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We study out-of-time-order correlators (OTOCs) of the form 〈Â(t)B̂(0)Ĉ(t)D̂(0)〉 for a quantum
system weakly coupled to a dissipative environment. Such an open system may serve as a model
of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium
considered as an environment. We demonstrate that for a system with discrete energy levels the
OTOC saturates exponentially ∝

∑
aie
−t/τi + const to a constant value at t → ∞, in contrast

with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focussing on the
case of a two-level system, we calculate microscopically the decay times τi and the value of the
saturation constant. Because some OTOCs are immune to dephasing processes and some are not,
such correlators may decay on two sets of parametrically different time scales related to inelastic
transitions between the system levels and to pure dephasing processes, respectively. In the case of a
classical environment, the evolution of the OTOC can be mapped onto the evolution of the density
matrix of two systems coupled to the same dissipative environment.

Quantum information spreading in a quantum sys-
tem is often described by out-of-time-order correlators
(OTOCs) of the form

K(t) =
〈
Â(t)B̂(0)Ĉ(t)D̂(0)

〉
, (1)

where Â, B̂, Ĉ and D̂ are Hermitian operators, and 〈. . .〉
is the average with respect to the initial state of the sys-
tem. Correlators of such form have been first introduced
by A. Larkin and Y.N. Ovchinnikov1 in the context of dis-
ordered conductors, where the correlator 〈[pz(t), pz(0)]2〉
of particle momenta pz has been demonstrated to grow
exponentially ∝ e2λt on times τ0 � t � tE , where the
exponent λ characterises the rate of divergence of two
classical electron trajectories with slightly different ini-
tial conditions, τ0 is the elastic scattering time and tE is
the Ehrenfest time, characterising the crossover between
classical and quantum dynamics2.

The concept of OTOC has revived3 recently in the con-
text of quantum information scrambling and black holes,
motivating further studies of such quantities (see, e.g.,
Refs. 4–8). Despite not being measurable observables9,
OTOCs (1) characterise the spreading of quantum infor-
mation and the sensitivity of the system to the change
of the initial conditions. At present, the exponential

growth of commutators of the form
〈

[Ŵ (t), V̂ (0)]2
〉

in

a sufficiently large interval of time is often used as a
definition of quantum chaos (for a discussion of alter-
native definitions see, e.g., Ref.10), and the Lyapunov
exponent λ serves as a measure of quantum chaotic be-
haviour in a system. It is also expected that OTOCs
may be used5,11–14 to identify the many-body-localisation
transition15.

So far the studies of quantum chaos and information
scrambling have been focussing on closed quantum sys-
tems. In reality, however, each system is coupled to

a noisy environment, which leads to decoherence and
affects information spreading. Moreover, a sufficiently
strongly disordered interacting system may be separated
into a small subsystem, of the size of the single-particle
localisation length or a region of quasi-localised states,
coupled to the rest of the system considered as environ-
ment. In this paper we analyse out-of-time-order correla-
tors in a quantum system weakly coupled to a dissipative
environment.

Summary of the results. We demonstrate that, for a
system with discrete non-degenerate levels En, correla-
tor (1) at long times t exponentially saturates to a con-
stant value, K(t) ∝

∑
ane

iωnte−t/τn + const, in contrast
with chaotic systems, where OTOCs contain exponen-
tially growing contributions. The times τn describe the
rates of information scrambling in the system and are
distinct from the dephasing and decoherence times which
describe the decay rates of the density matrix. We calcu-
late microscopically the value of the saturation constant
and the relaxation times τn as a function of the environ-
ment spectral function and the matrix elements of the

FIG. 1. Time dependence of the out-of-time-order correlator
(1) in a system with significantly larger dephasing rate than
relaxation. τdeph and τrel are the (longest) characteristic times
of dephasing and inelastic relaxation.
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system-environment coupling. Depending on the choice
of the operators Â, B̂, Ĉ and D̂, the saturation value may
be finite or zero. OTOCs relax due to both inelastic tran-
sitions between the system’s levels and pure dephasing
processes caused by slow fluctuations of the energies En.
While some OTOCs are immune to dephasing processes,
a generic correlator has components both sensitive and
insensitive to dephasing and thus decays on two sets of
parametrically different scales related to dephasing and
relaxation respectively, as shown in Fig. 1.

Our results suggest, in particular, that a disordered
system of interacting particles cannot exhibit quantum
chaotic behaviour if the typical single-particle level split-
ting δξ in a volume of linear size ξ (single-particle locali-
sation length) exceeds the dephasing rate and the rate of
inelastic transitions due to interactions and/or phonons.
Thus, chaotic behaviour in a disordered interacting sys-
tem requires either a sufficiently large single-particle lo-
calisation length or strong interactions or, e.g., a phonon
bath, which would lead to the quasiparticle decay rate
exceeding the level spacing δξ.

For a classical environment, the evolution of an OTOC
(1) in an open system may be mapped onto the evolution
of the density matrix of two systems coupled to the same
environment, which allows one to measure OTOCs by
observing the correlations between two systems in a noisy
environment, such as spins in a random time-dependent
magnetic field.

Model. We consider a system with discrete non-
degenerate energy levels En coupled to a dissipative en-
vironment and described by the Hamiltonian

Ĥ = Ĥ0 + V̂ X̂ + Ĥbath(X̂), (2)

where Ĥ0 =
∑
nEn |n〉 〈n| is the Hamiltonian of the sys-

tem, Ĥbath(X̂)– the Hamiltonian of the environment, and

V̂ X̂ is the coupling between the system and the environ-
ment, where the operator V̂ =

∑
n,m Vnm |n〉 〈m| acts

on the system degrees of freedom, and X̂ is an environ-
ment variable which commutes with the system degrees
of freedom.

To compute the OTOC (1), where the operators Â, B̂,

Ĉ and D̂ act on the system variables, it is convenient
to decompose it as K = Km1m2,n1n2An1m1Cn2m2 (sum-
mation over repeated indices implied), where An1m1 and

Cn2m2 , are the matrix elements of the operators Â and

Ĉ, and

Km1m2,n1n2
=
〈
|n1〉 〈m1| (t)B̂(0) |n2〉 〈m2| (t)D̂(0)

〉
,

(3)

where 〈. . .〉 is the averaging with respect to both the sys-
tem and environment states.

In the limit of a vanishing system-environment
coupling V̂ , the correlators (3) oscillate with time,
Km1m2,n1n2

∝ ei(En1+En2−Em1−Em2 )t. A finite coupling
between the system and the environment leads to dis-
sipation and relaxation processes and thus to the decay

of the elements Km1m2,n1n2
. For a weak coupling con-

sidered in this paper, the characteristic decay times of
the OTOCs significantly exceed the correlation time of
the environment degrees of freedom, i.e. of the func-
tion S(t− t′) = 〈X̂(t)X̂(t′)〉env, and the evolution of the
elements is described by a system of Markovian Bloch-
Redfield16 equations of the form17

∂tKm1m2,n1n2
=

i(En1
+ En2

− Em1
− Em2

)Km1m2,n1n2

−
∑

m′
1,m

′
2,n

′
1,n

′
2

Γ
m′

1m
′
2,n

′
1n

′
2

m1m2,n1n2Km′
1m

′
2,n

′
1n

′
2
. (4)

From the definition of the elements (3) it follows that∑
m,n

Knm,nm =
〈
B̂(0)D̂(0)

〉
= const. (5)

Eq. (5) may also be derived from the microscopic equa-
tions of evolution, as we show in Ref.17.

Due to the smallness of the decay rates Γ
m′

1m
′
2,n

′
1n

′
2

m1m2,n1n2

in Eq. (4), the evolution of each element Km1m2,n1n2 is
affected only by the elements Km′

1m
′
2,n

′
1n

′
2

with the same
oscillation frequency En1

+En2
−Em1

−Em2
(secular ap-

proximation). In this paper we consider systems with suf-
ficiently non-degenerate energy spectra; if two elements
oscillate with the same frequency, they may be different
only by permutations of indices n1 and n2 and/or m1

and m2.
For a generic N -level system there are 2N2 − N ele-

ments (3) with zero energy gaps En1 +En2 −Em1 −Em2

(with m1 = n1, m2 = n2 and/or m1 = n2, m2 = n1).
These elements are immune to dephasing, i.e. to the
accumulation of random phases caused by slow fluctu-
ations of the energies Eni . Such vanishing of dephas-
ing is similar to that in decoherence-free subspaces18,19

of multiple-qubit systems. We emphasise, however, that
even dephasing-immune correlators in general decay at
long times due to the environment-induced inelastic tran-
sitions between the levels (relaxation processes).

A generic OTOC (1) includes components both sensi-
tive and insensitive to dephasing, as well as a component
independent of time, which exists due to the conservation
law (5). For an environment with a smooth spectral func-
tion on the scale of the characteristic level splitting, the
characteristic decay rate of the dephasing-immune com-
ponents may be estimated as 1/τrel ∼ V 2

⊥S(∆E), where
V⊥ is the typical off-diagonal matrix element of the per-
turbation V̂ and ∆E is the characteristic level spacing.
The other components decay with the characteristic rate
1/τdeph + 1/τrel, where 1/τdeph ∼ V 2

‖ S(0) is the charac-

teristic dephasing rate, where V‖ is the typical diagonal

matrix element of the perturbation V̂ . As a result, the
decay of the OTOC consist of three stages, corresponding
to these characteristic times, as illustrated in Fig. 1.

Two-level system. In order to illustrate the meaning
of these time scales and the related phenomena, we focus
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below on the case of a two-level system, equivalent to a
spin-1/2 in a random magnetic field (we provide micro-
scopic analysis of OTOCs for a generic multi-level system
in Ref.17), described by the Hamiltonian

Ĥ =
1

2
Bσ̂z +

1

2
σ̂nX̂ + Ĥbath(X̂), (6)

where σ̂ is a vector of Pauli matrices and n is a con-
stant unit vector, the direction of the fluctuations of the
magnetic field.

The dissipative environment induces transitions |↑〉 →
|↓〉 with the rate Γ↓ = 1

4 (n2
x + n2

y)S(B), as well as the

opposite transitions |↓〉 → |↑〉 with the rate Γ↑ = 1
4 (n2

x +

n2
y)S(−B), where S(ω) is the environment spectrum, the

Fourier-transform of S(t − t′) = 〈X̂(t)X̂(t′)〉env. Weak
fluctuations of the magnetic field in the longitudinal di-
rection lead to dephasing with the rate Γφ = 1

2n
2
zS(0).

We focus below on the long-time dynamics of the sys-
tem and assume for simplicity that the rate Γφ of pure
dephasing significantly exceeds the rates Γ↑ and Γ↓ of in-
elastic transitions between the levels of the spin; in the
opposite case, all OTOC decay rates are of the same or-
der of magnitude.

The OTOCs K↑↑,↓↓ and K↓↓,↑↑ oscillate with frequen-
cies ±2(E↓ − E↑) = ∓2B and have dephasing rate 4Γφ,
the same as ±1-projection states of a spin-1 in magnetic
field B,

K↑↑,↓↓,K↓↓,↑↑ ∝ e∓2iBte−4Γφt, (7)

where we have neglected the small relaxation rates
Γ↑,↓ � Γφ.

There are 8 elements (3) which correspond to 3 spin in-
dices pointing in one direction and one spin index point-
ing in the opposite direction. These elements oscillate
with frequencies ±B and have the same dephasing rate
as a spin-1/2,

K↑↓,↓↓,K↓↑,↑↑,K↓↓,↑↓, . . . ∝ e−Γφt. (8)

The behaviour of OTOCs at long times t� 1/Γφ is de-
termined by the components with a vanishing frequency
En1 +En2 −Em1 −Em2 of coherent oscillations, because
such components are insensitive to dephasing. For a spin-
1/2, their evolution is described by the system of equa-
tions (as follows from the generic master equations17)

∂t


K↓↑,↑↓
K↑↓,↓↑
K↑↓,↑↓
K↓↑,↓↑
K↑↑,↑↑
K↓↓,↓↓

 =


−Γ↓ − Γ↑ 0 −Γ↓ −Γ↓ Γ↓ Γ↓

0 −Γ↓ − Γ↑ −Γ↑ −Γ↑ Γ↑ Γ↑
−Γ↑ −Γ↓ −Γ↓ − Γ↑ 0 Γ↓ Γ↑
−Γ↑ −Γ↓ 0 −Γ↓ − Γ↑ Γ↓ Γ↑
Γ↑ Γ↓ Γ↑ Γ↑ −2Γ↓ 0
Γ↑ Γ↓ Γ↓ Γ↓ 0 −2Γ↑




K↓↑,↑↓
K↑↓,↓↑
K↑↓,↑↓
K↓↑,↓↑
K↑↑,↑↑
K↓↓,↓↓

 . (9)

The rates of the long-time decay of OTOCs are given
by the eigenvalues of the matrix in Eq. (9) (with minus
sign) and are shown (except for the zero eigenvalue) in
Fig. 2. Such a matrix always has a zero eigenvalue, due
to the conservation law (5). The system also has a triply
degenerate decay rate Γ↑+Γ↓. The other two decay rates

are given by 1
2

[
3Γ↑ + 3Γ↓ ±

(
Γ2
↑ + 34Γ↑Γ↓ + Γ2

↓

) 1
2

]
.

At long times t → ∞ the correlator (1) saturates to
a constant value determined by the projection of the
OTOC (1) on the zero-decay-rate mode,

K(t→∞) =
1√

2Γ2
↑ + 2Γ2

↓

(Γ↓A↑↓C↓↑ + Γ↑A↓↑C↑↓

+Γ↑A↑↑C↑↑ + Γ↓A↓↓C↓↓) .
(10)

While we assumed a small inelastic relaxation rate in
comparison with the dephasing rate, we emphasise that
the result (10) for the saturation value of the OTOC
holds for an arbitrary ratio of dephasing and relaxation
rates.

FIG. 2. Non-zero rates (in units Γ↓) of long-time decay of out-
of-time-order correlators in a two-level system as a function
of the ratio Γ↑/Γ↓ of the transition rates between the system
levels.

Mapping to the evolution of two systems for a classical
environment. The evolution of the OTOCs (3) is similar
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to that of the density-matrix elements

ρm1m2,n1n2 =
〈
〈|m1〉 〈n1| (t)〉Sys1

〈|m2〉 〈n2| (t)〉Sys2

〉
X

(11)

of a compound system consisting of two identical subsys-
tems (“Sys1” and “Sys2”) coupled to the same dissipative
environment, where m1 and n1 and m2 and n2 in Eq. (11)
are the states of the first and the second subsystems re-
spectively, |mi〉 〈ni| (t) is an operator in the interaction
representation, and 〈. . .〉X is the averaging with respect
to the environment degrees of freedom. The Hamiltonian
of such a compound system is given by

Ĥ = Ĥ0 ⊗ 1+ 1⊗ Ĥ0 +
(
V̂ ⊗ 1+ 1⊗ V̂

)
X̂ + Ĥbath(X̂),

(12)

where . . .⊗. . . is the product of the subsystem subspaces;
Ĥ0 and V̂ are the Hamiltonian of each subsystem and its
coupling to the environment, and the environment vari-
able X̂ commutes with all degrees of freedom of subsys-
tems “Sys1” and “Sys2”.

The evolution of the elements (3) and (11) is de-
scribed by similar Markovian master equations (see
Ref.17 for a microscopic derivation). In particular, in

the limit of a classical environment (
〈
X̂(t)X̂(t′)

〉
env

=〈
X̂(t′)X̂(t)

〉
env

), the evolution of OTOCs (3) can be

mapped exactly onto that of the density matrix (11)
of two systems coupled to this environment, as follows
from the definitions of these quantities. The conserva-
tion law (5) is mapped then onto the conservation of the
trace of the density matrix of a compound system con-
sisting of two subsystems.

In the limit of a classical environment, the spectral
function is even, S(ω) = S(−ω), the relaxation rate i→ j
for each pair of levels i and j in a system matches the
reverse rate j → i. In particular, in the case of a two-
level system Γ↑ = Γ↓ = Γ, and the OTOC has three decay

rates at long times t � Γφ
−1

: Γ1 = 6Γ, Γ2 = 2Γ (triply
degenerate) and Γ3 = 0 (doubly degenerate), as shown in
Fig. 2. Due to the mapping, these rates match the decay
rates of pair-wise correlators of observables in, e.g., an
ensemble of spins in a uniform random magnetic field and
thus may be conveniently measured in such ensembles.

We emphasise that the mapping between an OTOC
and the evolution of two subsystems coupled to the
same classical environment holds for an arbitrary system-
environment coupling but not only in the limit of a weak
coupling considered in this paper. This mapping sug-
gests a way for measuring OTOCs in generic systems in
the presence of classical environments through observing

correlators

〈〈
Â(t)

〉
Sys1

〈
Ĉ(t)

〉
Sys2

〉
X

of observables Â

and Ĉ between two systems.
Discussion. We computed OTOCs in a finite system

weakly coupled to a dissipative environment. The model

of such a finite open system may be used to understand
OTOC behaviour in sufficiently strongly disordered in-
teracting media (in the presence or in the absence of a
phonon bath).

A material with weak short-range interactions and
strong disorder, which leads to the localisation of all
single-particle states, exhibits insulating behaviour at low
temperatures15. Local physical observables in such a sys-
tem are strongly correlated only on short length scales,
and their properties may be understood by considering
a single “localisaton cell”, particle states in a region of
space of the size of order of the (single-particle) localisa-
tion length ξ, which may be assumed weakly coupled to
the rest of the system.

The energy spectrum of the localisation cell may
be probed via response functions of local opera-
tors in the cell, e.g., the response function χ(ω) =∑
α,β

(fα−fβ)|Qαβ |2
Eα−Eβ+ω+i0 of the charge Q in a region inside the

cell to the voltage in this region, where Eα and Eβ are the
energies of many-body states and fα is their distribution
function. For temperatures smaller than a critical value,
quasiparticles in the system have zero decay rate20 (“su-
perinsulating” regime15), and the system thus responds
only at a discrete set of frequencies ω = Ei − Ej , de-
termined by the energy gaps between many-body states,
as shown in Fig. 3. The OTOC (1) in this regime oscil-
lates K(t) ∝

∑
n ane

iωnt with a discrete set of frequencies
ωn = Ein +Ei′n −Ejn −Ej′n . In the limit of a very large
number of levels in a localisation cell, the sum of such
oscillating contributions approaches a smooth function
with exponentially growing contributions describing the
“single-particle” chaos of Ref.1, so long as dynamics on
time scales shorter than the Thouless scale tTh = ξ2/D
is neglected. However, the energy levels remain discrete
in the “superinsulating” regime.

When the temperature (or the interaction strength
at a given temperature) exceeds a critical value, the

FIG. 3. Response of a localisation cell in an interacting
system for various temperatures T (or interaction strengths
for T > 0). ∆Ei are the energy gaps between the many-body
levels in the cell, and Γ is the level width.
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levels and response functions get broadened (“metallic”
phase15), as illustrated in Fig. 3, becoming smoother with
increasing temperature and/or interactions. Near the
superinsulator-metal transition the characteristic level
width Γ is significantly smaller than the gaps between
levels, and the localisation cell may be considered as an
open system weakly coupled to a dissipative environment.
The same model may be applied also to a strongly disor-
dered material with an external bath, such as a system
of phonons, which provide a finite level width Γ at all
finite temperatures. The local operators Â, B̂, Ĉ and D̂
in Eq. (1) do not necessarily act on states in one local-
isation cell, but may involve states in several cells close
to each other. These cells may still be considered as a
single quantum dot in a noisy environment so long as the
level spacing in the dot exceeds the level width. Such a
model of an open quantum dot may be also realised di-
rectly, e.g., using superconducting qubits or trapped cold
atoms.

The results of this paper suggest, in particular, that a
strongly disordered system, with the level spacing δξ ex-
ceeding the effective dissipation rates Γ, is non-chaotic.
While our results applies to weakly-conducting and insu-
lating materials, for which the system-environment cou-

pling may be considered small, we leave it for a future
study whether non-chaotic behaviour persists in systems
strongly coupled to the environment (corresponding to an
effectively continuous energy spectrum of a localisation
cell).

For a classical environment, the evolution of an OTOC
in an open system matches the evolution of correlators
of observables between two identical systems coupled to
the same environment, which may be used for measuring
OTOCs in open systems in classical environments. The
possibility to develop a similar measurement method for
the case of a quantum environment is another question
which deserves further investigsation.
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