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We develop the theory of quantum friction in two-dimensional topological materials. The quan-
tum drag force on a metallic nanoparticle moving above such systems is sensitive to the non-trivial
topology of their electronic phases, shows a novel distance scaling law, and can be manipulated
through doping or via the application of external fields. We use the developed framework to in-
vestigate quantum friction due to the quantum Hall effect in magnetic field biased graphene, and
to topological phase transitions in the graphene family materials. It is shown that topologically
non-trivial states in two-dimensional materials enable an increase of two orders of magnitude in the
quantum drag force with respect to conventional neutral graphene systems.

Quantum vacuum fluctuations of the electromagnetic
field produce observable macroscopic effects, the most
renowned example being the attractive Casimir force be-
tween two neutral bodies [1–4]. When the bodies are set
into relative motion at constant velocity, a dissipative
force that opposes the motion is exerted on each of them
due to the exchange of Doppler-shifted virtual photons
at zero temperature, an effect known as quantum friction
[5, 6]. Various theoretical studies have been carried out
to model surface-surface (Casimir) (see, e.g., [7, 8]) and
particle-surface (Casimir-Polder) quantum friction (see,
e.g., [9–12]), analyzing the velocity and distance depen-
dency of the drag force in 3D bulk materials and, more
recently, in graphene [13, 14]. Due to its short range
and small magnitude, measurements of quantum friction
in mechanical moving systems are challenging, but the
analog phenomenon of Coulomb drag [15–17], in which a
current in one plate induces a voltage bias in another one
via the fluctuating Coulomb field, has been successfully
demonstrated in quantum wells as well as in graphene in
a regime dominated by thermal fluctuations [18, 19].

When the optoelectronic response of the bodies has
non-trivial topological features, novel Casimir physics
phenomena can arise due to the interplay between quan-
tum vacuum fluctuations and topologically protected
surface states. Quantized Casimir forces and sponta-
neous emission have been found in magnetic field biased
graphene [20, 21] and in Chern insulators [22] due to the
quantum Hall effect (QHE). More recently, Casimir force
topological phase transitions (TPT) [23] have been pre-
dicted in the graphene family materials, formed by sil-
icene, germanene, stanene, and plumbene [24–26]. The
interplay between Dirac physics, spin-orbit coupling, and
externally applied electrostatic and polarized laser fields
can drive these materials through various topological
phases [27], resulting in novel Casimir force distance scal-
ing laws and also force quantization and repulsion.

In this paper, we study the impact of two-dimensional
(2D) topological materials on quantum friction. We show

that while the electric component of the Casimir-Polder
frictional force is sensitive only to the non-topological
longitudinal conductivity of the material, the magnetic
component depends on the Hall conductivity and can
hence probe topological features manifested through the
charge Chern number of the monolayer. We exemplify
these general findings by studying topological quantum
friction on a metallic nanoparticle due to the QHE in
magnetic field biased graphene and in TPT with the
graphene family materials.

Quantum friction in the flatland: Consider a nanopar-
ticle moving with constant velocity v at a distance d from
a 2D topological material (see Fig.1). The optical re-
sponse of the nanoparticle is assumed to be isotropic
and given by its electric αE(ω) and magnetic αH(ω)
polarizabilities, while the monolayer is characterized by
a rotationally invariant conductivity tensor σij(ω) =
σL(ω)δij + σH(ω)εij , (i, j = x, y), where σL and σH are
the longitudinal and Hall conductivities, and εij is the 2D
Levi-Civita tensor. We assume the motion is along the x̂
direction, and that the particle’s trajectory is prescribed
by means of an external force Fext along that same di-
rection. For temperatures kBT � ~vx/d, the frictional
force F = −(FE + FH)x̂ is dominated by quantum fluc-
tuations, and to lowest order in velocity its electric and
magnetic contributions are given by [10, 28]

FE,H =
~v3
x

12π3
αI′E,H(0)

∫ ∞
−∞
dqy

∫ ∞
0

dqxq
4
xTr
[
GI′E,H(q, d, 0)

]
, (1)

where the superscript I denotes imaginary part, the
primed superscript means derivative with respect to fre-
quency, and GE,H is the scattered part of the elec-
tric/magnetic Green tensor of the 2D sheet [30]. For
distances d � vF τ , where vF is the Fermi velocity and
τ is the electronic relaxation time of the involved mate-
rials, corrections to Eq.(1) due to spatial dispersion ef-
fects can be neglected [29]. Note that quantum friction is
a low-frequency phenomenon for low velocities, and can
therefore probe the topological response of the mono-
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FIG. 1. Topological quantum friction in the flatland. A
metallic nanoparticle moves parallel to a 2D topological ma-
terial. Examples considered in this work are monolayers of
the graphene family in the presence of a static magnetic field,
a static electric field, or a circularly polarized laser.

layer. Effects of thermal fluctuations in the topological
frictional force will be discussed later in the paper.

Analytical expressions for the drag forces can be found
in the near-field regime, where they are strongly en-
hanced. One finds Tr

[
G′E(q, d, ω)

]
= (q/2)e−2qd[2r′pp +

(2ω/c2q2)rss+(ω2/c2q2)r′ss], where the Fresnel reflection
coefficients for the 2D material are rss ≈ −µ0ω(σ2

L +
σ2
H)/D and rpp ≈ [2iqσL + µ0ω(σ2

L + σ2
H)]/D, with

D = 4ε0ω + 2iqσL + µ0ω(σ2
L + σ2

H) [21] and q = |q|.
The expression for Tr

[
G′H
]

can be found using electro-
magnetic duality, which amounts to swapping s and p
in the previous expressions. For a spherical metallic
nanoparticle, αE(ω) = 4πR3[ε(ω) − 1]/[ε(ω) + 2] and
αH(ω) = (2π/15)R3(ωR/c)2[ε(ω) − 1], where R is the
radius of the particle and ε(ω) = 1 − ω2

p/(ω
2 + iγω) is

the Drude permittivity of the constituent material [31].
Using the above expressions in Eq. (1), and assuming
that σL(0) is non-zero, we obtain

FE =
45ε0R

3~γ
32πω2

p

1

σL(0)

v3
x

d6
, (2)

FH =
µ0R

5~ω2
p

256πc2γ

σ2
L(0) + σ2

H(0)

σL(0)

v3
x

d6
. (3)

These equations are, of course, not valid when σL(0) = 0.
One can verify starting from Eq. (1) that both forces
identically vanish because Tr[GI′E,H(q, d, 0)] is zero in this
case. On the other hand, if one considers a dielectric
nanoparticle (e.g., described by a Drude-Lorentz model
ε(ω) = ε∞+ω2

p/(ω
2−ω2

0+iγω)), then α′H,I(0) = 0 and the
frictional force is solely given by the electric component.
Due to the 2D nature of the plate, both FE and FH
have the same d−6 distance scaling law and can be of the
same order of magnitude. This is in stark contrast with
quantum friction between a nanoparticle and a 3D bulk,
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FIG. 2. Electric (blue), magnetic (red), and total (black)
quantum frictional forces due to unbiased graphene as a func-
tion of doping for different values of R = 50 nm (solid) and
10 nm (dashed). The normalization is the total drag force

F
(0)
g = F

(0)
E;g + F

(0)
H;g for unbiased undoped graphene. Inset:

Quantum friction versus distance for a nanoparticle moving
above graphene (black) or a 3D metallic bulk. For the lat-
ter we separately show the electric (blue) FE;B and magnetic
(red) FH;B components. Parameters are R = 50 nm, vx = 340
m/s, and copper (~ωp = 7.4 eV and ~γ = 9.1 meV [35]) is the
constituent material of both the nanoparticle and the bulk.

for which FE;B ∝ d−7, FH;B ∝ d−5 and FE;B � FH;B

for good conductors [32] (see Fig. 2).

The most important feature of the above equations is
the dependency of the magnetic force on the Hall conduc-
tivity. According to the Thouless, Kohmoto, Nightin-
gale, Nijs (TKNN) theorem [33], for insulating phases
σH(0) = (e2/2π~)C, where C = −i

∑
β

∫
d2k(2π)−1ẑ ·

∇k × 〈uβk|∇ku
β
k〉 is the charge Chern number (a topo-

logical invariant), the sum is over occupied electron sub-
bands β, the k-integral is over the first Brillouin zone,
and uβk are the eigenfunctions of the Hamiltonian of the
monolayer. The corresponding longitudinal conductiv-
ity can be derived from Kubo’s formula [34], resulting in

σL(0) = e2Γ/2πEΓ, where E−1
Γ =

∑
ββ′

∫
d2k(2π)−2(εβ

′

k−
εβk) |〈uβ

′

k |∇ku
β
k〉|2/[(ε

β′

k−ε
β
k)2 + ~2Γ2], the β′ sum is over

unoccupied sub-bands, ε
β(β′)
k are the eigen-energies corre-

sponding to the eigen-vectors u
β(β′)
k , and Γ is the electron

scattering rate. For insulating phases with trivial topol-
ogy (C = 0), FE and FH have opposite behavior with
σL(0), the former (latter) increasing (decreasing) as the
resistivity of the material grows. For non-trivial topology
(C 6= 0), and for small dissipation ~Γ/EΓ � C2, both
forces have the same behavior with σL(0) and FH ∝ C2

allows to probe the topology of the 2D material. Note
that for dissipationless (Γ = 0) monolayers, σL(0) = 0
and the frictional forces vanish.

Quantum friction and QHE in graphene: We first con-
sider the simplest case of neutral unbiased graphene,
that behaves as a semi-metal and has trivial topology.

The corresponding expressions for F
(0)
E;g and F

(0)
H;g follow
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FIG. 3. Topological quantum friction on a nanoparticle due to
the quantum Hall effect in graphene. Electric (blue) and mag-
netic (red) frictional forces as a function of doping. Solid lines
correspond to Eqs.(4), and dotted lines to Eqs.(2,3) where
the exact formulas for σL,H(0) are used [37, 38]. The Chern
numbers of the magnetic plateaus are shown. Parameters are
Bz = 10 T, ~Γ = 8 meV, and the Cu nanoparticle has radius
R = 10 nm. Due to the weak magnetic response of Cu, we
can neglect effects of the magnetic field on the nanoparticle.

from Eqs.(2,3) using that, in this case, σH(0) = 0 and
σL(0) = σ0, where σ0 = e2/4~ is graphene’s universal
conductivity. In Fig. 2 we show the effect of the chemi-
cal potential µ on FE;g and FH;g, decreasing the former
and increasing the latter. For µ/~Γ � 1, FE;g domi-
nates over FH;g for R � ε0c

2
√

360Γ/ω2
pσ0 (see dashed

curves). For large doping, FE;g/F
(0)
g � FH;g/F

(0)
g ≈

(4µ/π~Γ) × (1 + F
(0)
E;g/F

(0)
H;g)

−1, which can lead to ∼ 25
times enhancement of quantum friction over the total

undoped force F
(0)
g = F

(0)
E;g + F

(0)
H;g for a R = 50 nm Cu

nanoparticle and typical graphene parameters µ = 0.2
eV and ~Γ = 8 meV [36].

We now study the impact of the QHE on quan-
tum friction by considering that the graphene mono-
layer is subjected to a static perpendicular magnetic
field Bz. When Bz is strong enough that quantum Hall
plateaus are well formed, and in the low dissipation limit
~Γ/EB �

√
Nc + 1 −

√
Nc (where Nc = Floor[µ2/E2

B ]

and EB =
√

2e~v2
FBz), the DC Hall conductivity is

given by σH(0) ≈ −(e2/2π~)(4Nc + 2), that results from
the addition of all allowed intra- and inter-band tran-
sitions [37, 38]. On the other hand, the static longi-
tudinal conductivity is dominated by intra-band tran-
sitions for Nc ≥ 1, and takes the simple form σL(0) ≈
(e2Γ/2π)(1 + δNc,0)(

√
Nc + 1 +

√
Nc)

3/EB . For Nc = 0
inter-band transitions result in a correction to the longi-
tudinal conductivity given by ≈ e2Γ/4πEB (see Supple-
ment [39]). We get

FE,H;QHE

F
(0)
E,H;g

≈ EB(2+3δNc,0)

π~Γ(
√
Nc+1+

√
Nc)3
×

{
π2/4 for E,

(4Nc+2)2 for H.
(4)

Note that the increase of the frictional forces with de-
creasing scattering rate arises from the fact that σL(0) is
proportional to Γ in the QHE regime (rather than Γ−1

of unbiased doped graphene), which results from tran-
sitions of quasiparticles between neighboring cyclotron
orbits [40]. For fixed Bz and varying µ, both forces are
quantized, depicting flat Hall plateaus between consecu-
tive values of Nc, with jumps in the magnetic component
depending on the QHE topological invariant C = 4Nc+2.
In Fig. 3 we plot the quantum frictional forces as a func-
tion of doping, showing an excellent agreement between
the approximated expressions given by Eq.(4) and the
exact ones Eqs.(2,3), in which we use the full expressions
for the static conductivity tensor derived from Kubo’s
formula [37–39]. Although in the QHE regime σL(0)
contributes in the same way to both frictional forces,
making them decrease as µ grows, the (4Nc + 2)2 factor
in FH;QHE compensates that decrease and results in an
overall growth of the magnetic quantum frictional force.

Quantum friction and TPT in the graphene family: Sil-
icene, germanene, and stanene have been recently synthe-
sized, enlarging the graphene family and bringing about
a richer electronic structure [24–26]. They are staggered
with finite buckling 2`, their spin-orbit coupling λSO is
non-zero, and their four Dirac cones can be controlled
through the application of an external electrostatic field
Ez perpendicular to the layer, as well as via an applied
circularly polarized laser whose coupling to the layer is
characterized by Λ = ±8παv2

F I0/ω
3
0 (± denotes left and

right polarization, α is the fine structure constant, I0 is
the intensity of the laser, and ω0 is its frequency). The
low-energy Dirac-like Hamiltonian per cone is given by
Hη
s = ~vF (ηkxτx + kyτy) + ∆η

sτz, where ∆η
s = ηsλSO −

e`Ez − ηΛ, η, s = ±1 are the valley and spin indexes,
kx,y are in-plane components of the 2D wave vector k,
and τi are the Pauli matrices. The band structure is
given by ε±k,η,s = ±

√
(~vF |k|)2 + (∆η

s)2, which presents
an energy gap of 2|∆η

s | that can be opened or closed
by the external fields as they drive the system through
various electronic phases [39]. Those phases are charac-
terized by a charge Chern number C = 1

2

∑?
s,η η sign[∆η

s ]
(see Fig. 4), where the star in the summations indicates
that only terms with open gaps ∆η

s 6= 0 should be in-
cluded. The above Hamiltonian is valid as long as ω0 is
much greater than the hopping energy t in the materials
(typically in the range t ≈ 1 − 3 eV [27]), and then the
nanoparticle is almost transparent at such high frequen-
cies. Also, the interaction between Ez and the nanoparti-
cle generates a spatially-dependent induced electric field
∼ Ez(R/d)3 on the monolayer, which can be neglected
provided R/d� 1. Under these conditions the nanopar-
ticle does not affect the coupling between the monolayer
and the external fields.

In the small dissipation limit ~Γ� (
∑?
η,s |∆η

s |−1)−1 ≡
∆̃, and for neutral materials (where only inter-band tran-
sitions contribute to σL,H), one gets σH(0)/σ0 ≈ (2/π)C

and σL(0)/σ0 ≈ ~Γ/3π∆̃ +nc/4, where nc is the number
of closed gaps which accounts for the overlap between
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FIG. 4. Topological phase transitions in quantum fric-
tion. The electric (a) and magnetic (b) quantum frictional
forces phase diagram for neutral graphene family materials.
Acronyms for the phases are defined in the text. Cu is used
for the nanoparticle, R = 50 nm, and ~Γ/λSO = 0.1.

valence and conduction bands in semi-metallic phases
[39, 41–43]. The resulting frictional forces are

FE,H;TPT

F
(0)
E,H;g

≈ 1
~Γ

3π∆̃
+ nc

4

×

1 for E,(
~Γ

3π∆̃
+ nc

4

)2

+
(

2C
π

)2
for H.

(5)

We first consider gapping neutral graphene with the ex-
ternal polarized laser, for which nc = 0, C = −2 sign[Λ],

and ∆̃ = |Λ|/4. For ~Γ� |Λ|, we obtain F gE;TPT/F
(0)
E;g ≈

3π|Λ|/4~Γ and F gH;TPT/F
(0)
H;g ≈ (3|Λ|/π~Γ)C2, so both

forces are enhanced with respect to the ungapped case.
More interesting situations occur for the other mem-

bers of the graphene family. Figs. 4(a,b) show contour
plots of FE;TPT and FH;TPT in the (Ez,Λ) plane. For
phases with trivial topology (C = 0), namely the quan-
tum spin Hall insulator (QSHI), the band insulator (BI),
and the spin-valley polarized metal (SVPM), increasing
the band gaps result in a more insulating behavior (de-
creased σL(0)), and hence the electric (magnetic) force is
strongly enhanced (suppressed), as follows from Eqs.(2,3,
5). Note that for the SVPM phase the frictional forces
are simply one half (for the electric) or twice (for the
magnetic) the force for unbiased undoped graphene, since
the number of closed gaps is nc = 2 rather than 4. For
phases with non-trivial topology, namely the anomalous
quantum Hall insulator (AQHI), the polarized-spin quan-
tum Hall insulator (PS-QHI), the spin-polarized metal
(SPM), and the single Dirac cone (SDC), the behavior
of the electric force is the same as that of phases with
trivial topology because FE only depends on σL(0). On
the other hand, the magnetic force for topologically non-
trivial phases grows with the square of the Chern number,
and its explicit form depends on whether they are insulat-
ing (AQHI, PS-QHI, nc = 0) or semi-metallic (SPM nc =
2, SDC nc = 1). For insulating phases, FH increases as
the effective gap ∆̃ grows, in contrast to the behavior ob-
served in QSHI and BI phases. For semi-metallic phases,
σL(0) in the numerator of Eq.(3) cannot be neglected
even in the limit of small dissipation, because of the con-
tribution stemming from closed gaps (see Eq.(5)). Hence,

the magnetic component of the frictional force shows an
interplay between the topology resulting from the insu-
lating behavior of cones with open gaps and the semi-
metallic behavior from cones with closed gaps, namely

F SPM,SDC
H;TPT /F

(0)
H;g ≈ nc/4 + 16C2/π2nc. We mention that

the total drag force FTPT is dominated by its electric
component in the QSHI/BI phases and by its magnetic

one in the AQHI phase, where FAQHI
TPT & 100F

(0)
g [39].

Effects of doping on quantum friction in the graphene
family are shown in the Supplement.

Finally, we discuss the effect of thermal fluctuations
in topological Casimir-Polder drag. For temperatures
~vx/d � kBT , thermal fluctuations dominate the fric-
tional forces and, if in addition, kBT is much smaller
than the relevant energy scales characterizing the opti-
cal response of the materials (e. g. ~ωp, EB , λSO), they
can be casted as FTE ∝ (kBT )2vx/σ

T
L (0)d4 and FTH ∝

(kBT )2[σTL (0) + σTH(0)]vx/σ
T
L (0)d4 [39], where σTL,H are

the temperature-dependent conductivities [23, 39, 43–
45]. Since in this regime temperature is much smaller
than the typical energy scales of the monolayer, thermal
corrections to the T = 0 conductivities can lected, and
then FTE,H ∝ FE,H×(kBTd/~vx)2, where FE,H are given
by Eqs. (2, 3). Consequently, the effect of thermal fluc-
tuations is to enhance the topological features already
present in the quantum frictional force. Note that, since
Figs. 3 and 4 show ratio of forces, they remain unchanged
in the above regime of temperatures which, for example,
can be attained for silicene at cryogenic temperatures and
reasonable distances and velocities for the nanoparticle.

In summary, we developed the framework of topologi-
cal quantum friction in 2D materials. Taking advantage
of the TKNN theorem and the fact that quantum friction
is a low-frequency phenomenon for low velocities, we dis-
covered that the Casimir-Polder frictional drag is sensi-
tive to the underlying topology of monolayers supporting
quantum Hall states. We also found that quantum fric-
tion satisfies a universal d−6 distance scaling law, both
for its electric and magnetic components and irrespective
of the opto-electronic response of the monolayer. Casimir
quantum friction between two plates made of topological
2D materials can unveil an even richer phenomenology,
e.g. an interplay between different Chern numbers corre-
sponding to distinct phases. Moreover, it would be inter-
esting to investigate the influence on quantum friction of
gapless unidirectional edge states of finite size topological
monolayers through state-of-the-art numerical methods.
Although challenging, topological quantum friction could
potentially be measured in mechanical set-ups based on
cryogenic atomic force microscopy [46].
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