂t
=

1

i
[ρ̂, H] = 0. (50)

Examples of such charges are the number (or electric
charge) and spin density in the model of Sec. II: ρ̂cl=0
and ρ̂sl=0 from Eq. (2) with constant form-factors. The
continuity equation for a conserved charge ρ̂ can be de-
rived in the Heisenberg picture:

∂ρ̂(q, t)

∂t
=

1

i
[ρ̂(q, t), H = Hkin +Hint] ≡ −iq · Ĵ. (51)

The continuity equation relates the susceptibilities of or-
der parameters associated with ρ̂ and Ĵ,

χρ = 〈[ρ̂(q, t), ρ̂(−q, t′)]〉 (52)

χJ = 〈[(Ĵ)i(q, t), (Ĵ)j(−q, t′)]〉 (53)

Taking the derivative ∂t∂t′χρ and transforming to the
frequency domain we obtain

Ω2χρ(q) =
∑
m,n

qm [χmnJ (q)− χmnJ (q, 0)] qn. (54)

Here, the sum is over spatial indices m,n = {x, y}.
Equivalently we may write,

(Ω/q)2χρ(q) = χ
‖
J(q)− χ‖J(q, 0). (55)

Here we have defined the longitudinal component of the
susceptibility q̂ · χJ · q̂. Note, that the RHS of Eqs.
(54)+(55) includes only the time dependent part of χJ .
This is an automatic consequence of taking the time
derivative of χρ and going to the Fourier domain.

Let’s assume that both ρ̂ and J are expressed via bi-
linear combinations of fermions with some given l. We
then can use Eq. (10) and write

χρ(q,Ω) = (ΛρZ)2χρ,qp(q,Ω) + χρ,inc, (56)

χJ(q,Ω) = (ΛJZ)2χJ,qp(q,Ω) + χJ,inc, (57)

Combining these expressions and Eq. (55) we express the
current susceptibility via the susceptibility of a conserved
charge.

𝛼

𝛼

𝛽
Λ

𝛼 𝛼

𝛽

𝛼

𝛽

𝛼

𝛽
Γ= +

𝛼
𝛼

𝛽

𝛼

FIG. 6. Relation between a 3-leg vertex Λ and a 4-leg vertex
Γ, for a conserved charge density.

B. Implication of conservation laws for the
susceptibilities

For a conserved charge (55) yields

χρ(q = 0,Ω) = 0. (58)

We also recall that the coherent part of χρ, which corre-
sponds to the M = 1, 2, . . . diagrams of Fig. 5, vanishes
at q = 0. Thus, Eq. (58) also implies

χρ,inc = 0. (59)

Finally, the relation ΛρZ = 1 follows from the fact that
Λρ and 1/Z are identically expressed via the vertex Γω,

Λρ = 1− i

2kF

∑
αβ

∫
d3k

(2π)3
Γωαβ,αβ(kF p̂,k)(G2

k)ω
λρ(k)

λρ(kF )

(60a)

1

Z
= 1− i

2kF

∑
αβ

∫
d3k

(2π)3
Γωαβ,αβ(kF p̂,k)(G2

k)ω
λρ(k)

λρ(kF )

(60b)

where (G2
q)
ω = limΩ→0G(q, ω)G(q, ω + Ω) = G2(q, ω) is

the regular part of the product of two Green’s functions,
For the vertex, Eq. (60a) follows from Fig. 6 (and is
valid for a conserved ”charge” in both charge and spin
channels, while for 1/Z the relation (60b) is the Ward
identity for a conserved charge with form-factor λρ(k).
We recall that Λρ is defined without the factor λρ(kF ).

We plug these results into Eq. (55), take the limit Ω�
vF q → 0, and obtain,

(ΛJZ)2χJ,qp(q→ 0, 0) = −Ω2

q2
χρ,qp(

q

Ω
→ 0). (61)

We showed in Sec. II that for any l, χ
c(s)
l,qp( qΩ → 0)

scales as q2/Ω2, and the prefactor is expressed in terms
of Landau parameters and is not singular. Assuming
that this holds for the conserved charge, we find that
(ΛJZ)2χJ,qp(q → 0, 0) remains finite when Landau pa-
rameters change and pass through −1. Eq. (61) then
implies that there is no Pomeranchuk instability in the J
channel. It also explicitly connects Λρ,ΛJ , Z,m

∗/m and
χρ,qp, χJ,qp via Eqs. (56)+(57). This is the essence of
our argument that the continuity equation implies con-
straints that connect low- and high- energy properties of
the FL.
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For the specific case of spin and charge density order
parameters, one can easily verify that ρ̂c(q) and ρ̂s(q)
commute with Hint so the current density is bilinear in
the creation and annihilation operators:

Ĵc(q, t) =
1

m

∑
k,α

kc†k−q/2,αck+q/2,α, (62)

Ĵsm(q, t) =
1

m

∑
k,αβ

σαβm kc†k−q/2,αck+q/2,β . (63)

In this case, the susceptibilities of ρ̂c(s), Ĵc(s) correspond
precisely to χl=0 and χl=1:

χc(s)ρ = χ
c(s)
l=0 , χ

c(s)
J = χ

c(s)
l=1 . (64)

Eq. (55) then implies

(Ω/q)2χ
c(s)
l=0 (q) =

1

m2
q̂ ·
[
χ
c(s)
l=1 (q)− χc(s)l=1 (q, 0)

]
· q̂. (65)

Taking the Ω� v∗F q limit, we obtain

χ
c(s)
l=0 = −χl=0,0

vF
v∗F

(
v∗F |q|

Ω

)2

(1 + F
c(s)
1 ) +O(|q|4/Ω4)

(66)
Plugging the result into Eq. (61) yields,

(Λc,sl=1Z)2 vF
v∗F

1

1 + F c,s1

=
v∗F
vF

(1 + F
c(s)
1 ), (67)

i.e.,

Λ
c(s)
l=1Z =

v∗F
vF

(1 + F
c(s)
1 ), (68)

which is Eq. (7).
For the currents of conserved charge and spin there ex-

ists another constraint imposed by the longitudinal sum
rule17,19:

χ
‖
J(q, 0) = n/m (69)

where n is the number density. The longitudinal sum rule
is analogous to the longitudinal f-sum rule for the imag-
inary part of the inverse dielectric function27 and can be
derived from the gauge-invariance of the electromagnetic
field19. It is exact for a system where the electric current
is proportional to the momentum density (with or with-
out Galilean invariance), which is the case for any model
of the form of Eqs. (11), (18) with or without external
potential V (r). In effective low energy models (e.g. on
a lattice), it is only approximately correct20. In either
case, its implication is that the total χJ is also finite.

C. Conservation of momentum and l = 2
susceptibility

Finally, we address the issue of the implication of the
continuity equation for momentum in a Galilean invari-
ant system. In this section we will refer to the momentum

density by the symbol ρ ≡ ρi, and to the energy tensor
by J ≡ Jij where i, j denote spatial indices.

In Sec. III A we did not specify the nature of charge
density and current. Thus, eq. (54) is equally valid for
the momentum densities and currents, the only change
being that χρ = χijρ (q,Ω) is a rank-2 symmetric tensor,

and so is (χ
‖
J)ij = (q̂ · χJ(q,Ω) · q̂)ij . In the same man-

ner, all arguments relating high frequency behavior of χρ
with the static behavior of χJ go through, leading to Eq.
(61). Thus (ΛJZ)2χJ,qp is fully determined by χρ and
furthermore is always finite.

However, we now demonstrate that Jij cannot, in gen-
eral, be expressed as a bilinear operator in c†, c. As a

result, χ
‖
J does not have a simple relationship with χl,

e.g. with χl=2. To see this, it is enough to examine the
Hubbard model, i.e. take U(|q|) = U in Eq. (18). The
current operator Eq. (62) has the following equation of
motion,

∂ρ̂(q, t)

∂t
= −iq · Ĵ (70)

where

Ĵ = Ĵkin + Ĵint, (71)

with

q · Ĵkin = [ρ,Hfree] , q · Ĵint = [ρ,Hint] (72)

which gives,

Ĵ ijkin =
1

m2

∑
k

kikjc
†
k−q/2ck+q/2, (73)

Ĵ ijint = δij
1

m2

∑
k

[
U(|k|)− 2k2

3
U ′′(|k|)

]
(74)

n(q/2 + k)n(q/2− k),

where n(k) =
∑

p c
†
p−k/2cp+k/2, and we expanded Ĵint to

leading order in small q. If we had had Ĵint = 0, then in-
deed Eq. (61) could be used to constrain the l = 0, l = 2

channels, both of which appear in Ĵkin. However, as it
is, while Eq. (61) does constraint χJ to be finite, by
itself it does not constrain any specific l channels. Inter-
estingly, for the specific case of the Hubbard interaction
U(q) = U the appearance of Ĵint does not prevent an
association of a conserved current with χcl=2

28. However,
we note that for the Hubbard interaction the kinetic en-
ergy (and by association χcl=2) diverges logarithmically
for arbitrary U already at order U2, so a regularization
at large momentum is always necessary.

IV. PERTURBATIVE CALCULATIONS FOR
THE HUBBARD MODEL: CHARGE-CURRENT
AND SPIN-CURRENT ORDER PARAMETERS.

In this section we perform perturbative analysis of Eq.
(10) for l = 1 and Eq. (65). We have three goals in
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our calculation: the first is to show how one can derive
the continuity equation diagrammatically, the second is

to verify the relations between Λ
c(s)
l=1Z, χ

c(s)
l=1,inc and F

c(s)
l=1 ,

Eqs. (7) and (9), in direct expansion in the interaction,
and the third goal is to clarify the origin of the relation
between high- and low- energy contributions to Eqs. (7)
and (9).

We proceed in three steps. First, we derive Eq. (65)
diagrammatically to first-order in U(q). We will see that
although there are no dynamical corrections to this order

(i.e. Z,Λ
c(s)
l = 1), nevertheless self-energy corrections

are crucial, indicating one should go beyond RPA. Then,
we perform a combined analytical and numerical analysis

of χ
c(s)
l=1 at order U2 for the Hubbard model, and explic-

itly verify Eqs. (7), (9). Going to to second order in U
is essential, because only at this order do contributions
away from the FS begin to accumulate, see Sec. II A 2.
Finally, we demonstrate that the high-energy contribu-

tions to χ
c(s)
l=1 can be re-expressed as low-energy ones,

due to a special property of the sum of particle-hole and
particle-particle bubbles.

A. Diagrammatic derivation of the continuity
equation

In this subsection we show how Eq. (65) can be re-
produced in a diagrammatic calculation. Already at this
order we will see that one needs to treat self-energy and
vertex corrections on equal footings because the conti-
nuity equation emerges due to a particular cancellations
between these two types of corrections.

To begin with, we re-write Eq. (15) for free-
fermion susceptibility for a current order parameter with

λ
c(s)
l=1 (k) = k · q̂ as

q2χ
c(s)
l=1,0(q) = −2

∫
d2k

(2π)2

nF (ξk− q
2
)− nF (ξk+ q

2
)

Ω− 1
mk · q + iδΩ

(k · q)2

(75)

Here and later on we omit the ‖ symbol for clarity. We

then rewrite the form factor as:

(k · q)2 = (k · q +mΩ)(k · q−mΩ) +m2Ω2 (76)

and obtain

q2χ
c(s)
l=1,0(q) = 2m2

∫
d2k

(2π)2
[nF (ξk− q

2
)− nF (ξk+ q

2
)]

×
[
−Ω− 1

m
k · q +

Ω2

Ω− 1
mk · q + iδΩ

]
(77)

The Ω term vanishes after integration over k. The

other two terms are easily identified as q2χ
c(s)
l=1,0(q, 0) and

Ω2χ
c(s)
l=0,0(q), so that:

q2

m2

(
χ
c(s)
l=1,0(q)− χc(s)l=1,0(q, 0)

)
= Ω2χ

c(s)
l=0,0(q). (78)

We now use the same tactics for first order corrections
to χ

c(s)
l=1 . The corresponding diagrams are given in Fig.

2. Diagram 2c, the RPA correction, gives

q2

m2
χ
c(s)
l=1,2c =

[
2

∫
d2k

(2π)2

nF (ξk− q
2
)− nF (ξk+ q

2
)

Ω− 1
mk · q + iδΩ

k · q
]2

×

U(q)
(79)

By making use of

k · q
Ω− 1

mk · q + iδΩ
=

mΩ

Ω− 1
mk · q + iδΩ

−m (80)

we find

q2

m2
χ
c(s)
l=1,2c(q) = Ω2χ

c(s)
l=0,2c(q) (81)

Note that there is no need to subtract the static part

because χ
c(s)
l=1,2c(q, 0) vanishes.

For the remaining two diagrams in Fig. 2 we obtain

q2χ
c(s)
l=1,2a(q) = −2

∫
d2k

(2π)2

d2p

(2π)2

[nF (ξp− q
2
)− nF (ξp+ q

2
)][nF (ξk− q

2
)− nF (ξk+ q

2
)]

(Ω− 1
mk · q + iδΩ)2

U(|p− k|)(k · q)2 (82)

q2χ
c(s)
l=1,2b(q) = 2

∫
d2k

(2π)2

d2p

(2π)2

[nF (ξp− q
2
)− nF (ξp+ q

2
)][nF (ξk− q

2
)− nF (ξk+ q

2
)]

(Ω− 1
mp · q + iδΩ)(Ω− 1

mk · q + iδΩ)
U(p− k)(k · q)(p · q) (83)

Applying again (80) we find,

q2

m2
(χ
c(s)
l=1,2a(q)+χ

c(s)
l=1,2b(q)) = Ω2(χ

c(s)
l=0,2a(q)+χ

c(s)
l=0,2b(q))

(84)

The static part of the sum of the two contributions cancel
out. Eqs. (81) and (84) verify Eq. (65) to order U .

We emphasize that χ
c(s)
l=1,2a(q) and χ

c(s)
l=1,2b(q), when

taken separately, do not satisfy the continuity equation
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(65), and only the sum of the two terms obeys (84). This
is an indication that, within diagrammatics, the conti-
nuity equation emerges due to fine cancellations between
self-energy and vertex corrections, and one should go be-
yond RPA at each order in U to reproduce it.

B. Evaluation of χ
c(s)
l=1 to order U2

We now present the results of explicit calculations of
the static susceptibilities to order U2. We identify contri-

butions to χ
c(s)
l=1,inc and

(
Λ
c(s)
l=1Z

)2

, and χ
c(s)
l,qp from each

diagram, and compute them by a combination of ana-
lytical and numerical methods. We also independently

compute the vertex renormalization Λ
c(s)
l=1 to order U2.

There are nine different diagrams for the current sus-
ceptibility to second order in U(q), see Fig. 7. To simplify
the numerics, we approximate U(q) by a constant U i.e.,
consider U2 renormalizations in the Hubbard model. For
a constant U , Landau parameters F

c(s)
l also only emerge

at order U2, i.e., the incoherent part of the susceptibility,
vertex renormalizion, renormalization of the quasiparti-
cle Z, and Landau parameters are all of order U2. We
make use of previously known results29

F c1 = −F s1 =
m2U2

8π2
, Z = 1− 1.39

m2U2

8π2
, (85)

and

m∗

m
= 1 + F c1 = 1 +

m2U2

8π2
(86)

which holds for a Galilean-invariant system1,2. The order
U2 is the first one in perturbative expansion at which dif-
ferences between the charge and spin channels emerge, in
the form of the Aslamazov-Larkin (AL) diagrams, Figs.
7c,d. The AL diagrams contribute in the charge channel
and vanish in the spin channel, as can be seen from direct
spin summation.

Consider the charge channel first. It is straightforward
to identify the diagrams in Figs. 7, which give equal
contributions, up to overall factor. One can easily verify
that χ6a = −2χ6g, χ6d = −2χ6b, and χ6e = −χ6f . In
addition, using the relation∫

dωp(G
0
p− q2

)3G0
p+ q

2
= −1

2

∫
dωp(G

0
p− q2

G0
p+ q

2
)2, (87)

we find χ6h = −χ6i. In Eq. (87) and throughout this sec-
tion we denote G0(k) ≡ G0

k for compactness. Summing
up the contributions to the charge-current susceptibility,
we obtain at order U2,

δχcl=1 =
1

2
χ6a + χ6c +

1

2
χ6d (88)

A similar consideration for the spin susceptibility yields

δχsl=1 =
1

2
(χ6a − χ6d) (89)

In explicit form

χ6a = 8U2

∫
d3kd3k′d3p

(2π)9
(p · q̂)2(G0

p− q2
)2G0

p+ q
2
G0
p−kG

0
k′−kG

0
k′− q2

,

χ6c = 4U2

∫
d3kd3k′d3p

(2π)9
(p · q̂)(k′ · q̂)G0

p− q2
G0
p+ q

2
G0
k′− q2

G0
k′+ q

2
G0
p−kG

0
k′−k,

χ6d = 4U2

∫
d3kd3k′d3p

(2π)9
(p · q̂)(k′ · q̂)G0

p− q2
G0
p+ q

2
G0
k′− q2

G0
k′+ q

2
G0
p−kG

0
k′+k.

(90)

We set Ω = 0 and take q to be small but finite. After
integration over frequency, we split each diagram into
three parts: “high”, “middle”, and “low” (which we label
“H”, “M”, and “L”), depending on whether zero, one, or
two internal fermionic momenta are confined to the FS,

e.g. χ6a = χH6a+χM6a+χL6a. In this computational scheme,
AL diagrams contain “H”, “M”, and “L” parts, while the
diagram with self-energy renormalization contains “H”
and “M” parts. In explicit form we have
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FIG. 7. Diagrams in second order of U . For constant interaction, (e) and (f), (h) and (i) cancels out. (g) half cancels (a) and
(b) half cancels (d). What remains are half of (a), (c), and half of (d).

χH6a = −8U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)2 [nF (ξk′)− nF (ξk′−k)][nF (ξp)− nF (ξp−k)][nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)]

(ξk′ − ξk′−k − ξp + ξp−k)3

(91a)

χH6c = +8U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂) [nF (ξk′)− nF (ξk′−k)][nF (ξp)− nF (ξp−k)][nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)]

(ξk′ − ξk′−k − ξp + ξp−k)3

(91b)

χH6d = −8U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂) [nF (ξk′)− nF (ξk′+k)][nF (ξp)− nF (ξp−k)][nB(−ξk′ + ξk′+k)− nB(ξp − ξp−k)]

(ξk′ − ξk′+k + ξp − ξp−k)3

(91c)

χM6a = −4U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)2

(
1 +
|k′| cosφk′

|p| cosφp

)
n′F (ξp)

[nF (ξk′)− nF (ξk′−k)][nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)]

(ξk′ − ξk′−k − ξp + ξp−k)2

(91d)

χM6c = +8U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂)n′F (ξp)

[nF (ξk′)− nF (ξk′−k)][nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)]

(ξk′ − ξk′−k − ξp + ξp−k)2
(91e)

χM6d = +8U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂)n′F (ξp)

[nF (ξk′)− nF (ξk′+k)][nB(−ξk′ + ξk′+k)− nB(ξp − ξp−k)]

(ξk′ − ξk′+k + ξp − ξp−k)2
(91f)

χL6a = +4U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)2 |k′| cosφk′

|p| cosφp
n′F (ξp)n′F (ξk′)

nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)

ξk′ − ξk′−k − ξp + ξp−k
(91g)

χL6c = −4U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂)n′F (ξp)n′F (ξk′)

nB(ξk′ − ξk′−k)− nB(ξp − ξp−k)

ξk′ − ξk′−k − ξp + ξp−k
(91h)

χL2d = −4U2

∫
d2kd2k′d2p

(2π)6
(p · q̂)(k′ · q̂)n′F (ξp)n′F (ξk′)

nB(−ξk′ + ξk′+k)− nB(ξp − ξp−k)

ξk′ − ξk′+k + ξp − ξp−k
(91i)

Here nB(ξ) = −Θ(−ξ) at T = 0.

The “H” contributions can be evaluated by just setting
Ω = 0 and q = 0 in Eq.(90), e.g.

χH6a = 8U2

∫
d3kd3k′d3p

(2π)9
p2(G0

p)
3G0

p−kG
0
k′−kG

0
k′ (92)

The sum of “H” parts is then the incoherent part of the
susceptibility

δχ
c(s),H
l=1 = χ

c(s)
l=1,inc (93)
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𝑝 − 𝑘

𝑝

𝑘$ − 𝑘
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𝑝

(𝑎) (𝑏)

FIG. 8. The two AL vertex correction diagrams for three-leg
vertex.

The “M” and “L” parts determine

δχ
c(s),M
l=1 = χ

c(s)
l=1,0

(
m∗

m

(
Λ
c(s)
l=1Z

)2

− 1

)
δχ

c(s),L
l=1 = −χc(s)l=1,0F

c(s)
l=1 (94)

The “L” part can be computed analytically and yields

χL6a = χL6c = 0, (95)

and

χL6d = −m
2U2

4π2
χl=1,0 (96)

where χl,0 is a free-fermion susceptibility, given by (17).

Using (88), (89) and (85), we find δχ
c(s),L
l=1 = −χc(s)l=1,0F

c(s)
l=1

as in (94). The “M” and “H” terms in Eq. (91) are high
dimensional principal value integrals, which we evaluate
numerically. Details of our numerics can be found in the
Appendix.

According to Eqs. (8) and (9), the total “H” contri-
butions to charge-current susceptibility, δχcl=1,H should
vanish, while other contributions should obey, to order
U2,

δχcl=1,M =
( m
m∗

(1 + F c1 )2 − 1
)
χl=1,0 ≈ F c1χl=1,0

δχsl=1,M =
( m
m∗

(1 + F s1 )2 − 1
)
χl=1,0 ≈ (2F s1 − F c1 )χl=1,0

δχsl=1,H =

(
m∗

m
− 1− F sl

)
χl=1,0 ≈ (F c1 − F s1 )χl=1,0 (97)

Using Eq. (85) for F
c(s)
1 and χl=1,0 = mk2

F /(2π) (re-

call that for spin and charge currents f
c(s)
l=1 (kF ) = 1), we

obtain

δχcl=1,M = χ, δχcl=1,H = 0,

δχsl=1,M = −3χ, δχsl=1,H = 2χ,
(98)

where χ = m3U2k2
F /16π3. In Table I we list δχ

c(s)
l=1,H ,

δχ
c(s)
l=1,M and δχ

c(s)
l=1,L in units of χ. We also computed

Λ
c(s)
l=1 independently, by collecting vertex correction dia-

grams, keeping external particles at the FS. Applying the
same tactics as before, i.e., identifying equivalent contri-
butions to reduce the number of diagrams, we find that

Λcl=1 = 1 + Λ7a +
1

2
Λ7b

Λsl=1 = 1− 1

2
Λ7b (99)

+
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FIG. 9. Diagrams for Γω to second order, for a constant U .

where Λ7a and Λ7b are two vertex corrections in Fig.8.
In explicit form

Λ7a = −2U2

kF

∫
d3kd3p

(2π)6
(p · q̂)(G0

p)
2G0

p−kG
0
kF n̂−k

Λ7b = −2U2

kF

∫
d3kd3p

(2π)6
(p · q̂)(G0

p)
2G0

p−kG
0
kF n̂+k

(100)

where n̂ is a unit vector. We evaluated the integrals in the
RHS of (100) numerically and the results are presented
in Table II. From (97) and (85) we expect

Λcl=1 − 1 = 1.39Λ, Λsl=1 − 1 = −0.61Λ (101)

where Λ = m2U2

8π2 . We see that these relations are satis-
fied, as they should be.

C. Microscopic explanation for the absence of l = 1
Pomerachuk instabilities

We now present microscopic arguments as to why ΛZ
and χl=1,inc, for charge-current and spin-current suscep-
tibilities are expressed via Landau parameters. We will
analyze Eq. (68) for the spin channel, where ΛZ =
1 + F s1 − F c1 .

The quasiparticle residue Z can be expressed via
Γωαβ,αβ using a Ward identity for any conserved

”charge”1,2,30. For our purpose it is best to use the Ward
identity associated with conservation of total momen-
tum (recall that we consider a Galilean invariant system).
Substituting λρ(k) = k into (60b) we obtain

1

Z
= 1− i

2kF

∑
αβ

∫
d3q

(2π)3
Γωαβ,αβ(kF p̂,q)(G2

q)
ωp̂ · q

(102)
The renormalization of the spin-current vertex can be
written as

Λsl=1σ
z
ββ = σzββ−

i

kF

∑
α

∫
d3q

(2π)3
Γωαβ,αβ(kF p̂,q)(G2

q)
ωp̂ · qσzαα

(103)



16

channel δχl=1,L δχl=1,M δχl=1,H δχl=1

charge −1 +0.99± 0.02 +0.01± 0.04 0.01± 0.04
spin +1 −2.97± 0.02 +1.98± 0.02 0.01± 0.02

TABLE I. The contributions to susceptibilities for
charge-current and spin-current order parameters (l = 1

orders with form factor λ
c(s)
l=1 (p) = p) at order U2, from

fermions at high (“H”), middle (“M”) and low (“L”) en-
ergies. The “L” contribution was obtained analytically,
and the “M” and “H” contributions were obtained numer-
ically. The numbers are in units of χ = m3U2k2F /16π3.
The results agree with Eq. (98) and, hence, with Eqs. (8)
and (9).

channel from Eq.(100) from δχl=1,M

charge +1.39± 0.02 +1.38± 0.01
spin −0.604± 0.008 −0.60± 0.01

TABLE II. Numerical results for Λ
c(s)
l=1 − 1 for the case

when the form factor is λ
c(s)
l=1 (p) = p. The results are in

units of Λ = m2U2

8π2 . The first column is obtained from
a direct evaluation of Eq.(100) and the second one is ex-

tracted from our calculation of δχ
c(s)
l=1,M , via Eq.(94) . The

results are in agreement with Eq.(101) and, hence, with
Eq.(7).

where p̂ · q is now simply the form-factor for the cur- rent. The vertex function Γω to order U2 is given by the
diagrams in Fig. 9. In explicit form

Γωαβ,γδ(p = (kF p̂, 0), q) =
1

2
δαγδβδ

[
U + iU2

∫
d3k

(2π)3
(2GkGq−p+k +GkGq+p−k)

]
− 1

2
σαγ · σβδ

[
U + iU2

∫
d3k

(2π)3
GkGq+p−k

]
. (104)

Summing up contributions from both Z and Γ we ob-
tain, to order U2,

Λsl=1Z = 1−
U2

kF

∫
d3kd3q

(2π)6
(GkGq−p+k +GkGq+p−k) p̂ · q(G2

q)
ω

(105)

As written, the integral in the RHS of Eq. (105) is not
confined to the FS. However, the sum can be re-expressed
as an integral over the FS. The reason for this is the
identity29,∫

d3kd3q

(2π)6
(GkGq−p+k +GkGq+p−k) (Gq+pε −Gq) = 0,

(106)

where pε = ε(kF p̂,Ω) and ε → 0. This identity can be
proven by a simple relabeling of indices on the p-h bub-
ble. Choosing Ω = 0 and expanding to first order in ε,
we obtain∫

d3kd3q

(2π)6
(GkGq−p+k +GkGq+p−k) (G2

q)
kp̂ · q = 0,

(107)
where (G2

q)
k = limk→0G(q + k,Ω)G(q,Ω). This (G2

q)
k

has a regular piece, equal to (G2
q)
ω, and an extra piece

which comes from the FS. Using the known relation1

(G2
q)
k = (G2

q)
ω − 2πiZ2

v∗F
δ(ω)δ(|q| − kF ), (108)

substituting into (107), and using Eq. (104) to extract
the Landau parameters, we obtain

U2

kF

∫
d3kd3q

(2π)6
(GkGq−p+k +GkGq+p−k) (G2

q)
ωp̂ · q =

∫
dθ

2π
(F c(θ)− F s(θ)) cos θ = F cl=1 − F sl=1 (109)

Substituting into (105), we recover Eq. (101).

We emphasize that only the product Λsl=1Z is ex-
pressed via the integral over the FS. Taken separately,
Λsl=1 and Z are determined by integrals which are not
confined to the FS. We also note that the same Eq. (109)
allows one to express the effective mass, computed to or-

der U2 in a direct perturbation theory, as the integral
over the FS in Eq. (86) (see Ref. 29 for details).
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V. ARBITRARY FORM-FACTOR λ
c(s)
l=1 (k) AND

OTHER VALUES OF l

The purpose of this final section is to clarify how
generic are the constraints imposed by Eqs. (7), (8),
which prevent a Pomeranchuk instability for charge-
current and spin-current order parameters. In this sec-
tion we first study the case of an order parameter

ρ
c(s)
l=1 with form factor λl=1(k) = kf

c(s)
l=1 (|k|) for which

fl=1(|k|) 6= 1. We argue that in this case there is no re-

lation Λ
c(s)
l Z ∝ (1 +F

c(s)
1 ) and therefore a Pomeranchuk

instability does occur when F
c(s)
l = −1.

The argument is quite straightforward – ρ
c(s)
l=1 with

fl=1(|k|) 6= 1 is not a current of a conserved quantity,
hence it is not related by a continuity equation to a quan-
tity, such as a conserved charge, whose susceptibility is
expressed in terms of Landau parameters. Rather, it has
two pieces and is of the form,

χ
c(s)
l=1 = χ̃

c(s)
l=1 + δχ

c(s)
l=1 , (110)

where χ̃
c(s)
l=1 is finite and can be expressed in terms of

Landau parameters at Ω/vF |q| → 0, but δχ
c(s)
l=1 cannot.

As a result,while χ̃
c(s)
l=1 remains finite when F

c(s)
l=1 = −1,

δχ
c(s)
l=1 diverges, signaling a Pomeranchuk instabilitiy.

An indication of this appears already at first order in
U . To see this, we evaluate the diagrams of Fig. 2 in Sec.
IV A for the more general case fl(|k|) 6= 1. Then we find
the contribution of diagrams 2a,b is:

(
χ
c(s)
l=1,2a + χ

c(s)
l=1,2b

)
=
m2Ω2

q2

(
χ̃
c(s)
l=0,2a + χ̃

c(s)
l=0,2b

)
+ δχ

c(s)
l=1 ,

(111)

Here, χ̃
c(s)
l=0 is the susceptibility of a channel with l = 0

symmetry, but with fl=1(|k|) in the form-factor, and

δχ
c(s)
l=1 = 2

∫
d2kd2p

(2π)2

[
nF
(
ξp−q/2

)
− nF

(
ξp+q/2

)] [
nF
(
ξk−q/2

)
− nF

(
ξk+q/2

)]
(m−1q)2

U(p− k)
[
fl=1(|k|)fl=1(|p|)− f2

l=1(|k|)
](

1− 2Ω

Ω−m−1k · q

)
, (112)

is an additional term which is exactly zero for fl = 1. The
results to order U are somewhat special because each of
the three terms in Eq. (111) has an additional q2 factor
in the Ω/q → 0 limit.

Nevertheless, the appearance of δχl=1 already at this

order indicates that δχ
c(s)
l=1 is not expressed via δχ

c(s)
l=0 ,

taken in the q/Ω → 0 limit, as it was the case for a
current of a conserved order parameter.

To see explicitly that for fl 6= 1 Eqs. (7) and (9) are
no longer valid we perform the same calculations as in
Sec. IV C for f c,sl=1(|k|) 6= constant. For definiteness, we

consider f
c(s)
l=1 (|k|) = kF /|k|, i.e., λ

c(s)
l=1 (k) = kF k̂ · q̂. The

cancellation between different diagrams for susceptibility
still holds, and the results for δχsl=1 and δχsl=1 to order
U2 are still given by Eqs (88) and (89), and the contribu-
tion from each diagram can again be split into “H”, “M”,
and “L” parts. However, now each contribution has to be
computed with different prefactors. This does not affect

the “L” contribution as, by construction, f
c(s)
l=1 (kF ) = 1,

but the modification of f
c(s)
l=1 (k) does affect “M” and “H”

contributions. In Table I we present the results for “H”,
“M”, and “L” contributions to δχcl=1 and δχsl=1 in units

of χ. We also computed Λ
c(s)
l=1 by evaluating the renor-

malization of the three-leg vertex. We show the results
in Table IV, again in units of Λ. We see that neither

the constraints on the components of the susceptibili-

ties, Eq. (98), nor the conditions on Λ
c(s)
l=1 , Eq. 101, are

obeyed. Therefore, Λ
c(s)
l=1 does not scale with (1 + F

c(s)
1 )

and does not cancel 1/(1 + F
c(s)
1 ) in the quasiparticle

part of the susceptibility. Since there is no cancellation
of the diverging part, the most natural outcome, in our

view, is that for any order parameter with f
c(s)
l=1 6= 1, a

Pomeranchuk instability does occur when F
c(s)
1 = −1.

However, our treatment is perturbative, and we cannot

rule out a possibility that Λ
c(s)
l=1 = A(U)(1 + F

c(s)
1 ) with

A some interaction-dependent factor, via an effect that
is not captured in the form of Eq. (10).

We also explicitly calculated “L”, “M”, and “H” con-

tributions to susceptibility in l = 2 with f
c(s)
l=2 (k) = 1 and

fl=2 =
k2F
|k|2 . For l = 2, F c2 = −F s2 = χ/2, such that the

low-energy contributions to the l = 2 charge and spin
susceptibilities are δχcl=2,L = −δχsl=2,L = −χ′/2, where

χ′ = χk2
F = m3U2k4

F /16π3. For the Hubbard inter-
action that we used, we find that χH6a,l=2 and χH6d,l=2
are logarithmically divergent when the form factor is
|k|2 cos 2φk(which means fl=2 = 1). Specifically, χH6a
diverges when p ≈ k → ∞ and χH6a diverges when
p ≈ k ≈ k′ → ∞. If we assume an UV cutoff s we
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channel δχl=1,L δχl=1,M δχl=1,H δχl=1

charge −1 +0.36± 0.04 +0.12± 0.04 −0.52± 0.06
spin +1 −2.86± 0.02 +1.50± 0.04 −0.36± 0.04

TABLE III. Numerical results for high- and middle- energy
contributions to charge and spin susceptibilities for l = 1

order parameters with the form factor λ
c(s)
l=1 (p) = kFp/|p|

(“M” and “H” terms), together with the analytical result for
the low-energy “L” contribution. The numbers are in units
of χ = m3U2k2F /16π3. The results clearly deviate from those
in Table I and do not satisfy Eqs. (8) and (9).

channel from Eq.(100) from δχl=1,M

charge +1.07± 0.01 +1.07± 0.01
spin −0.548± 0.008 −0.538± 0.008

TABLE IV. Numerical results of Λ
c(s)
l=1 − 1 for the case when

the form factor is λ
c(s)
l=1 (p) = kFp/|p|. The numbers are in

units of Λ = m2U2

8π2 . The first column is obtained from a di-
rect evaluation using Eq.(100)(in which p is replaced with
kFp/|p|, and the second column is extracted from our calcu-
lation of δχl=1,M via Eq.(94). The results show that Eq.(7)
is not satisfied if the form-factor is different from k.

channel δχl=2,L δχl=2,M δχl=2,H δχl=2

charge, fl=2 = 1 + 1
2
−1.98± 0.02 1

2
log s 1

2
log s

spin, fl=2 = 1 − 1
2
−1.00± 0.02 +1.32± 0.04 −0.18± 0.04

charge, fl=2 =
k2F
|k|2 + 1

2
−1.96± 0.02 +1.18± 0.04 −0.28± 0.04

spin, fl=2 =
k2F
|k|2 − 1

2
−1.16± 0.02 +0.70± 0.04 −0.96± 0.04

TABLE V. Charge and spin susceptibilities in the quadrupolar l = 2 channel, calculated from Eqs.(91) using two different form
factors. The numbers are in units of χ′ = m3U2k4F /16π3, and s is the UV cutoff. The results show no connection between
high-energy and middle-energy contributions and the low-energy contribution. Different form factors depend on fl=2 through
our definition in Eq.(14).

obtain

χH6a,l=2 ≈ χH6d,l=2 ≈
m3U2k4

F

32π3
log s (113)

Then, according to (88) and (89) the l = 2 susceptibil-
ity with fl=2 = 1 diverges in charge channel while re-
mains finite in spin channel. However, this logarithmical
divergence will be removed once we consider a generic
interaction which tends to zero at large momentum. We
show the results in Table V. We didn’t find any relation
between “M” and “H” contributions to both spin and

charge susceptibilities and 1 + F
c(s)
l=2 . In particular, we

checked the expressions for l = 2 case presented in Ref.
20 and did not reproduce them. This can be also seen
by comparing the results in Ref. 20 with our expressions
for susceptibility to first order in momentum-dependent
U(q), Eq. (26).

VI. SUMMARY

In this paper we studied the constraints placed by
conservation laws on Pomeranchuk transitions, particu-
larly the role of the continuity equation and longitudinal
sum rule. This issue has been previously considered by
Leggett17 back in 1965, and was re-analyzed recently by
Kiselev et al20. The continuity equation and the sum
rule reveal interesting properties of susceptibilities of cur-
rents of conserved total charge and spin. Namely, high

energy features of a system, such as Λ
c(s)
l=1Z, and the in-

coherent piece of the susceptibility, χ
c(s)
l=1,inc, can be ex-

pressed in terms of the Landau parameters F
c(s)
l , which

describe the interaction between fermions on the FS. In

particular, Λ
c(s)
l=1Z scales as (1 + F

c(s)
1 ) and vanishes at

F
c(s)
1 = −1, when the quasiparticle contribution to sus-

ceptibility diverges as 1/(1 + F
c(s)
1 ). The vanishing of

Λ
c(s)
l=1Z cancels out the divergence, and, as a result, the

system does not undergo a p-wave Pomeranchuk insta-
bility. Our aim was to verify this in diagrammatic per-
turbation theory, present a microscopic explanation why
high-energy and low-energy contributions to susceptibil-
ity are related, and check how general such constraints
are.

We showed that the constraints work only for l = 1
and for the specific l = 1 order parameter with form-

factor λ
c(s)
l=1 (k) = k. Such an order parameter describes

currents of the fermionic number and spin - both of
which are conserved quantities. For any form factor
with l = 1 symmetry, but different functional behavior,

λ
c(s)
l=1 (k) = f

c(s)
l=1 (|k|)k with f(|k|) 6= 1, high-energy and

low-energy contributions to the susceptibility are not di-
rectly correlated. The same is true for other values of
l. As a result, the susceptibility for any other order pa-
rameter with either l = 1 or other l may diverge when

F
c(s)
l = −1 signaling the onset of a Pomeranchuk insta-

bility.
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APPENDIX: DETAILS OF THE NUMERICAL
EVALUATION

For our numerical evaluation of the high energy and
middle energy contributions to the second order dia-
grams, Eqs. (91) and (100) we used Mathematica 11.1.1
with the built-in algorithm NIntegrate, using the Monte
Carlo integration strategy. In our evaluation of diagrams
we used polar coordinates and cut off the momentum at
15kF , e.g. {|p|, 0, 15kF }. The UV divergence in Eqs.
(91) is avoided by the symmetry factor cos lφ and this
15kF truncation is large enough to obtain our results ac-
curately. Since only the angle differences of three the
momenta(p, k and k′) enter our integrals, one can inte-
grate out one of these three angles by hand to achieve
higher accuracy.

In evaluations of the high energy contributions(χHl,6a,

χHl,6c and χHl,6d), the integral region {|p|, 0, 15kF } ×
{|k|, 0, 15kF } × {|k′|, 0, 15kF } is divided into 8 parts:
every dimension of momentum is divided into (0, 3kF )
and (3kF , 15kF ), e.g. {|p|, 0, 15kF } = {|p|, 0, 3kF } +
{|p|, 3kF , 15kF } . In evaluations of mixed energy
contributions(χMl,6a, χMl,6c and χMl,6d), the integral region

{|k|, 0, 15kF } × {|k′|, 0, 15kF } is divided into 9 parts in-
stead. Each momentum dimension is divided as (0, 3kF ),

(3kF , 6kF ) and (3kF , 15kF ). Every subregion was sam-
pled using a maximum of 109 points. We evaluated each
subregion 10 times to ensure the convergence of the nu-

merical sums. The various χ
c(s)
l ,Λ

c(s)
l Z we needed are

readily found from the numerical expressions for the “H”
and “M” diagrams as detailed in the text. The deviation
of these 10 evaluations are the basis for computing the
error brackets of Tables I-V.

As a check of the reliability of our numerical scheme
we computed the quasiparticle residue Z, which is known

to be Z = 1 − 1.39m
2U2

8π2 (see text). Our calculation for
Z is based on Pitaevskii-Landau relations, Eq. (102) of
the text and

1

Z
= 1− i

2

∑
αβ

∫
d3q

(2π)3
Γωαβ,βα(kF p̂,q)(G2

q)
ω (114)

Eq. (114) and Eq. (102) must give the same result.
Numerically we found,

Z = 1− (1.389± 0.045)
m2U2

8π2
based on Equation (114),

Z = 1− (1.390± 0.028)
m2U2

8π2
based on Equation (102),

which gives us confidence our integrals are accurate.
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TABLE VI. Numerical results of high energy and mixed energy contributions for different form factors. The unit here are

k2F
m3U2

8π3 for the first two lines and k4F
m3U2

8π3 for the last two lines.

Form factor 1
2
χHl,6a χHl,6c

1
2
χHl,6d

1
2
χMl,6a χMl,6c

1
2
χMl,6d

λp = |p| cosφp 0.613± 0.008 −0.226± 0.017 −0.379± 0.005 −0.879± 0.008 0.767± 0.006 0.608± 0.005
λp = kF cosφp 0.500± 0.013 −0.193± 0.008 −0.250± 0.008 −0.879± 0.008 0.508± 0.013 0.548± 0.005
λp = |p|2 cos 2φp 1.956± 0.015 −0.052± 0.008 1.292± 0.014 −0.879± 0.008 0.266± 0.006 −0.379± 0.006
λp = k2F cos 2φp 0.500± 0.013 −0.058± 0.006 0.147± 0.012 −0.879± 0.008 0.202± 0.008 −0.303± 0.005
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