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ABSTRACT 

Weyl semimetals contain linearly dispersing electronic states, offering interesting features in 

transport yet to be thoroughly explored thermally. Here we show how the Nernst effect, 

combining entropy with charge transport, gives a unique signature for the presence of Dirac bands 

and offers a diagnostic to determine if trivial pockets play a role in this transport. The Nernst 

thermopower of NbP exceeds its conventional thermopower by a hundredfold, and the 

temperature dependence of the Nernst effect has a pronounced maximum. The charge neutrality 

condition dictates that the Fermi level shifts with increasing temperature toward the energy that 

has the minimum density of states (DOS). In NbP, the agreement of the Nernst and Seebeck data 

with a model that assumes this minimum DOS resides at the Dirac points is taken as strong 

experimental evidence that the trivial (non-Dirac) bands play no role in high-temperature 

transport.  
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MAIN TEXT 

Unique features intrinsic to Weyl semimetals (WSM) lead to interesting galvanomagnetic 

transport phenomena [1,2]. Preliminary theoretical studies predict that bulk Weyl nodes [3,4] and 

surface Fermi arcs [5] have magnetothermal and thermomagnetic transport signatures beyond 

classical semimetal electrical transport signatures. Dirac fermion experimental thermomagnetic 

data exists [6,7], including magnetic-field-dependent adiabatic Seebeck coefficients [8,9]. While 

model fits to data exist for PbSnSe [6] and Cd3As2[7], here we present a quantitative 

understanding of the NbP Nernst and Seebeck coefficients without recourse to fitting parameters 

for temperature or field dependences. 

We show that symmetry between the electron-like and hole-like Dirac band portions 

results in (i) a characteristic temperature- and magnetic-field-dependent Nernst thermopower, and 

(ii) a relation between the Nernst and Seebeck coefficients’ unique Dirac band signatures. We 

report and explain the single-crystal NbP isothermal Nernst and magneto-Seebeck effects on 

samples with large, unsaturated magnetoresistances and ultrahigh mobilities. In the zero-

temperature limit the NbP band structure has 24 Weyl points and several trivial pockets [2]. Here 

we show that with increasing temperatures, electrons/holes in the NbP symmetric Dirac bands 

dominate transport as electrochemical potential μ(T) moves toward the Dirac point, minimizing 

contributions from the trivial bands (i.e., no Dirac dispersion near the electrochemical potential).  

The Nernst effect is a decreasing function of temperature in classical, non-Dirac 

semimetals like Bi [10], except in the phonon-drag regime, excluded here [9]. In NbP, the Nernst 

effect temperature dependence is non-monotonic with a maximum at TM. The experimental Nernst 

thermopower is two orders of magnitude larger than the Seebeck coefficient. We show these two 

effects as specific to Dirac bands. When electrons and holes coexist in equal density in symmetric 

bands, the Seebeck coefficient tends to zero and the Nernst effect (the sum of the electron and 

hole contributions [11]) is large. Furthermore, the local charge-neutrality condition in undoped 

semiconductors and semimetals dictates that μ(T) is located at the energy where the density of 

states (DOS) is minimal. When defects or aliovalent impurities add an extrinsic charge-carrier 

density, μ(T), in the limit T→0K, falls in a band at μ0. As the temperature increases such that 

thermally-induced intrinsic charge carriers outnumber extrinsic carriers, μ(T) tends toward the 

energy minimizing DOS. We demonstrate that in NbP, this energy is the Dirac point of the 

carriers in the W2 band identified in Ref [2], which we define as the energy scale zero. This claim 

is based on a model using independently derived values for the parameter μ0 and the carrier 

scattering time τ; applying no fitting parameters. In this model, the Nernst coefficient first 
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increases with increasing temperature for T<TM as μ(T) starts from μ0 and tends toward the Dirac 

point, thereby increasing compensation between electrons and holes. For T>TM, the Nernst 

coefficient decreases as the Fermi distribution broadens with increasing temperature and the 

relative contribution of non-linear band dispersions increases. Simultaneously, the Seebeck 

coefficient for T>TM tends to zero due to compensation in the dispersion. This model tracks 

experiments quantitatively and qualitatively, providing strong evidence that Dirac bands dominate 

conduction and μ(T) reaches the Dirac point at T=TM. We conclude that the trivial bands 

contribute little to transport at high temperature (T>TM) in NbP. Similar temperature dependences 

are observed in experimental Nernst coefficients of other Weyl semimetals, indicating similar 

behavior, although this must be investigated individually. 

The maximum Nernst thermopower found, αxyz(9T, 109K)∼800 μV/K, is remarkable, 

surpassing traditional thermoelectric semiconductors’ thermopower (~200–300 μV/K). 

Developing materials where this happens near room temperature would be technologically 

significant because output from a transverse Nernst thermoelectric generator or Ettingshausen 

cooler scales intrinsically with device size [12,13], does not require separate n- and p-type legs, 

and functions over large temperature differences without staging or cascading, offering 

advantages over conventional thermoelectric modules. 

With magnetic-field application along the z-axis <001> and temperature gradient 

perpendicular along the x-axis, the isothermal Nernst thermopower αxyz is the transverse electric 

field measured along the y-axis. The isothermal Seebeck coefficient αxxz measures longitudinal 

electric field along the x-axis: 
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≡ . Unlike prior work [9], we study 

these quantities isothermally, such that yT∇ =0 [14]. The distinction between isothermal and 

adiabatic thermomagnetic transport is fundamental [14] and detailed in the supplement [15]; 

transport theory models isothermal coefficients, not adiabatic ones. 

Previous two-band Drude models fit electrical transport in compensated semimetals well, 

e.g., Pb1-xSnxSe [6] and WTe2 [16]. Nevertheless, we present a WSM Hamiltonian-based theory 

[17], which does not invoke each band contribution in a multiband system, but instead, an integral 

covering energies lower and higher than that of the Dirac point. Fig. 1(a) plots the energy band 

structure. Fig. 1(b) gives a two-dimensional picture of one Dirac band. The model is solved self-
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consistently for μ(T), which moves to the nodal energy with increasing temperature on a scale of 

0 B

T
kμ , Fig. 1(c). This hypothesized μ(T) behavior ignores any trivial band contribution and is 

crucial to the temperature-dependent Nernst effect. The supplement [15] provides 

thermomagnetic tensor-element calculations from the WSM Hamiltonian in the Boltzmann 

formalism, and calculates the isothermal Seebeck and Nernst coefficients as a function of 

magnetic field and temperature. The linear Dirac band dispersion results in a quadratic 

dependence of the DOS’s energy dependence. If the relaxation time also has an energy 

dependence that is a power law of energy, 0( ) λτ ε τ ε=  with λ an integer, the Fermi functions 

entering the integrals at zero magnetic field have analytical solutions, obviating the need for the 

Bethe-Sommerfeld expansion [18], valid only in the degenerate limit. Therefore, analytic 

solutions can be derived for the thermopower and the low-field Nernst coefficient of symmetric 

Dirac bands, valid at all temperatures. For λ=0 (energy-independent relaxation time), they are:  
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      (2). 

These functions quantitatively describe most of the important features of the low-field 

Nernst and Seebeck coefficients including the non-monotonicity of the temperature dependence. 

They predict that the low-field Nernst coefficient will maximize at TML  03
Bk

μ
π , above 

which it will decrease following a 1/T law. The Nernst coefficient high-field slope must be 

derived from numerical calculations in the supplement [15] and will have a maximum at TML  

0

Bk
μ . Theory still requires that two parameters, μ0 and τ, be quantitative. Comparing theory and 

experiment, these will be derived independently from the experimental Nernst and Seebeck 

coefficients: μ0 from de Haas-van Alphen (DHVA) and Shubnikov-de Haas (SDH) oscillations, 

and τ from resistivity.   

This work experimentally characterizes a 2.25 x 1.29 x 0.52 mm single crystal of NbP, 

made following Ref. [2] and fully characterized with resistivity, thermal conductivity, specific 
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heat, and magnetization (see supplement [15]), confirming the crystal had properties similar to 

that in Ref [2]. The sample was mounted on a silicon backing plate with a temperature gradient 

applied along x and magnetic field along z <001>. Measurements follow the conventions of Eq. 1 

with (x,y,z) coordinates orthonormal (x and y orientations lie unidentified in the <001> plane). 

The silicon plate underlying the sample thermally short-circuits it so that the temperature gradient 

established in the silicon also is imposed on the NbP with ∇yT≈0, which is an isothermal mount. 

This is mounted in the Thermal Transport Option on a Quantum Design Physical Property 

Measurement System modified for isothermal Nernst and Seebeck measurements. This mount 

differs from the manufacturer-recommended conventional adiabatic mount used in Ref. [9]. The 

supplement [15] shows theoretically and experimentally the difference between isothermal and 

adiabatic measurements. For emphasis, this difference cannot be eliminated by data post-

processing, such as by symmetrizing even and odd in-field parts. 

The experimental Nernst effect results are shown in Figs. 2(a) (magnetic field dependence 

of Nernst thermopower) and 3(a) (temperature dependence of Nernst coefficient). αxyz is an odd 

function of Hz with a higher slope near zero magnetic field than at high field. We see a large, 

unsaturated Nernst thermopower with a maximum exceeding 800 μV/K at 9T, 109K. The Nernst 

coefficient temperature dependence taken at low field (|Hz|<2T) and at high field (3T<|Hz|<9T) are 

non-monotonic, with a maximum around TML∼55±10K for low-field and TMH∼90±10K for high-

field, consistent with the model prediction TML  3
MHTπ . The Fig. 3(a) inset shows the 

Seebeck coefficientαxxz temperature dependence; αxxz is nearly two orders of magnitude smaller 

than the maximum 9T Nernst thermopower, and its absolute value is much smaller than the high-

field Nernst effect at all temperatures. The αxxz temperature dependence has a broad minimum 

around TMS ≈ 60-100K. No αxxz(Hz) magnetic-field dependence is observed within instrument 

sensitivity. This result does not contradict prior measurements [9] of the adiabatic magneto-

Seebeck coefficient; those reflect an αxyz contribution due to a finite  induced by a thermal 

Hall effect resulting from the adiabatic measurement technique (see supplement [15]). 

To compare theory to experiment quantitatively, we determine first the Fermi level value, 

μ0, setting the temperature scale. At low temperatures (Fig. 2(a) inset), the Nernst thermopower 

exhibits SDH oscillations. The periods observed in SDH and DHVA oscillations in the 

magnetization (see supplement [15]) correspond well within our measurement error bars to those 

of Ref. [19]. These periods are used in conjunction with density functional theory (DFT) to derive 

μ0’s position vis-à-vis the Weyl points in the 0K limit. DFT calculations were performed using the 
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Vienna ab-initio Simulation Package [20] with a generalized gradient approximation [21]. The 

tight-binding model Hamiltonian was calculated by projecting Bloch states onto maximally 

localized Wannier functions [22] used for generating Fermi surfaces. In the 0K limit, there are 

two Weyl-point types in NbP: one in the kz=0 plane and the other around the kz= π/c plane along 

<001>. The latter type contributes to transport [23,24]. We calculated the quantum oscillation 

periods for both electron and hole pockets with the magnetic field applied both parallel and 

perpendicular to <001> as a function of the hypothetical position of μ0. The DFT calculation 

accuracy is limited to several meV, making a perfect fit of all experimental oscillation frequencies 

with all calculations unrealistic. A μ0 =-8.2±0.7 meV value range satisfies most of the observed 

oscillations (Fig. 4) and sets μ0 in the valence band, consistent with the positive thermopower 

observed at T<25K. The specific heat of the sample is analyzed (see supplement, Eq. S5 [15]) in 

terms of a linear electronic and a phonon term; the linear term has a coefficient γ=1.5 10-4 J/mol-

K2
, comparing well with the calculated γ=1.45 10-4 J/mol-K2 derived from the DOS at μ0=-8.2 

meV. 

The second parameter needed for quantitative comparison is scattering time τ, assumed to 

be energy and temperature independent. DFT-derived values of vF∼2x105 m s-1 (confirmed by 

ARPES) and measured resistivity (see supplement [15]) yield τ~10-13 s.  

The model (see supplement, Eq. S11 [15]) now can be compared to experimental data 

with all parameters determined independently of the Nernst and Seebeck measurements 

themselves. The calculated field and temperature dependences are reported in Figs. 2(b) and 3(b), 

showing exceptional agreement to experimental results, apart from the sign change theory 

predicts for the low-field Nernst effect below 40K. The amplitudes agree within a factor of 4, 

remarkable given the uncertainty of τ. Fig. 3 shows in theory and experiment that the high-field 

Nernst coefficient peaks at TMH  0

Bk
μ , whereas near zero field, the Nernst coefficient peaks at 

TML 03
Bk

μ
π . The maximum at TMS  TML, calculated for the Seebeck coefficient absolute 

value (Eq. 2), also is observed. 

The model ignores trivial pockets in the Fermi surface by hypothesis, whereas band 

structure calculations valid in the 0K limit show they exist. When they are included in the Nernst 

and Seebeck effect calculations, the model diverges from experiment (see supplement [15]). We 

propose this as experimental evidence that non-Dirac bands do not contribute significantly to 

transport at temperatures above μ0/kB. The behavior of αxxz (Fig. 3(a) inset) strengthens this 
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argument. αxxz tends to zero, a value reached rigorously in a Dirac band when μ(T)=0 (Eq. 2). If 

trivial pockets contributed to thermopower, αxxz(T) would become metallic and increase 

monotonically with increasing temperature, as for Bi [10]. The partial thermopowers for the 

different trivial pockets of the Fermi surface that exist at low temperature can be inferred from the 

low temperature Fermi energies calculated for these pockets (see supplement [15]). If these 

pockets had been present at room temperatures, their partial thermopowers would have been of 

the order of 50-500 μV/K, compared to which the experimental value in Fig. 3a is factually zero. 

Because an accidental cancellation over a wide temperature range of the contributions of all non-

Dirac bands is highly unlikely, we offer this as a reductio ad absurdum proof that the trivial 

pockets do not contribute. Furthermore, the near-perfect compensation between electron and hole 

pockets in the Dirac bands also explains the galvanomagnetic properties [2]. Although our 

analysis cannot identify the reason for this observation, the band structure temperature 

dependence might be responsible for this: most semiconductor band gaps increase (PbTe) or 

decrease (GaAs) by ~100 meV from cryogenic to room temperatures. Given the energy scale for 

Dirac fermions relevant to transport is an order of magnitude less, this may cause the disappearing 

trivial pocket importance with increasing temperature. 

In conclusion, we experimentally and theoretically explored thermomagnetic transport in 

the inversion-symmetry-breaking WSM NbP. Two regimes in Nernst thermopower are seen: one 

for Hz >|3T|, and the other Hz <|2T|; both have non-monotonic temperature dependences. The 

theory explaining these properties quantitatively shows them to be Dirac band transport 

signatures, with no measureable contributions from trivial pockets above ∼100K. Theory and 

experiment show that as the chemical potential shifts to the Dirac point energy with increasing 

temperature, the Nernst effect is maximized. At temperatures above the peak temperature, the 

Fermi function derivative broadens, leading states away from the Weyl nodes to contribute more 

to transport, lowering the Nernst thermopower and coefficient. The Nernst thermopower αxyz(9T, 

109K) exceeds 800 μV/K, surpassing the Seebeck thermopower αxxz by two orders of magnitude. 

This study offers an understanding of the temperature dependence of the electrochemical potential 

position vis-à-vis the Weyl point and shows a direct connection between the Nernst effect and 

topology, a potentially robust mechanism for investigating topological states and the chiral 

anomaly. 
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FIGURE LABELS 

Fig. 1: Electrochemical potential band structure and motion with temperature. (a) Two-

dimensional electronic dispersion relation (Eq. S6 in the supplement [15]) used in modeling NbP 

transport properties. (b) Two-dimensional dispersion around a single Dirac cone where, at low 

temperatures, the electrochemical potential lies in the valence band at an energy μ0 below the 

Dirac point. (c) Calculated μ(T) temperature dependence shows it moving towards the Weyl node 

energy with increasing temperature, from |μ0|, whether in the conduction or valence band. The 

energy scale is set to unity at |μ0|, and the temperature scale to unity at |μ0/kB|. 

 

Fig. 2: Nernst thermopower, αxyz magnetic field dependence. (a) Measured Nernst thermopower 

as a function of applied magnetic field at various temperatures. The sharper slope for | | below 

~2T is the low-field regime; above ~3T is the high-field regime. Systematic geometric error on 

the Nernst thermopower field dependence is ~17%. Data are not symmetrized. Inset shows the 

Nernst voltage magnetic field dependence measured at 4.92K in a 2.17 mK temperature gradient. 

SDH oscillations are visible and correspond to DHVA periods measured in the magnetization. (b) 

Calculated at select temperatures, Nernst thermopower magnetic-field dependence given in SI and 

natural units that correspond well experimentally. The magnetic field is the product of the in-

plane lattice constant a and magnetic length B
cL eB≡ h ; thermopower is kB/e, and temperature 

in given units of |μ0/kB|.  

 

Fig. 3: Nernst coefficient, Nxyz temperature dependence. (a) Measured Nernst coefficient plotted 

as a function of temperature (low-field regime in red, high-field in blue). The Nernst coefficient 

peaks near 50K (low-field) and 90K (high-field). Inset shows conventional thermopower 

temperature dependence, with a maximum near 8 μV/K, over two orders of magnitude smaller 

than the maximum Nernst thermopower. No magneto-thermopower is observed when a 9T 

magnetic field is applied parallel to the <001> axis. Error bars represent a 95% confidence 

interval on the systematic error standard deviation, excluding geometric error on the sample 

mount. (b) Calculated temperature dependence of the Nernst coefficient in the low-field (red) and 

high-field (blue) regimes. The given SI and natural units correspond very well without fitting 

 

Fig. 4: Electrochemical potential at 0K from DHVA periods and DFT calculations. Calculated 

(data points) and experimental (horizontal lines) values of the DHVA oscillation periods are 
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shown as a function of μ0 in the 0K limit, as measured from the W2 Dirac point . The μ0=-8.2±0.7 

meV values are represented by the hatched region, with the best overall fit in that box. 
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