
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum dot in interacting environments
Colin Rylands and Natan Andrei

Phys. Rev. B 97, 155426 — Published 23 April 2018
DOI: 10.1103/PhysRevB.97.155426

http://dx.doi.org/10.1103/PhysRevB.97.155426
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A quantum impurity attached to an interacting quantum wire gives rise to an array of of new
phenomena. Using Bethe Ansatz we solve exactly models describing two geometries of a quantum dot
coupled to an interacting quantum wire: a quantum dot that is (i) side-coupled and (ii) embedded
in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe
Ansatz equations. Using this we derive exact expressions for the ground state dot occupation. The
thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown
that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or
tunnel junction depending on the geometry and furthermore that the two geometries are related
by changing the sign of the interactions. Although remaining strongly coupled for all values of the
interaction in the wire, there exists competition between the tunneling and backscattering leading to
a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

I. INTRODUCTION

Coupling a quantum impurity to an interacting one di-
mensional lead produces some of the most striking phe-
nomena of low dimensional physics. A simple backscat-
tering impurity is known to cause the wire to be split if
the interactions are repulsive while a junction between
two leads can lead to perfect conductance in the pres-
ence of attractive interactions1. More interesting still
are scenarios in which the impurity has internal degrees
of freedom. These allow for richer and more exotic
phases to appear2. Among these, systems of quantum
dots coupled to interacting leads have attracted much
attention13456789101112. The low energy description of
the leads is typically given by Luttinger liquid theory
which is the effective low energy description of a large
number of interacting systems2,13. Here the individual
electrons are dissolved and the excitations are bosonic
density modes. In contrast, the relevant degrees of free-
dom on the dot are electronic. A competition ensues
between the tunneling from lead to dot which is carried
out by electrons and the energy cost of reconstituting an
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1FIG. 1: We consider two geometries of Luttinger dot system;
(a) embedded and (b) side-coupled. The embedded geome-
try also includes a Coulomb interaction between the dot and
leads. Once unfolded the side-coupled and embedded geome-
tries are the same but with the latter containing non local
interactions (2)

electron from the bosons in the lead.
Such systems are readily achievable in many experi-

mental settings allowing for confrontation of theory with
experiment. Luttinger liquids provide the effective de-
scription of carbon nano tubes1415, fractional quantum
Hall edges161718, cold atomic gases19202122 or 4He flow-
ing through nano pores2324 to name but a few. Addi-
tionally they are known to describe tunneling processes
in higher dimensional resistive leads2526 and more gener-
ally are the archetype of a non-Fermi liquid. Luttinger
liquid-quantum dot systems have successfully been real-
ized in a number of experiments2728. These realize the
embedded geometry, see Fig. 1(a) of a dot placed be-
tween two otherwise disconnected leads. Measurement
of the conductance has revealed interesting non-Fermi
liquid scaling as well as Majorana physics.

Building on the work of2930 we use Bethe Ansatz to
solve exactly Luttinger liquid-quantum dot systems in
both the embedded (see Fig 1(a)) and side coupled (see
Fig 1(b)) geometries. The exact solution shows that the
spectra of the two geometries are related by changing
the sign of the bulk interaction, a fact previously known
through bosonization8, and are described in terms of
charge and chiral degrees of freedom. At low energies we
show that the dot becomes fully hybridized and acts as a
backscattering impurity for the side-coupled model and
as a tunnel junction for the embedded system. This cre-
ates a competition between the charge and chiral degrees
of freedom when the back scattering or tunnel junction is
irrelevant, leading to non Fermi liquid exponents in the
ground state dot occupation. We then go on to study the
finite temperature properties of the system deriving the
Thermodynamic Bethe Ansatz equations and using this
to obtain the finite temperature dot occupation.

This paper is organised as follows: in section II we
introduce the Hamiltonians and construct their exact
eigenstates. We derive the exact spectrum of both sys-
tems through their Bethe Ansatz equations by means of
the off diagonal Bethe Ansatz method (ODBA)31. In
Section III we find the ground state of the system and
derive the exact dot occupation. From this we extract the
renormalization group picture of the system and find the
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leading relevant and irrelevant operators in section IV.
The thermodynamics of the system are studied in sec-
tion V where we find the free energy contribution from
the dot and use it to obtain the dot occupation at finite
temperature. In the final section we conclude.

II. MODELS AND EIGENSTATES

The systems we consider consist of a quantum dot at-
tached to an interacting lead, a Luttinger liquid, the
attachment being either in the embedded or the side-
coupled geometry. The Hamiltonian of a Luttinger liquid
is given by,

HLL = −i
∫
dx(ψ†+∂xψ+ − ψ†−∂xψ−)

+4g

∫
dxψ†+(x)ψ†−(x)ψ−(x)ψ+(x) (1)

where ψ†± are right and left moving fermions which inter-
act with a point like interaction of strength g2. For the
side-coupled geometry we have x ∈ [−L/2, L/2] while
for the embedded geometry we take two Luttinger liq-
uids restricted to x ∈ [−L/2, 0] and x ∈ [0, L/2]. It is
convenient to bring the two systems into similar form by
unfolding the embedded geometry in the standard way32

to give,

Hemb
LL = −i

∫
dx(ψ†+∂xψ+ − ψ†−∂xψ−)

+4g
∑

σ=±

∫
dxψ†σ(x)ψ†σ(−x)ψσ(−x)ψσ(x)(2)

The embedded system now consists of one branch of
left-movers and one branch of right movers restricted
to x ∈ [−L/2, L/2] but unlike the side-coupled system
where the left and right fermions interact locally with
each other, in the embedded system after unfolding the
interaction is between particles of the same chirality and
is non local. Further, the spectrum being linear a cut-
off needs to be imposed to render the energies finite.
We shall impose it on the particle momenta: k ≥ −D.
All physical quantities are taken to be small compared
with the cutoff and at the end of the calculation we send
D →∞, to obtain universal results.

The quantum dot is modelled by a resonant level with
energy ε0 described by,

Hdot = ε0d
†d, (3)

coupled to Luttinger liquid via a tunnelling term,

Ht =
t

2
(ψ†+(0) + ψ†−(0))d+ h.c (4)

which mediates both forward and backscattering in the
model, the latter changing left movers to right movers
and vice versa. Furthermore in the embedded system we
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1FIG. 2: (a) The single particle wavefunction given by (6) is de-
picted. Particles are either incoming on the left or right with

amplitudes A
[10]
+ , A

[01]
− or outgoing on the left or right with

amplitudes A
[10]
− , A

[01]
+ . (b) The linear derivative requires that

we cutoff the bottom of the Dirac sea so that k > −D which
we will take to infinity in the end. When the rapidity notation
is used the dot energy acts as a local chemical potential and
in the ground state levels are filled up to −K = −De−B/2,
with B = B(ε0).

add a Coulomb interaction between the ends of the leads
and the dot which is the same strength as the Luttinger
interaction,

Hc = gd†d
∑

σ=±
ψ†σ(0)ψσ(0). (5)

Both energy scales in the dot Hamiltonian are small com-
pared the the cut-off, ε0,Γ� D, where Γ = t2 is the level
width.

We shall determine the spectrum and the full set of
exact eigenstates of both Hamiltonians, Hsc = HLL +
Ht+Hdot and Hemb = Hemb

LL +Ht+Hdot +Hc, using the
Bethe Ansatz approach, and then proceed to the ground
state (T=0) and thermodynamic (T > 0) properties. The
Bethe Ansatz method we employ here is distinct from
that which has been typically used for quantum impurity
models3334. As the problem contains both forward and
back scattering we must formulate it in an in-out basis
with the configuration space being partitioned in regions
labelled by both the order of the particles and by their
closeness to the origin. The large degeneracy present in
the bulk system due to the linear derivative is then used
to find a consistent set of wave functions29. We illustrate
this by explicitly constructing the one and two particle
eigenstates from which we can determine the N -particle
states.

After the unfolding procedure the two systems differ
only in the two particle interaction meaning the single
particle eigenstates are the same in both models. The
tunnelling to and from the dot takes place at the origin
hence we may expand the wavefunction in plane waves
on either side of it, the most general form for the single
particle state of energy E = k being,

∑

σ=±

∫
eσikx

[
θ(−x)A[10]

σ + θ(x)A[01]
σ

]
ψ†σ(x) |0〉

+Bd† |0〉 , (6)

where θ(±x) are Heaviside functions. The amplitudes

A
[10]
+ and A

[01]
− are those of an incoming particle and are
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related to the outgoing amplitudes A
[10]
− and A

[01]
+ (see

Fig. 2(a)) by the bare single particle S-matrix - S, which
takes an incoming particle to an outgoing one. Trading
in the particle momentum k for the rapidity variable z,
defined as k − ε0 = Dez/2, we have,

(
A

[01]
+

A
[10]
−

)
= S(z)

(
A

[10]
+

A
[01]
−

)
(7)

S(z) =

(
ez/2

ez/2+iec
−iec

ez/2+iec

−iec
ez/2+iec

ez/2

ez/2+iec

)
(8)

with ec = Γ/D. In addition the dot amplitude B is

B =
∑

σ=±

1

2
e(c−z)/2

(
A[10]
σ +A[01]

σ

)
. (9)

From here periodic boundary conditions can be imposed

ψ†±(−L/2) = ψ†±(L/2) resulting in

e−iDe
z/2L−iε0L

(
A

[10]
+

A
[01]
−

)
= S(z)

(
A

[10]
+

A
[01]
−

)
(10)

which can then be solved for the allowed values of the
rapidity z.

We now proceed to the two particle case wherein the
bulk interaction g enters differently in both models. We
shall first consider the side-coupled model and discuss
the embedded model subsequently. Since the two parti-
cle interaction is point-like as is the tunnelling to the dot
we may divide configuration space into regions such that
the interactions only occur at the boundary between two
regions. Therefore away from these boundaries we write
the wavefunction as a sum over plane waves. For two par-
ticles we require 8 regions which are specified not only by
the ordering of the particle positions x1, x2 and the im-
purity but also according to which position is closer to
the origin. For example if x1 is to the left of the impu-
rity, x2 to its right with x2 closer to the impurity then

the amplitude in this region is denoted A
[102B]
σ1σ2 , σj = ±

being the chirality of the particle at xj . The region in

which x1 is closer is denoted A
[102A]
σ1σ2 . The consequence

for the wavefunction is that we include Heaviside func-
tions θ(xQ) which have support only in the region Q, e.g
θ(x[102B]) = θ(x2)θ(−x1)θ(−x1 − x2) and θ(x[102A]) =
θ(x2)θ(−x1)θ(x1 + x2). The most general two particle

state with energy E = k1 + k2 =
∑2
j=1Dezj/2 + 2ε0 is

therefore

|E〉 =
∑

Q

∑

σ1,σ2=±

∫
θ(xQ)AQσ1σ2

2∏

j

eiσjkjxjψ†σj (xj) |0〉

+
∑

σ=±

∫ [
θ(−x)B[10]

σ + θ(x)B[01]
σ

]
ψ†σ(x)d† |0〉 .(11)

The amplitudes AQσ1σ2
are related to each other by S-

matrices which are fixed by the Hamiltonian and in turn

(a) (b)
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FIG. 3: (Color online) The amplitudes in the two particle
wavefunction are arranged into 8 vectors given by (12) and
according to whether the particles are incoming or outgoing
as well as their ordering with respect to the impurity. (a)

The amplitudes in ~A1 consist of both particles incoming but
particle 2 (black) closer to the impurity than particle 1 (red).

(b) The amplitudes in ~A8 consist of particle two outgoing.
These vectors are related by S20(z2).

fix B
[10]
± and B

[01]
± . To define these S-matrices we form

column vectors of the amplitudes,

~A1 =




A
[120B]
++

A
[102B]
+−

A
[201B]
−+

A
[021B]
−−




~A2 =




A
[210A]
++

A
[102A]
+−

A
[201A]
−+

A
[012A]
−−




~A3 =




A
[201A]
++

A
[012A]
+−

A
[210A]
−+

A
[102A]
−−




~A4 =




A
[201B]
++

A
[021B]
+−

A
[120B]
−+

A
[102B]
−−




~A5 =




A
[021B]
++

A
[201B]
+−

A
[102B]
−+

A
[120B]
−−




~A6 =




A
[012A]
++

A
[201A]
+−

A
[102A]
−+

A
[210A]
−−




~A7 =




A
[102A]
++

A
[210A]
+−

A
[012A]
−+

A
[201A]
−−




~A8 =




A
[102B]
++

A
[120B]
+−

A
[021B]
−+

A
[201B]
−−


 (12)

which have the following interpretation: ~A1 ( ~A2) are the
amplitudes where both particles are incident on the im-

purity but particle 2 (1) is closer, ~A5 ( ~A6) are the ampli-
tudes in which both particles are outgoing with particle

2 (1) closer to the impurity, ~A8 ( ~A3) describes particle
2 (1) having scattered off the impurity and is still closer

to the impurity than 1 (2) while ~A7 ( ~A4 ) also describes

particle 2 (1) having scattered but with 1 (2) is closer. ~A1

and ~A8 are explicitly depicted in Fig. 3. After applying
the Hamiltonian to (11) we find that it is an eigenstate
provided,

~A8 = S20(z2) ~A1, ~A3 = S10(z1) ~A2, (13)

~A5 = S20(z2) ~A4, ~A6 = S10(z1) ~A7, (14)

~A7 = S12 ~A8, ~A4 = S12 ~A3, (15)

~A2 = W 12(z2 − z1) ~A1, ~A6 = W 12(z2 − z1) ~A5.(16)

The S-matrices S20 and S10 which take a particle past
the impurity, i.e. from incoming to outgoing are

S20(z2) = S(z2)⊗ 1, S10(z1) = 1⊗ S(z1), (17)
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with S(z) the same as in the single particle state (8),
the S-matrix S12 scatters an incoming particle past an
outgoing particle and is

S12 =




1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1


 . (18)

where φ = −2 arctan (g) encodes the bulk interaction and
W 12(z2− z1) which scatters an incoming (outgoing) par-
ticle past another incoming (outgoing) particle is given
by

W 12(z) =




1 0 0 0

0
sinh 1

2 (z)

sinh 1
2 (z−2iφ)

− sinh iφ
sinh 1

2 (z−2iφ)
0

0 − sinh iφ
sinh 1

2 (z−2iφ)

sinh 1
2 (z)

sinh 1
2 (z−2iφ)

0

0 0 0 1


 . (19)

In addition the dot amplitudes are given by

B
[10]
± =

1

2
e(c−z2)/2

∑

σ=±

[
A

[210A]
σ± +A

[201A]
σ±

]

−1

2
e(c−z1)/2

∑

σ=±

[
A

[120B]
±σ +A

[102B]
±σ

]
, (20)

B
[01]
± =

1

2
e(c−z2)/2

∑

σ=±

[
A

[102A]
σ± +A

[012A]
σ±

]

−1

2
e(c−z1)/2

∑

σ=±

[
A

[201B]
±σ +A

[021B]
±σ

]
. (21)

Inserting these expressions for the amplitudes into (11)
we get the two particle eigenstate of the side-coupled

model. Since all amplitudes are generated from ~A1 by
successive application of the various S-matrices, as de-
picted in Fig. 4, there are two ways to obtain each
~Aj both of which must be equivalent for the construc-
tion to be consistent. This consistency imposes that the
S-matrices satisfy a generalised Yang Baxter equation
which takes the form of the reflection equation

S20S12S10W 12 = W 12S10S12S20 (22)

which can be checked to hold by substitution.
It is important to note that while no interaction be-

tween two incoming (outgoing) particles is present in
the Hamiltonian, W 12 is introduced in order to ob-
tain the correct eigenstates and satisfy the generalised
Yang-Baxter consistency conditions. To do so we ex-
ploit the freedom to introduce discontinuities of the form
θ(±(x1 − x2)) into the the part of the wave function
that describes two right movers or two left movers (or
θ(±(x1 +x2)) into the the part of the wave function that
describes one left mover and one right mover). The ki-
netic term in the Hamiltonian referring to these particles
is of the form ±i(∂x1

+ i∂x2
) (or ±i(∂x1

− i∂x2
)) and van-

ishes when acting on these discontinuities. This freedom

~A1

~A2

~A3

~A5

~A4

~A7

~A8

~A6

W 12

S10

S12

S20

S20

S12

S10

W 12

FIG. 4: (Color Online)The amplitudes are related by applying
the operators as in (13) and depicted here. For consistency
we require the amplitudes obtained by proceeding clockwise
or counter-clockwise are the same resulting in (22).

arises from the linear spectrum that brings about a in-
finite degeneracy of the energy levels, the level k1 + k2

being degenerate with (k1+q)+(k2−q) for any q. The in-
troduction of the discontinuities corresponds then to the
correct choice of basis states in this degenerate subspace
from which the perturbation can be turned on, as we are
instructed to do carrying out perturbation theory from a
degenerate level. For more detail see33.

We can then go on to impose periodic boundary con-
ditions giving

e−ik1L ~A1 = S12S10W 12 ~A1 (23)

e−ik2LW 12 ~A1 = S12S20 ~A1 (24)

which can be solved to determine z1,2.
The eigenstates for higher particle number are con-

structed similarly and the N particle state with energy

E =
∑N
j=1 kj =

∑N
j=1Dezj/2 +Nε0 is,

|E〉 =
∑

Q

∑

~σ

∫
θ(xQ)AQ~σ

N∏

j

eiσjkjxjψ†σj (xj) |0〉

+

′∑

P

′∑

~σ

∫
θ(xP )BP~σ

′∏

j

eiσjkjxjψ†σj (xj)d
† |0〉(25)

Here θ(xQ) are Heaviside functions which partition con-
figuration space into 2NN ! regions. As before Q are la-
belled by the ordering of the N particles as well as ac-
cording to which particle is closest to the origin while
~σ = (σ1, . . . , σN ) with σj = ±. In the second line the
primed sums indicate that one particle is removed - be-
ing on the dot - and the sums are over the remaining
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N − 1 particle system. Just as in the two particle case
the amplitudes are related to each other via S-matrices
which act on the 2N dimensional space

Sj0 = Sj(zj)⊗k 6=j 1, (26)

Sij =




1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1



ij

⊗k 6=i,j 1, (27)

W ij =




1 0 0 0

0
sinh 1

2 (zj−zi)
sinh 1

2 (zj−zi−2iφ)
− sinh iφ

sinh 1
2 (zj−zi−2iφ)

0

0 − sinh iφ
sinh 1

2 (zj−zi−2iφ)

sinh 1
2 (zj−zi)

sinh 1
2 (zj−zi−2iφ)

0

0 0 0 1




ij

⊗k 6=i,j1. (28)

where the subscripts denote which particle spaces the
operators act upon. In order for this wavefunction to be
consistent it must satisfy the following Yang-Baxter and
reflection equations,

Sk0SjkSj0W jk = W jkSj0SjkSk0 (29)

W jkW jlW kl = W klW jlW jk (30)

W jkSjlSkl = SklSjlW jk. (31)

The first of these being the generalisation to N particles
of (22) while the remaining two come from the consis-
tency of the wavefunction away from the dot. These are
indeed satisfied by (26),(27) and (35) which is a suffi-
cient condition for the consistency of the wave function35.

The expressions for BP~σ in terms AQ~σ can also be found
and are straightforward generalisations of (20) and (21).
Therefore we have successfully constructed the N particle
eigenstates of the side-coupled model.

The spectrum can then be determined by imposing

periodic boundary conditions ψ†±(−L/2) = ψ†±(L/2). As
we are interested in studying properties of the dot in
the thermodynamic limit the type of boundary condition
imposed at x = ±L/2 will not affect the result. This
results in an eigenvalue problem which determines the kj
through

e−ikjLAσ1...σN = (Zj)
σ′1...σ

′
N

σ1...σN
Aσ′1...σ′N (32)

Zj = W j−1j ..W 1jS1j ..SjNSj0W jN ..W jj+1 (33)

where the matrix Zj takes the jth particle past all others
and past the impurity. By using (22), (30) and (31) one
can show that the Zj commute with each other [Zj , Zk] =
0 ∀j, k. They are therefore simultaneously diagonalisable
and the spectrum of the side-coupled model is determined
by the eigenvalues of the Zj operators. Before obtaining
these we return to constructing the eigenstates of the
embedded model.

For the embedded impurity model we note that the
unfolding procedure carried out previously allows us to
construct its eigenstates in the same manner as we did
for the side-coupled model. The N particle eigenstate is

of the same form as (25) but owing to the different bulk
interaction in (2) the two particle S-matrices are

Sijemb =




eiφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ



ij

⊗k 6=i,j 1, (34)

W ij
emb =




1 0 0 0

0
sinh 1

2 (zj−zi)
sinh 1

2 (zj−zi+2iφ)
sinh iφ

sinh 1
2 (zj−zi+2iφ)

0

0 sinh iφ
sinh 1

2 (zj−zi+2iφ)

sinh 1
2 (zj−zi)

sinh 1
2 (zj−zi+2iφ)

0

0 0 0 1




ij

⊗k 6=i,j1. (35)

and the single particle S-matrices Sj0 the same as (26).
The inclusion of the Coulomb term (5) is essential for
this and in its absence the model is not integrable.

Imposing the boundary condition ψ±(−L/2) =

eiφψ†±(L/2) we have another eigenvalue problem,

e−ikjLAσ1...σN =
(
Zemb
j

)σ′1...σ′N
σ1...σN

Aσ′1...σ′N (36)

where Zemb
j is defined similarly to Zj in (32) but using

W ij
emb and Sijemb and is related to Zj by

Zemb
j = Zj |φ→−φ. (37)

Therefore, the spectrum of the embedded model is ob-
tained from the side-coupled model by changing the sign
of the interaction, φ→ −φ.

We can replace the bare phase shift φ by the universal
Luttinger liquid parameter K using2930

K =

{
1 + φ

π side-coupled
1

1− φπ
embedded

(38)

meaning that in the thermodynamic limit the two models
are related by taking K → 1/K which recovers the dual-
ity shown by bosonization8. In the subsequent sections
all calculations will be done for the side-coupled model
the results of which can then be translated to the em-
bedded model by taking K → 1/K. Note that as φ is a
phase shift and restricted to [−π, π] we see that the side-
coupled system may realize values of K ∈ [0, 2] whereas
the embedded system has K ∈ [1/2,∞].

III. DERIVATION OF THE BETHE ANSATZ
EQUATIONS

Our task now is to determine the eigenvalues of Zj .
To this end we note that W ij is actually the R-matrix
of the XXZ model, and further that Zj takes the form
of the transfer matrix of an inhomogeneous open XXZ
model36. The problem of diagonalising this operator has
recently been achieved by means of the ”Off Diagonal
Bethe Ansatz”31. Inserting these results into (32) and
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simplifying the resulting equations using ec � 1 in the
same manner as in29 we obtain the Bethe equations for
the side-coupled model

e−iDe
zα/2L = eiNφ/2+iε0L

[
ezα/2 − iec
ezα/2 + iec

] 1
2

×
N/2∏

k

sinh ( 1
2 (zα − λk − iφ))

sinh ( 1
2 (zα − λk + iφ))

(39)

N∏

α

sinh ( 1
2 (λj − zα + iφ))

sinh ( 1
2 (λj − zα − iφ))

= −
[

cosh ( 1
2 (λj − 2c+ iφ))

cosh ( 1
2 (λj − 2c− iφ))

] 1
2

×
N/2∏

k

sinh ( 1
2 (λj − λk + 2iφ))

sinh ( 1
2 (λj − λk − 2iφ))

.(40)

where the parameters λj describe the chiral degrees of
freedom, zα describe the charge degrees of freedom and
the energy of the system is

E =
∑

α

Dezα/2 +Nε0. (41)

The solution of (39)(40) along with (41) give the exact
energies of the system.

IV. GROUND STATE DOT OCCUPATION

Having obtained the Bethe equations governing the
system we can now construct the ground state. To do
this we first must fill the empty Dirac sea with negative
energy particles from the cutoff, −D up to some level de-
termined by minimisation of the energy (and depending
on ε0, see Fig. 2(b)). After this the thermodynamic limit
N,L → ∞ is taken holding the density D = N/L fixed
and finally we take the universal limit by removing the
cutoff D →∞ while holding some other scale, which has
been generated by the model, fixed. We will see below
that this scale is the level width Γ. Once the ground state
has been found we will use it to derive exact expressions
for the occupation of the dot, nd =

〈
d†d
〉

as a function
of ε0.

The form of the possible negative energy states en-
tering the ground state depends upon the value of K,
whether it is greater or less than 1 and so the ground
state must be constructed separately in each case. Nev-
ertheless we will find a single expression for the dot oc-
cupation valid in both regimes.

A. K > 1

We begin with φ ∈ [0, π] which corresponds to K ∈
[1, 2]. Here the ground state consists of so-called 2-
strings37 wherein the rapidities form complex conjugate
pairs with their real part coinciding with one of the chiral
variables,

zj = z∗N+1−j = λj + 2πi+ iφ. (42)

with each pair having bare energy −2 cos (φ/2)Deλj , see
Fig. 7.

Inserting these expressions into (39) and (40) we obtain
equations for the real parts of the pairs, λj . In the ther-
modynamic limit we are not interested in the solutions
per se, but in their distribution,

ρ1(λj) =
1

L(λj − λj−1)

on the real line. The distribution has contributions from
the bulk as well as from an O(1/L) term from the dot,
allowing us to write it as ρ1(λ) = ρb

1(λ) + 1
Lρ

d
1(λ). The

dot occupation is then given as,

nd = 2

∫
ρd

1(λ). (43)

The factor of 2 appears here as each λ corresponds to a
pair of rapidities. These distributions, ρb

1(λ), 1
Lρ

d
1(λ) are

determined by the Bethe equations in their continuous
form which for the bulk part is,

cosφ/2

2π
Deλ/2 = ρb

1(λ) +

∫ ∞

−B
a2(λ− µ)ρb

1(µ) (44)

an(x) =
i

2π

d

dx
log

sinh ( 1
2 (x− niφ))

sinh ( 1
2 (x+ niφ))

(45)

where B = B(ε0) is the λ value of the highest filled level.
When the dot energy vanishes we have that B(0) = ∞
and bulk distribution is found to be

ρb
1(λ) =

Deλ/2
4π cos (φ/2)

(46)

with the bulk part of the ground state energy being

E0 = −
∫ ∞

−∞
2 cos (φ/2)Deλ/2ρb

1(λ). (47)

To confirm this is indeed the ground state one can in-
troduce excitations and check the energy is increased,
the simplest type of which consists of adding holes to
the distribution. As is typical for Bethe ansatz mod-
els, the energy of a hole turns out to be proportional to
the ground state distribution i.e. a hole at λ = λh has
energy εh(λh) = 4πρb

1(λh), increasing the energy. The
other excitations consist of breaking up a pair and plac-
ing them above the Fermi surface such they have real
rapidity. Each particle then has energy εp(z) = 2Dez/2
in addition to the hole introduced in the ρ1(λ) distribu-
tion.

When ε0 6= 0 the additional term in the energy (see
(41)) needs to be balanced by the addition of holes to
the ground state with rapidities starting at −B(ε0). The
form of the hole energy, εh(λ) gives us that30

B(ε0) = log

(
α
D
ε0

)
(48)
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where α is a constant.
Considering now the dot part of the Bethe equations,

the dot contribution to the density satisfies,

f1(λ− 2c) = ρd
1(λ) +

∫ ∞

−B
a2(λ− µ)ρd

1(µ), (49)

with fn(x) =
1

2π

∫ ∞

−∞
eiωx

sinh (π − nφ)ω

sinh 2πω
. (50)

The solution is obtained by the Wiener-Hopf method
(see34,38 or37 and references therein). Upon integrating
over the result as in (43) we find that the exact dot oc-
cupation in the ground state is,

nd =
−i

2
√
π

∫ ∞

−∞
dω
e−iω(2 log ( ε0Γ )+a)

sinh (2πω)

× Γ( 1
2 + i(K − 1))ω)

Γ(1 + iω)Γ(1− i(2−K)ω)
. (51)

where Γ(x) is the Gamma function, a is a non-universal
constant and we have used (38) to write nd in terms of the
Luttinger K. As there is no dependence on the cutoff we
can safely take the universal limit D → ∞ while hold-
ing the level width Γ fixed. The width serves as both
the coupling constant and as the strong coupling scale
paramerizing the model, with respect to which all quan-
tities are measured. It appears here, rather surprisingly,
unrenormalized by the interactions which are present in
the system and independent of the raw cut-off, unlike
the case for a dot placed on the boundary30. We will
comment on this further in the next section but for now
we examine the expression (51). First we can check that
upon inserting K = 1 in the above expression we recover
the non interacting result

nd =
1

2
− 1

π
arctan

(ε0
Γ

)
. (52)

For other values we may evaluate (51) by contour integra-
tion and obtain an expansion of nd for ε0 < Γ or ε0 > Γ
giving

nd =





1
2 −

[∑∞
n=0 dn

(
ε0
Γ

)2n+1

+ bn
(
ε0
Γ

)(2n+1)/(K−1)
]

for Γ > ε0
∑∞
n=0 cn

(
Γ
ε0

)n+1

for Γ < ε0

(53)

where dn, bn and cn are constants. Furthermore the ca-
pacitance of the dot is

χ =
∂nd
∂ε0

∣∣∣∣
ε0=0

=
1

π(K − 2)Γ
. (54)

We see that at low energy, ε0 < Γ the system is strongly
coupled with the dot becoming hybridized with the bulk.
At the low energy fixed point (ε0 = 0) the dot is fully
hybridized and has nd = 1/2. The leading term in the
expansion about this is ε0/Γ which indicates that the

K=1

K=1.3

K=1.5

0.05 0.1 0.15 0.2

ϵ0

Γ

0.38

0.44

0.5

nd

K=1

K=1.3

K=1.5

0.1 0.2 0.3 0.4 0.5

Γ

ϵ0

0.05

0.10

0.15
nd

FIG. 5: (Color Online). The dot occupation at small (left)
and large (right) dot energy, ε0/Γ, for different values of K >
1. The effect of attractive interactions is to suppress the dot
occupation as compared to the non interacting case (dashed
line). This effect becomes stronger for increasing K.

leading irrelevant operator has dimension 2. We identify
it as the stress energy tensor39. The next order term
(ε0/Γ)1/(K−1) is due to the backscattering which is gen-
erated at low energies but is irrelevant for K > 1. At
high energies, ε0 > Γ, the system becomes weakly cou-
pled with the fixed point (ε0 → ∞) describing a decou-
pled empty dot, nd = 0. The expansion about this fixed
point is in terms of integer powers indicating that the
tunnelling operator d†ψ(0) has dimension 1/2. The first
few terms of the expansion are plotted in Fig. 5 from
which we see that the dot occupation is suppressed as a
function of ε0 for K > 1 as compared to the non inter-
acting case due to the backscattering.

B. K < 1

The ground state takes a different form in the re-
gion φ ∈ [−π, 0] which corresponds to K ∈ [0, 1] . It
is constructed by taking the chiral parameters λj ∈ R
to be real and the rapidities placed on the 2πi line i.e.
Im(zα) = 2π. Inserting these values into the Bethe equa-
tions and then passing to the continuous form we obtain
a set of coupled integral equations for the distributions
of the charge, ρ−(zj) = 1/L(zj − zj−1) and chiral vari-
ables σ1(λj) = 1/L(λj − λj−1) which we can again split
into bulk and dot contributions. The bulk contributions
ρb
−(z) and σb

1 (λ) are governed by the continuous Bethe
equations,

Dez/2
4π

= ρb
−(z)−

∫ ∞

−B′
a1(z − y)σb

1 (y)

∫ ∞

−B′
a1(λ− y)ρb

−(y) = σ1(λ) +

∫ ∞

−∞
a2(λ− y)σb

1 (y)(55)

where the rapidities are bounded by −B′(ε0). When the
dot energy is set to zero we have that B′(0) =∞ and the
bulk ground state distributions are found to be,

ρb
−(z) =

Dez/2
2π

, (56)

σb
1 (λ) =

Dez/2
4π cos (φ/2)

. (57)
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FIG. 6: (Color Online).The dot occupation at small (left) and
large (right) dot energy for different values of K. The effect of
repulsive interactions K < 1 is to enhance the dot occupation
as compared to the non interacting case (dashed line) with
the effect increasing as K decreases.

The fundamental excitations above this ground state
consist of adding holes to either of these distributions.
The energy of these are εh(z) = 4πρb

−(z) and εh(λ) =

4πσb
1 (λ) for a charge hole and chiral hole respectively.

As in the previous section these are used to determine
B′ which gives the same relation as (48). The dot occu-
pation is subsequently obtained by integrating over the
dot part of the charge distribution nd =

∫
ρd
−(z)dz which

is determined by,

g2(λ− 2c) = ρd
−(λ) +

∫ ∞

−B′
g1(λ− y)ρd

−(y), (58)

gn(x) =
1

2π

∫ ∞

−∞
eiωx

sinh (π − φ)ω

2 cosh (φω) sinh (nπω)
.(59)

The solution is again determined using the Wiener-Hopf
method with the result that the dot occupation for K < 1
is also given by (51). Note however that the poles at ω =
i(K−1)(2n+1)/2 have shifted from the upper half plane
to the lower half plane. This changes the expansions at
high and low energy to be

nd =





1
2 −

∑∞
n=0 dn

(
ε0
Γ

)2n+1
for Γ > ε0

∑∞
n=0 cn

(
Γ
ε0

)n+1

+ bn

(
Γ
ε0

) 2n+1
1−K

for Γ < ε0
(60)

with the capacitance being given by (54). As in the
K > 1 region, the dot is strongly coupled at low energy
and weakly coupled at high energy with the same leading
terms in the expansion about these points however the
term generated by the backscattering now appears in the
expansion about the high energy fixed point. This stems
from the fact that backscattering is relevant for K < 1
and leads to an enhancement of the dot occupation as
compared to the K = 1 case, see Fig. 6.

The dot occupation for the embedded system is simply
obtained from (51) by using the mapping K → 1/K.

V. RG FLOW

In the previous section we derived exact expressions for
the dot occupation for the side-coupled model as a func-
tion of ε0 measured with respect to the strong coupling

φ < 0 φ > 0

2πi

-2πi

0

2-string

4-string
2ν-string

1
FIG. 7: (Color Online) At finite temperature the rapidity and
chiral variables may form z − λ strings where n λs and 2n zs
form a set given by (62). On the left we show how a 2-string,
4-string and the negative parity 2ν-string are arranged for
φ < 0. On the right we depict the same for φ > 0. Note
only the z positions are changed when going from left to right
which results in a change in sign of the energy from the strings.

scale. This strong coupling scale is given by Γ, the level
width. It does not depend on K as might be expected for
an interacting model and in fact coincides with the free
model. To understand why the level width is not renor-
malised by K we can make use of the mapping to the em-
bedded model. The strong coupling scale in the embed-
ded model should behave similarly to the single lead case,
where a dot is placed at a Luttinger liquid edge8. For
an arbitrary Coulomb interaction, U this is D(Γ/D)1/α

where α = 1 + 2 [arctan (g)− arctan (U)] /π30. Taking
U = g, as required by the mapping (see (5)), reduces
this to Γ, the free value. The non-renormalization of the
level width suggests that the tunnelling operator d†ψ±(0)
should have the same dimension as the free model which
is confirmed by the high energy expansions of the dot
occupation. This is in stark contrast to the the fact that
fermions in a Luttinger liquid (away from the edge) have
dimension (K+1/K)/4. Thus the remarkably simple ex-
pression for the strong coupling scale and critical expo-
nents present here stand in contrast to a quite substantial
modification of the fermions in the vicinity of the dot.

We now have the following picture of the side-coupled
system. For all K ∈ [0, 2] the system flows from weak
coupling at high energy to strong coupling at low en-
ergy. The low energy fixed point describes a dot which
is fully hybridized with the bulk and has the fixed point
occupation nd = 1/2. The hybridized dot then acts as a
backscattering potential via co-tunnelling. The leading
irrelevant operator which perturbs away from the fixed
point is the stress energy tensor and results in odd inte-
ger powers of ε0/Γ in the dot occupation. For K > 1 the
backscattering is irrelevant which gives rise to odd pow-
ers of (ε0/Γ)1/(K−1) resulting in a suppression of the dot
occupation at ε0 > 0. For K < 1 on the other hand it is
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relevant and generates no other terms in the expansion.
The high energy fixed point describes a decoupled dot
which has nd = 0 for ε0 → ∞ or nd = 1 for ε0 → −∞.
By reducing the energy scale we flow away from the fixed
point with the tunnelling operator d†ψ±(0) which is the
leading relevant operator and has dimension 1/2 as in the
free model. This give rise to integer powers of Γ/ε0 in nd.
Additionally when K < 1 backscattering is relevant and
causes odd powers of (Γ/ε0)1/(1−K) to appear resulting
in an enhancement of the dot occupation .

VI. THERMODYNAMICS

A. K = ν−1
ν

In this section we study the finite temperature prop-
erties of the dot by calculating the free energy. To do
so we use the methods developed by Yang and Yang40

and later extended by Takahashi37 based on the string
hypothesis. This states that in the thermodynamic limit
the solutions of the Bethe equations take complex values
organised into strings. The form of the strings depend
upon the model and the values of the parameters therein.
To simplify matters we take φ = ±π/ν with ν an integer
so that K = ν±1

ν . With this value fixed the hypothesis
states that the Bethe equations allow for the following
forms of the charge and chiral variables.

The rapidities can be real or complex with Im(z) =
0, 2π. These contribute bare energy ±Dez/2 and we de-
note the distributions of these ρ±(z). The chiral variables
can take on complex values so that they arrange into n-
strings with n < ν such that

λ
(n)
l = λ(n) + iφ(n− 1− 2l), l = 0, . . . , n− 1 (61)

or λ on the iπ line which is sometimes called a negative
parity string. The λ n-strings have no bare energy and
we denote the distributions of their real part, called the
string centre σn(λ) with n = ν denoting the negative
parity string. Also possible are z−λ 2n-strings consisting
of 2n zs and a λ n-string taking the values

z
(n)
l+1 = λ(n) + iφ(n− 2j) + iπ + sgn(φ)iπ (62)

z
(n)
l+n+1 = λ(n) + iφ(n− 2l) + iπ − sgn(φ)iπ (63)

where j = 0, . . . , n and l = 1, . . . , n−1. These contribute

bare energy En = −2sgn(φ) cos (nφ/2)Deλ(n)/2. In addi-
tion there is also a negative parity z − λ string

λ = λ(ν) + iπ, z1,2 = λ(ν) ± i(π − φ) (64)

which has energy 2 sin (φ/2)Deλ(ν)/2. We denote the dis-
tributions of the centres of the z − λ 2n-strings by ρn(z)
with n = ν indicating the negative parity string.Several
string type are depicted in Fig. 7 for both φ > 0 and
φ < 0.
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FIG. 8: (Color Online): The finite temperature dot occupa-
tion is plotted as a function of ε0/Γ for several values of the
temperature. Above we plot the dot occupation with K = 2

3
(solid lines) and K = 1 (dashed lines). The repulsive bulk
interactions result in an enhancement of the dot occupation
in comparison to the non interacting case. This is effect is
most pronounced for lower temperatures. At higher temper-
ature the interacting and non interacting curves coincide ow-
ing to the fact that the dot becomes decoupled. Below we
plot the same for K = 4

3
(solid lines) and plot again K = 1

(dashed) for comparison. The dot occupation is suppressed
due to the attractive interactions wth the effect becoming
more pronounced for lower T/Γ.

Having elucidated the string structure of the model,
the free energy is found, as in other Bethe ansatz models
following the procedure laid out in37. The approach is
well known and we just provide the main steps. The free
energy F = E−TS, where E is the energy of an arbitrary
configuration of strings and S is its associated Yang-Yang
entropy, is minimized with respect to ρ±, ρn and σn which
are solutions of the Bethe Ansatz equations. The result of
this minimization gives the thermodynamic Bethe ansatz
(TBA) equations which determine the minimum of F .
Owing to the different string structures for K greater
than or less than 1 we consider each region separately.

We start with φ = −π/ν, corresponding to K = ν−1
ν <

1, describing repulsive interactions. In this region we find
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FIG. 9: (Color Online): The dot occupation for fixed εo/Γ
as a function of temperature. The interaction is taken to be
K = 4

3
(dot-dashed lines), K = 1 (dashed lines) and K = 2

3
(solid lines). We see the enhancement and suppression of the
dot occupation for repulsive and attractive interaction with
the effect most pronounced as the temperature is lowered.

the dot contribution to the free energy is

Fd = E0
d − T

∫
f0(x+ 2 log

(
T

Γ

)
) log (1 + eϕ−(x))

−T
∫
f0 ∗ s(x+ 2 log

(
T

Γ

)
) log (1 + eκ1(x))

−T
∫
s(x+ 2 log

(
T

Γ

)
) log (1 + eκν−1(x)) (65)

where E0
d is the ground state energy due to the dot,

s(x) = sech(πx/2φ)/4φ and ∗ denotes the convolution
f ∗ g =

∫
f(x− y)g(y)dy. The thermodynamic functions

ϕ±, ϕn and κn are related to the distributions ρ±, ρn and
σn respectively and are solutions of the TBA equations
which in this case are

ϕ+ = s ∗ log

(
1 + eϕ1

1 + eκ1

)
, ϕ− = −2ex/2 + s ∗ log

(
1 + eϕ1

1 + eκ1

)
(66)

ϕn = s ∗ log (1 + eϕn−1)(1 + eϕn+1)(1 + e−ϕν )δn,ν−2 + δn,1s ∗ log

(
1 + eϕ+

1 + eϕ−

)
(67)

κn = s ∗ log (1 + eκn−1)(1 + eκn+1)1+δn,ν−2 − δn,1
[

ex/2

cos (φ/2)
− s ∗ log

(
1 + eϕ+

1 + eϕ−

)]
(68)

along with ϕν−1 = s∗ log (1 + eϕν−2) + νε0
T = −ϕν + 2νε0

T
and κν−1 = s ∗ log (1 + eκν−2) = −κν . Just as in the
calculation of the dot occupation in the ground state the
above equations are independent of the cutoff which has
been removed while holding Γ fixed. These expressions
give the exact dot free energy of the system in all temper-
ature regimes. Their complicated nature precludes any
analytic solution for the thermodynamic functions but
are straightforwardly determined numerically through it-
eration of the integral equations.

Before doing this however we can examine them in the
limits of low and high temperature. The functions f0(x)
and s(x) appearing in the free energy are sharply peaked
about zero meaning that for T → 0,∞ the free energy
is determined by the solutions of the TBA in the x →
∞,−∞ limits respectively. Setting ε0 = 0 and taking
first the high temperature limit, x→ −∞ we see that the
driving terms in the TBA vanish and the thermodynamic
functions are constants eϕ±(−∞) = 1,

eϕj(−∞) = eκj(−∞) = (j + 1)2 − 1 (69)

eϕν−1(−∞) = eκν−1(−∞) = ν − 1. (70)

Likewise in the opposite low temperature limit x → ∞

we get eϕ−(∞) = 0, eϕ+(∞) = 3,

eκj(∞) = j2 − 1, eκν−1(∞) = ν − 2 (71)

eϕj(∞) = (j + 2)2 − 1, eϕν−1(∞) = ν. (72)

The free energy thus becomes linear in T in both the high
and low temperature limit.

Using these we can check the RG picture we arrived at
earlier using the ground state dot occupation still holds
true at finite temperature. Firstly note that the energy
scale, the temperature in this case, is measured with re-
spect to Γ which serves as both the strong coupling scale
and the level width for the model. Thus the system is
strongly coupled at low temperature T � Γ and weakly
coupled at high temperature T � Γ. Furthermore by
inserting (71) (69) into (65) we obtain the g-function of
the model, defined to be the difference in the UV and IR
entropy of the impurity

g = SUV − SIR = log 2 +
1

2
log

(
1

K

)
. (73)

This is always positive for the range of values consid-
ered in agreement with the requirement that as we move
along the RG flow by lowering the temperature, massless
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degrees of freedom are integrated out. The first term
comes from the charge degrees of freedom and corre-
sponds to the entropy of a decoupled dot at high temper-
ature which is fully hybridised at low temperature. The
second term comes from the chiral degrees of freedom
and is the same as for the Kane-Fisher model of a back
scattering impurity4129. We see from this that at high
temperature the dot is decoupled and as T is lowered it
becomes hybridised with the dot whereupon it acts as
a back scattering impurity. In the non interacting limit
the K → 1 this last term disappears and we recover the
expected result.

We may go beyond the fixed point behaviour to get
the leading order corrections and determine the specific
heat. Following3442 we expand about the low temper-
ature solution log (1 + exp (ϕ−)) ≈ exp

(
−2ex/2

)
and

log (1 + exp (κ1)) ≈ exp
(
−ex/2/ cos (φ/2)

)
for x � 0.

The low temperature specific heat is then found to be

Cv ∼
T

Γ
(74)

which agrees with the expectation that the irrelevant op-
erator is the stress energy tensor.

By numerically integrating the TBA and using them in
(65) we can obtain the finite temperature dot occupation
of the system. This is plotted in Fig. 8 for K = 2

3 as a
function of ε0/Γ at different values of the temperature,
T/Γ. For the same value of K we plot the dot occupation

at fixed ε0/Γ as a function T/Γ in the Fig. 9. Comparing
to the dashed lines which are the non interacting values
we see that the dot occupation is enhanced just as it was
at zero T . This enhancement is strongest at low T and is
washed out at high temperature as the system becomes
weakly coupled.

B. K = ν+1
ν

We turn now to the case of φ = π/ν or K = ν+1
ν > 1,

(attractive interactions). In this regime the tunneling is
relevant while backscattering is irrelevant1. A competi-
tion therefore ensues between these two processes. This
competition makes itself felt via changes in the free en-
ergy and TBA equations. The dot contribution to the
free energy is now given by

Fd = E0
d − T

∫
f0(x+ 2 log

(
T

Γ

)
) log (1 + e−ϕ+(x))

−T
∫
f0 ∗ s(x+ 2 log

(
T

Γ

)
) log (1 + eϕ1(x))

−T
∫
s(x+ 2 log

(
T

Γ

)
) log (1 + eκν−1(x))(75)

with the TBA equations being

ϕ+ = 2ex/2 + s ∗ log

(
1 + eϕ1

1 + eκ1

)
, ϕ− = s ∗ log

(
1 + eϕ1

1 + eκ1

)
(76)

ϕn = s ∗ log (1 + eϕn−1)(1 + eϕn+1)(1 + e−ϕν )δn,ν−2 − δn,1
[
s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
+

ex/2

cos (φ/2)

]
(77)

κn = s ∗ log (1 + eκn−1)(1 + eκn+1)1+δn,ν−2 − δn,1s ∗ log

(
1 + e−ϕ+

1 + e−ϕ−

)
(78)

and ϕν−1 = s∗ log (1 + eϕν−2)+ νε0
T = −ϕν + 2νε0

T as well
as κν−1 = s ∗ log (1 + eκν−2) = −κν . Comparing to the
K < 1 case we see that the roles of eφ− and e−φ+ have
been exchanged and that the exponential driving term
now appears in the ϕj equations rather than κj ones.

We gain insight to the K > 1 region by looking at the
asymptotic solutions of the TBA. The high temperature
solutions, x → −∞ remain unchanged and are given by
(69), therefore as T → ∞ the system is the same re-
gardless of K. In the low temperature limit however
the solutions are different as should be the case given
the ground state is of a different form. We get that
e−ϕ+(∞) = 0, eϕ−(∞) = 3,

eϕj(∞) = j2 − 1, eϕν−1(∞) = ν − 2 (79)

eκj(∞) = (j + 2)2 − 1, eκν−1(∞) = ν (80)

Using these in the g function we obtain the same form as
before,

g = log 2 +
1

2
log

(
1

K

)
. (81)

Note however that although g > 0, the second term which
is due to the backscattering, is negative for K > 1.
This relative sign between the charge and chiral terms
is related to the competition between the tunnelling
and the backscattering. Upon taking the K → 1 we
recover the non interacting result. The low temper-
ature corrections to the fixed point can be obtained
as they were in the previous section. This time how-
ever the driving terms in the do not appear in the
κ1 equation but in the ϕ1 equation instead and conse-
quently we take log (1 + exp (−ϕ+)) ≈ exp

(
−2ex/2

)
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and log (1 + exp (ϕ1)) ≈ exp
(
−ex/2/ cos (φ/2)

)
for x�

0 and find the specific heat to be

Cv ∼
T

Γ
+ a

(
T

Γ

)α
‘. (82)

Again the leading order term coincides with the stress
tensor being the leading irrelevant operator. The term
scales as Tα where α = 2 for K = ν+1

ν , ν > 2. It
is expected however that α becomes non integer when
increasing K beyond this as is the case in the ground
state dot occupation.

The finite temperature dot occupation can be obtained
by numerically integrating the TBA as in the previous
section and the results are plotted in Fig. 8 and Fig.
9. We see that the dot occupation is suppressed as com-
pared to K = 1 or K < 1, with the effect being most
pronounced at low temperature. At high T the dot be-
comes decoupled and the occupation approaches that of
the non interacting case.

VII. CONCLUSION

In this article we have solved two related models of
quantum dots coupled to Luttinger liquids. The first
consists of a dot side-coupled to the Luttinger liquid
while in the second the dot is placed between two other-
wise disconnected liquids. The latter also requires that
a Coulomb interaction between the occupied dot and the
end of the liquids is included and it is tuned to the same
value as the bulk interaction. The side-coupled model
however, requires no such tuning.

The solution shows that the two models are related by
taking K → 1/K which was shown previously through
bosonization8. We derived the Bethe equations for both
models and used them to construct the ground state and

derive exact expressions for the dot occupation in all
parameter regimes. It was seen that the side-coupled
system is strongly coupled at low energies so that the
dot becomes fully hybridised with the bulk and acts as a
backscattering potential. The effect of the backscatter-
ing is to either suppress or enhance the dot occupation
depending on the sign of the interactions.

The scaling dimensions of the leading relevant and ir-
relevant operators about the UV and IR fixed points were
found to coincide with that of the free model. The sur-
prising result that the fixed points appear, at least to
leading order to be Fermi liquid is in start contrast to
the non-Fermi liquid nature of the bulk system.

We then examined the finite temperature properties of
the dot by deriving the Thermodynamic Bethe equations
and free energy of the system. It was seen that at low
temperature dot is fully hybridised with the bulk and the
interactions resulting in a suppression or enhancement
of the dot occupation. The effect of the interactions is
washed out at high temperature whereupon the dot de-
couples.

The lack of fine tuned parameters in the side-coupled
model make it a good candidate for experimental realiza-
tions. Such a system may be created placing a quantum
dot near a carbon nanotube, the edge of a quantum Hall
sample or a topological insulator. The dot occupation
can then be measured by means of a quantum point con-
tact and compared to (51).
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