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It is known that sputter yields of elemental materials depend on the target curvature. Here
we explore to what extent this effect is modified for alloy targets using both Monte Carlo and
molecular dynamics simulations. For the exemplary case of amorphous SicGe1−c spheres, we find
that, in the limit of small curvatures, the curvature dependence of the sputter preferentiality is
negligible. This finding can be explained by a natural extension of the existing analytical theory of
curvature-dependent sputtering for elemental materials. For large curvatures, however, the sputter
preferentiality strongly depends on curvature. In this case, molecular-dynamics simulations also
predict strong spike effects which increase the sputter yields. Sputter yield amplification – an
increase in partial sputter yield with decreasing concentration of the element – occurs for Si-rich
alloys.
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I. INTRODUCTION

Sputtering depends on the surface curvature [1, 2]. For
a convex surface, the sputter yield is greater than for a
flat surface. The increase in sputter yield may be pro-
nounced if the curvature radius is of the order of the
energy deposition depth; for considerably smaller curva-
ture radii the yield decreases again. This effect has been
investigated for the sputtering of nanospheres [3–10] and
nanowires [11–16]. It is of obvious relevance for the sput-
tering of nanoparticles that are supported [17–19], that
are in aerosols [20] or are in a plasma environment [21].

Curvature-dependent sputtering is also relevant for
nanostructured or nanopatterned surfaces. Such surfaces
may be created by the irradiation process itself, and so
a knowledge of how the resulting surface patterns mod-
ify the sputter yield locally is important in theories of
ion-induced patterning [22].

Elemental targets were considered in most previous
studies. However, real targets are often alloys or com-
pounds. Sputtering of non-elemental targets is made
more complex by the phenomenon of preferential sput-
tering, i.e., the deviation of the partial sputter yields of
the elements from proportionality to their respective sur-
face concentrations. Further complications arise, since
surface concentrations (i) may differ from the bulk val-
ues, and (ii) may change with fluence if the sputtering is
preferential [23–25]. The effects of preferential sputtering
may be strong, and thus it may be asked whether the ef-
fects of preferential sputtering will overshadow curvature
effects in the sputtering of non-elemental targets.
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The answer to this question is important in theories
of the nanoscale patterns that emerge when the initially
flat surface of a binary material is bombarded with a
broad noble gas ion beam [26–28]. Interest in this kind
of pattern formation burgeoned when it was discovered
that when a planar surface of GaSb is bombarded with
a normally-incident argon ion beam, a pattern of nan-
odots with a surprising degree of hexagonal order can
form spontaneously on the surface [29]. If a comprehen-
sive theory of this fascinating kind of pattern formation
is to be developed, a more complete understanding of
sputtering from nanostructured binary materials will be
needed.

In this paper, we investigate the relative importance
of curvature-dependent sputtering and preferential sput-
tering in binary materials using the completely miscible
amorphous SicGe1−c system as a prototypical example,
thus extending previous detailed studies on the elemental
Si system [9, 15]. We use Monte Carlo (MC) simulations
as our main tool, since it combines well defined simu-
lation conditions with computational speed. For small
spheres, and also for flat targets, we perform additional
molecular dynamics (MD) simulations that allow us to
include attractive interactions and also many-body colli-
sion events, and thus the occurrence of collision spikes, in
the targets. Finally, we will present an analytical model
of the curvature dependence of sputtering for binary tar-
gets valid in the limit of large curvature radii; the as-
sumptions underlying this theory will also be assessed
here.
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II. SIMULATION METHODS

A. Monte Carlo

MC simulations in the binary collision approxima-
tion are performed with the IMSIL code in its static
mode [30, 31] assuming amorphous targets. As the
interatomic potential the pair-specific Ziegler-Biersack-
Littmark (ZBL) potential [32] is used for the Si-Si inter-
actions and the universal ZBL potential [32] otherwise.
Electronic stopping is disregarded in this study, since
there are uncertainties related to the electronic stopping
in insulating or semiconducting targets [33]. Note, how-
ever, that electronic stopping might introduce a source
of preferential energy transfer to the species of an alloy
that we will not further investigate here. Moreover, we
wish to compare our MC results with the MD simula-
tions which are also performed without consideration of
electronic stopping.

For details on the selection of collision partners and the
treatment of the surface we refer the reader to our recent
publications [34, 35]. For the surface binding energies of
Si and Ge atoms in the SicGe1−c alloy we use a simple
model based on a pair-interaction picture [36, 37]:

USi(c) = cU0
Si + (1− c)UpureGe

Si (1)

UGe(c) = cUpureSi
Ge + (1− c)U0

Ge (2)

Here, U0
Si and U0

Ge are the surface binding energies of the
pure materials, which are approximated by the cohesive
energies 4.70 eV and 3.88 eV for Si and Ge, respectively.

The other energies, UpureGe
Si and UpureSi

Ge , are the surface
binding energies of atoms of one type on pure material
of the other type and are given by

UpureGe
Si = UpureSi

Ge =
1

2
(U0

Si + U0
Ge). (3)

The atomic density of the SicGe1−c alloy is calculated
assuming constant atomic volumes of Si and Ge consis-
tent with atomic densities of pure Si and Ge of 4.994 ×
1022 cm−3 and 4.428×1022 cm−3, respectively. The lower
surface binding energy of Ge requires that the trajectory
cutoff-energy and the displacement energy are also set to
this value; for a discussion see [34].

An extension of IMSIL required for this work was the
implementation of a spherical geometry. This was done
in a straightforward manner, basically replacing the z
coordinate with the distance from the sphere center in
geometry checks.

MC simulations were performed for central impacts of
20 keV Ar on SicGe1−c spheres with 19 different radii
between 1 and 1000 nm and on flat targets, for Si con-
centrations of c = 0, 0.25, 0.5, 0.75, and 1. The number
of impacts followed in each simulation was 107.

B. Molecular dynamics

MD simulations are performed for small a-SicGe1−c

spheres with radii R = 1, 1.5, 2.5, and 3.5 nm. As in
our MC simulations we investigate sputtering by central
impacts of 20 keV Ar on a-SicGe1−c mixtures with Si
concentrations c = 0, 0.25, 0.5, 0.75, and 1.
The Si-Si interaction is modeled by the Stillinger-

Weber potential [38], and the Ge-Ge interaction by a
modification provided by Posselt and Gabriel [39], which
uses the same potential form, but with adapted parame-
ters. We emphasize that these potentials take care to fit
the cohesive energies U0

Si = 4.70 eV and U0
Ge = 3.88 eV

properly; also the melting temperatures (1687 K for Si
and 1211 K for Ge) are implemented satisfactorily. We
model the Si-Ge interaction by the same potential form,
and using the arithmetic average of the parameters of Si
and Ge, following Hossain et al. [40]. The Si potential is
cut off at 3.77 Å, and the Ge and Si-Ge potentials at 3.93
Å. For small interaction distances the two-body part of
the potential is fitted to the ZBL potential [32]. The Ar
projectile interacts with Si and Ge atoms via the ZBL
potential. Electronic stopping is disregarded in the MD
simulations.
Bulk amorphous SicGe1−c samples containing around

45,000 atoms are prepared by the recipe of Posselt and
Gabriel [39], based on previous work by Luedtke and
Landman [41], in a simulation cell using periodic bound-
ary conditions. In short, crystals are heated above the
melting temperature; during quenching, the 3-body term
of the potential is increased in order to enhance the ten-
dency to form tetrahedrally coordinated structures; after
cooling the potential is restored again. After amorphiza-
tion, the samples are relaxed by minimizing the poten-
tial energy using conjugate-gradient techniques until the
samples reach near zero temperature and pressure.
In order to characterize the quality of our alloys, we

calculate the near-order parameter

ζ =
PGeGe − (1− c)

c
, (4)

where PGeGe is the probability that a Ge atom has a
Ge nearest neighbor. This quantity is calculated as the
average of ZGeGe/N over all Ge atoms, where N is the
number of nearest neighbors, and ZGeGe is the number
of Ge neighbors. Evidently, ζ = 1 corresponds to a fully
segregated alloy, and ζ = 0 to a random alloy. Our mix-
tures are characterized by values of ζ of −0.01 · · ·+0.02,
corresponding to a random alloy. In addition, we verified
that the number density of the alloys changes linearly be-
tween that of the pure Ge and Si spheres, in agreement
with experimental data [42].
Spheres are cut out of these bulk samples and relaxed

to zero temperature and pressure. For each sphere radius,
250 central impacts were simulated. The impacts differed
in that in each case a different impact point was chosen at
random on the sphere. Simulations are followed for 3 ps.
Determination of the sputter yields of our small spheres
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is complicated by fragmentation. We identify fragments
as groups of atoms that are separated from each other
by distances of at least the cutoff radius of the potential.
All atoms which do not belong to the largest fragment
are considered sputtered.
In addition, MD simulations have also been performed

for a flat target at normal incidence. The target has a
depth of 100 Å and a lateral extension of 100 Å × 100 Å.
The lateral and bottom boundaries are damped in order
to mimic energy dissipation to the surroundings. Each
impact occurs on a random position in the central part
(50 Å × 50 Å) of the target. For the flat targets, atoms
are considered to be sputtered if they are at least twice
the cutoff radius of the potential away from the original
flat surface.
We compared our sputter yields for pure Si targets with

those published earlier by Nietiadi et al. [9]; the sputter
yields of spheres are smaller by about 20%, while the
results for the flat target are reproduced within statistics.
The reduction of the sphere yield is mainly due to our
improved relaxation procedure.

III. ANALYTICAL MODEL

In this section, we will develop a model of sputter-
ing from homogeneous targets composed of two atomic
species. It is a natural extension of the Sigmund the-
ory of sputtering from elemental materials. Our model
makes predictions on the behavior of the partial sputter
yields and the sputter preferentiality that will be com-
pared with our simulation results on SicGe1−c in Section
IV.
We begin by considering the impact of a single ion of

energy ǫ on a sphere of radius R that is composed of
an elemental material. We will limit our attention to
central impacts, i.e., those with an impact parameter of
zero. We place the origin O at the point of impact and
put the z-axis along the inward-pointing normal to the
surface.
In the Sigmund theory of ion sputtering [1], the average

energy density deposited at a point (x, y, z) within the
solid by the random slowing down of the ion is taken to
be

ED(x, y, z) =
ǫ

(2π)3/2αeβ2
e

exp

(

−
(z − ae)

2

2α2
e

−
x2 + y2

2β2
e

)

.

(5)
Here ae is the average depth of energy deposition, and
αe and βe are the longitudinal and transverse straggling
lengths, respectively. The contours of equal energy de-
position are ellipsoids of revolution centered at the point
aeẑ with the z-axis as their axis of symmetry. Finally,
the average number of atoms that are sputtered from
a small area element dA centered on a point r on the
sphere’s surface, n(r)dA, is assumed to be proportional
to the average energy deposited there:

n(r)dA = λED(r)dA. (6)

Here the sputtering efficiency λ is a constant, and so it
is independent of the sphere’s radius R.
We now move on to consider the case in which the

sphere is composed of two completely miscible atomic
species, 1 and 2. We restrict our attention to the case in
which the concentration c of species 1 is independent of
position within the sphere.
We will take the power deposited in the alloy to be

given by a linear interpolation between the powers de-
posited in the pure materials [43]. Explicitly, we assume
that

ED(r) = c1E
0
D,1(r) + c2E

0
D,2(r), (7)

where E0
D,i is the density of deposited energy in a target

composed entirely of species i, c1 ≡ c, c2 ≡ 1 − c and
i = 1, 2. Following Ref. 44, we will take the distribution
of deposited energy to be given by the Sigmund form for
c = 0 and 1, i.e., we set

E0
D,i(x, y, z) =

ǫ

(2π)3/2αiβ2
i

exp

(

−
(z − ai)

2

2α2
i

−
x2 + y2

2β2
i

)

(8)
for i = 1 and 2. Note that a1, α1 and β1 in general
differ from a2, α2 and β2 and that here and in what
follows, the superscript 0 indicates that the quality in
question pertains to a pure material. The mean depth
and the longitudinal and transverse stragglings of the
energy deposition distribution Eq. (7) are then functions
of c. They are given by

a = c1a1 + c2a2 (9)

α2 = c1(α
2
1 + a21) + c2(α

2
2 + a22)− a2 (10)

β2 = c1β
2
1 + c2β

2
2 (11)

The energy density deposited in species i at an arbi-
trary point r within the sphere will be taken to be

ED,i(r) = ciED(r) (12)

for i = 1 and 2. Thus, we assume that the deposited en-
ergy is divided stoichiometrically between the two atomic
species at all points r. We complete our model by assum-
ing that the average number of atoms of species i that
are sputtered from a small area element dA centered on
a point r on the sphere’s surface, ni(r)dA, is given by

ni(r)dA = λiED,i(r)dA. (13)

Here the constant of proportionality λi could depend on
the concentration c. It is, however assumed to be inde-
pendent of the radius of the sphere, following Sigmund’s
assumption that λ does not depend on the geometry
of the target. Our model is readily generalized to the
oblique-incidence impact of an ion on a solid of arbitrary
shape.
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If the sputter yields of the two atomic species were
stoichiometric, we would expect

Y1

Y2

=
c

1− c
. (14)

Hence deviations from stoichiometric sputtering can be
quantified by the preferentiality of species 1 over species
2,

δ ≡
Y1

Y2

·
1− c

c
− 1. (15)

Positive values of δ indicate that species 1 is sputtered
preferentially, i.e., it is sputtered more than would be
expected if its atomic fraction alone were considered.
Integrating Eq. (13) over the surface of the sphere S

and using Eq. (12), we obtain

Yi = λici

∫

S

ED(r)dA, (16)

where i = 1, 2. It follows that the sputter preferentiality

δ =
λ1

λ2

− 1 (17)

depends on the concentration c but is independent of the
sphere’s radius R. This is one of the primary predictions
of our model.
We will next find approximate expressions for Y1 and

Y2 that are valid in the limit of large sphere radii R. Our
starting point will be Eq. (16). Employing Eq. (7), we
obtain

∫

S

ED(r)dA =
2

∑

i=1

ci

∫

S

E0
D,i(r)dA. (18)

Let Y 0
i denote the sputter yield of a sphere of radius R

that is composed entirely of species i. Equations (16)
and (18) yield

Y 0
i = λ0

i

∫

S

E0
D,i(r)dA, (19)

where λ0
i ≡ λi(ci = 1) is the sputtering efficiency for a

target of pure species i. From prior work on sputtering
from elemental spheres [9, 45], we know that

Y 0
i
∼= Y 0

i,∞

[

1 +

(

βi

αi

)2
ai
R

]

, (20)

for R ≫ ai. Here Y 0
i,∞ denotes the yield from a target

with a flat surface that is made up of species i exclusively.
Rewriting Eq. (18) with the help of Eqs. (19) and (20),
we obtain

∫

S

ED(r)dA ∼=

2
∑

i=1

ciY
0
i,∞

λ0
i

[

1 +

(

βi

αi

)2
ai
R

]

, (21)
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FIG. 1: MC results for the deposited energy distributions in
pure Si and Ge targets and in a stoichiometric SiGe alloy;
all data were obtained in an infinite medium. The behavior
predicted by Eq. (7) is shown by the dotted line. The inset
shows the dependence of the parameters a, α and β on Si
concentration. The dotted lines here show the average depth
and the longitudinal and transverse straggling lengths as given
by Eqs. (9)–(11).

a result that is valid provided that R is much larger than
a1 and a2. Let

µ0
i,∞ =

∫

S

E0
D,i(r)dA (22)

for R = ∞, i.e., for a flat surface S. We also set
µ∞ = cµ0

1,∞+(1− c)µ0
2,∞ and Yi,∞ = limR→∞ Yi. Using

Eq. (21) in Eq. (16), we obtain our final result

Yi
∼= Yi,∞



1 +
2

∑

j=1

cj
µ0
j,∞

µ∞

(

βj

αj

)2
aj
R



 , (23)

which applies for R ≫ a1 and R ≫ a2. We conclude that
for large R, the partial yield Yi is approximately equal to
its value for a flat surface plus a correction term that falls
off as 1/R. Note that Eq. (23) implies that the ratio of
the partial yields and therefore the sputter preferentiality
δ are approximately independent of the sphere radius R
for large R, which is consistent with Eq. (17).
MC and MD tests of the Sigmund model’s predictions

for the sputtering of a sphere composed of an elemental
material show that the model produces accurate results
only for sphere radii R that are large compared to the
average depth of energy deposition a [9, 45]. We therefore
anticipate that our generalization of the Sigmund model
to binary materials will agree with our simulations only
in the limit that R is large compared to a1 and a2.
In Fig. 1, we show our MC results for

ED(z) ≡

∫

∞

−∞

∫

∞

−∞

ED(x, y, z)dxdy, (24)
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FIG. 2: Scaled deposited energy density ED,i(r)/ci for i cor-
responding to Si (solid lines) and Ge (dashed lines): (a)
Si0.75Ge0.25, (b) Si0.25Ge0.75. In both cases the scaled energy
densities agree very well.

for SicGe1−c as a function of z for c = 0, 1 and 1/2, i.e.,
for targets composed of pure silicon, pure germanium and
the stoichiometric alloy SiGe, respectively. These results
were obtained for infinite targets and the ions were at
the origin moving in the +z direction at time t = 0.
The dotted curve in Fig. 1 shows the linear interpolation
between the c = 0 and c = 1 energy deposition profiles
for c = 1/2. The agreement with the MC data for SiGe
is quite good, and so our simulations provide support for
our assumption Eq. (7).

The inset in Fig. 1 shows the MC results for the con-
centration dependence of the mean depth a, the longitu-
dinal straggling α, and transverse straggling β of the de-
posited energy distribution. While the transverse strag-
gling length β does not depend appreciably on concen-
tration, the longitudinal straggling length α and even
more so the depth of maximum energy deposition a in-
crease with Si content. The dotted lines in the inset of
Fig. 1 show a, α and β as given by the model’s predic-
tions Eqs. (9)–(11). Good agreement with the MC data
is also seen here.

In general, cascade theory predicts that the energy de-
position profiles of the two species in a binary target differ
from each other [43, 46, 47]. Concrete examples of the
energy partitioning, however, show only moderate devia-
tions from stoichiometry even for extreme examples such
as the hypothetical compound HfC, see e.g., Fig. 2(a) of
Ref. [46]. The spatial dependence of the energy deposi-
tion profiles of the two species in a mixture has not been
reported before to our knowledge.

According to Eq. (12), the energies deposited in each
atom of species 1 and 2 are the same on average at an
arbitrary point r in the solid. Equation (12) implies that

ED,1(r)

c
=

ED,2(r)

1− c
. (25)
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FIG. 3: Sputter yields of Si and Ge spheres (red and blue
lines, respectively) as a function of inverse scaled radius a/R.
Solid lines: MC results; dashed lines and symbols with error
bars: MD results. In the inset the linear approximations given
by Eq. (20) are depicted by the dotted lines.

Our Monte Carlo results for energy deposition in
SicGe1−c shown in Fig. 2 reveal that Eq. (25) and hence
the assumption (12) are excellent approximations for
c = 0.25 and 0.75. A more careful examination of
Fig. 2 shows that in the Si-rich alloy, the energy depo-
sition into Si recoils is slightly understoichiometric, i.e.,
ED,Si/c < ED,Ge/(1− c), while the reverse is true for the
Ge-rich alloy.
In theories of the pattern formation on binary mate-

rials that is induced by bombardment with a noble gas
ion beam, the composition of the solid has so far been
assumed to have a negligible effect on the collision cas-
cades [26–28]. The dependence of the deposited energy
distribution on c is not negligible, however, as shown by
Fig. 1. The same assumption has generally been made
in theories of the ion-induced pattern formation that oc-
curs when an initially elemental solid is bombarded with
a noble gas ion beam and impurities are concurrently de-
posited [48–51]. A recent exception to this rule may be
found in Ref. [44]. There, for 0 < c < 1, ED(r) was taken
to be given by the linear interpolation (7).

IV. RESULTS

A. Sputter Yields

Figure 3 shows the sputter yields of the pure targets as
a function of the inverse radius scaled with the respective
average energy deposition depths, a/R. The qualitative
behavior of the sputter yields is the same as that found
for Si spheres in Ref. 9: Starting from their values for a
flat target (R = ∞, a/R = 0), the yields increase with
decreasing R (increasing a/R); this behavior has been
proven to be due to the fact that the energy deposition
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not only leads to backward sputtering in the vicinity of
the ion impact point but also to lateral and even forward
sputtering. Beyond a maximum at R ∼ a/2 (a/R ∼ 2),
the yields decrease again; this decrease is due to the fact
that the energy deposited in the sphere decreases and so
does the available surface area.

The sputter yields for the pure Si spheres are about
30% larger for the MD results as compared to the MC
results; this is qualitatively consistent with our previ-
ous findings [9], but is less pronounced. The reason for
the mitigation of the discrepancy between MD and MC
compared to Ref. 9 are reduced MD values due to our im-
proved relaxation procedure, see Sect. II B. As discussed
in [9], the main reason for the discrepancy is the estab-
lishment of collision spikes in the target spheres, which
increase the sputter yield beyond that of linear collision
cascades and hence above the values obtained by MC.
Note that for the flat target, the MD and MC results
agree almost perfectly, see the data point for a/R = 0 in
the inset of Fig. 3. Near-perfect agreement between MD
and MC results has also been found for Si membranes
[35]. It seems that the more confined situation of bulk Si
and Si membranes compared to spheres counteract target
fragmentation due to spikes.

Figure 3 demonstrates that the spike effect is even
more pronounced for pure Ge spheres; in this case, the
MD results exceed the sputter yields obtained by MC by
a factor of about 2. For the flat target (a/R = 0) the
ratio of the Ge sputter yields is slightly smaller (∼ 1.64),
confirming that spikes affect the sputter yield more dis-
tinctly in the case of the nanospheres. The larger influ-
ence of spikes in Ge targets is plausible, since (i) Ge is
heavier than Si, and hence the energy deposition is more
localized, as evidenced in Fig. 1; (ii) Ge has a smaller
melting temperature and a lower surface binding energy
than Si. Both features favor the formation of collision
spikes and sputtering by them [43, 52]. This holds for
nanospheres as well as for flat targets as shown in Fig. 3.

The inset of Fig. 3 shows the behavior of the sput-
ter yields for small curvatures. Here, the linear approx-
imation Eq. (20) with parameters ai, αi, βi taken from
infinite-medium MC simulations, is shown for compari-
son by dotted lines. It is a near perfect fit for R > 10a
(a/R < 0.1) and still quite reasonable for R > 4a
(a/R < 0.25), for both Si and Ge. This result is re-
markable, since Eq. (20) was derived using the ellipsoidal
approximation Eq. (5), while the true energy deposition
distribution functions are narrower in the lateral direc-
tion near the surface than deeper in the bulk, as exem-
plified by Fig. 2 for Si0.75Ge0.25 and Si0.25Ge0.75.

The results for a-SicGe1−c mixtures are qualitatively
the same and quantitatively between the results for pure
Si and Ge spheres. Fig. 4 demonstrates this by show-
ing the sputter emission from 3.5 nm radius SicGe1−c

spheres with varying Si content c; in order to empha-
size the changes, the impact events leading to the most
abundant sputtering are plotted. The trend toward in-
creasingly pronounced emission, accompanied by crater

formation in the target sphere and cluster emission, with
increasing Ge content is clearly visible.
In Fig. 5 we show the so-called component sput-

ter yields Yi/ci [24] for Si0.75Ge0.25, Si0.5Ge0.5, and
Si0.25Ge0.75 spheres as obtained from our MC simula-
tions. The component sputter yields would be identi-
cal for Si and Ge if sputtering were stoichiometric, see
Eq. (14). They follow the same trends as a function
of a/R as the sputter yields from the elemental targets
(Fig. 3). In Fig. 5 the sphere radii R are scaled with
the energy deposition depths a as obtained from the MC
simulations for the appropriate concentration ci, see the
inset of Fig. 1.
The MC results for small surface curvature, a/R < 0.3,

are displayed in the insets of Fig. 5. Note that for
a/R <

∼ 0.1 the sputter yields are well approximated by
the model prediction Eq. (23) shown by the dotted lines.
Above that value, the MC data exceed the prediction in-
dicating the importance of quadratic terms in the expan-
sions of the partial yields in powers of a/R. In Eq. (23)
we have taken ai, αi, βi, and µ0

i,∞ from simulations in an
infinite medium, and Yi,∞ from flat target simulations.
It is remarkable that Eq. (23) predicts the slopes of the
linear approximation correctly.

B. Sputter preferentiality

For an alloy, the sputter preferentiality is of interest.
The sputter preferentiality determines whether the sur-
face concentrations deviate from the bulk values upon
prolonged ion bombardment [23–25]. In agreement with
Eq. (15), we denote the sputter preferentiality (of Si over
Ge) by

δ =
YSi

YGe

·
1− c

c
− 1. (26)

A positive value of δ indicates that Si is sputtered pref-
erentially, i.e., more than according to its atomic frac-
tion in the sphere. Eq. (26) also implies that Si is sput-
tered preferentially if the component sputter yield of Si,
YSi/c, exceeds that of Ge, YGe/(1 − c). Therefore, ac-
cording to Fig. 5, Si always sputters preferentially from
our SicGe1−c spheres.
The MC results for the sputter preferentiality δ are

displayed in Fig. 6. Note that the values of δ are always
positive. This means that Si always sputters preferen-
tially from our SicGe1−c spheres. In the range R >

∼ 2a
(a/R <

∼ 0.5), δ is nearly independent of curvature in rea-
sonable agreement with our model’s prediction that δ
does not depend on R; however, with the statistics pro-
vided in Fig. 6, a slight decrease of δ for the Si-rich al-
loy and a slight increase for the Ge-rich alloy may be
discerned. Considering the relationship between sput-
ter preferentiality δ and the sputtering efficiencies λi,
Eq. (17), it may be concluded that our assumption made
in Sect. III, that the sputtering efficiencies do not depend
on geometry, is only valid for small curvatures, but fails
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FIG. 4: Cross-sectional view through the sputtered spheres (3.5 nm radius) at 3 ps after ion impact (MD data). The impacts
exhibiting the most abundant sputtering have been selected. Ions impinge along the viewing direction. Note that not all
sputtered atoms are seen, as they may already have moved out of the vicinity of the sphere, they are situated in the half-space
removed by the cut, or they are hidden behind the target sphere. Red: Si; blue: Ge atoms.

TABLE I: Sputter yields of a-SicGe1−c flat targets, surface
binding energies, preferentiality δ and effective power expo-
nent m calculated by MC.

c YSi YGe USi UGe δ m
0 – 3.067 4.29 3.88 – –

0.25 0.819 1.924 4.3925 3.9825 0.278 0.164
0.5 1.407 1.051 4.495 4.085 0.338 0.185
0.75 1.768 0.416 4.5975 4.1875 0.416 0.212
1 1.901 – 4.70 4.29 – –

for small spheres. The latter should not be too surpris-
ing given that sputtering efficiencies have been found to
be different for forward and backward sputtering from
membranes [35].
Theories are available for the sputter preferentiality

of flat targets. Collision cascade theory shows that it
depends on the ratio of the atomic masses (MSi = 28.09
amu and MGe = 72.59 amu) and on the ratio of surface
binding energies, which we determine using Eqs. (1) and
(2), as [43, 53, 54]

δ =

(

MGe

MSi

)2m (

UGe

USi

)1−2m

− 1. (27)

Here a parameter m enters which characterizes the low-
energy behavior of the interatomic interaction; m de-
scribes a repulsive pair interaction decaying like V (r) ∝
r−1/m for large distances r. Previous MC and MD stud-
ies [55–58] corroborated Eq. (27). For the MD studies,
the parameter m has to be discussed carefully and is
sometimes taken as a fitting parameter, since attractive
potentials are used in MD, while m characterizes a repul-
sive potential; the parameter m was shown to be in the
range of 0–0.2 [24].
Eq. (27) predicts that the lighter and more weakly

bound species is sputtered preferentially. The atomic
mass enters since the lighter species will on average de-
liver less energy in a collision with a heavy atom than vice
versa; this is a consequence of the energy dependence of
the collision cross sections. For m = 0, only the sur-
face binding affects sputtering, and we expect the more
weakly bound Ge to sputter preferentially. With increas-

ingm, atomic mass becomes relevant, favoring sputtering
of Si.

We assemble the MC results for flat-target sputtering
in Table I. The preferentiality is somewhat stronger than
what would have been expected from collision cascade
theory; values of the power exponent m of around 0.2
or even larger are required to explain it from the mass
and surface-binding effects, Eq. (27). Astonishingly, the
preferentiality shows a distinct dependence on concen-
tration; Si is sputtered in relatively higher proportion
for the Si-rich alloys. Note that Eq. (27) predicts only a
weak dependency of δ on the concentration c through the
dependency of the surface binding energies on c. In our
simple model based on pair-interaction binding given by
Eqs. (1) and (2), the ratio USi/UGe only varies between
1.106 for c = 0 and 1.096 for c = 1; this variation is too
small to explain the pronounced dependence observed in
our MC data, Table I.

Figure 6 shows that the sputter preferentiality of
SicGe1−c spheres decreases as soon as R <

∼ 2a (a/R >
∼

0.5). In this case evidently the mass contribution to
preferential sputtering, which is given by Eq. (27), loses
its predominance, and the surface-energy term becomes
more important, and the Si preferentiality is mitigated
as a result.

It is difficult to obtain statistically meaningful MD
data for the sputter preferentiality. The MD data show
an error of the average sputter yields of around 10%; ac-
cordingly the error of the sputter yield ratio is 20%, and
that of the preferentiality is of the order of the quantity
itself. Combining the MD data for all concentrations
(c = 0.25, 0.5, and 0.75) yields an average preferential-
ity of 0.24± 0.20 for flat targets and 0.18± 0.07 for the
spheres, which agrees with the MC data shown in Fig. 6
within the (considerable) statistical errors.

Hossain et al. [40] used MD simulations to determine
the sputter preferentiality of flat crystalline SicGe1−c tar-
gets under 1 keV Ar impact. Even though they used only
100 impacts per target, they provided results for the sput-
ter preferentiality; it was found to be in the range of 0.1
to 0.4 and increased with Si content. These results are in
good qualitative and even semi-quantitative agreement
with ours.
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FIG. 5: MC results for the component sputter yields Yi/ci of
SicGe1−c spheres with (a) c = 0.75, (b) c = 0.5, (c) c = 0.25,
as a function of the inverse reduced sphere radius a/R. The
insets show the behavior for large spheres. The dotted lines
show the model’s predictions as given by Eq. (23).
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FIG. 6: MC results for the sputter preferentiality of SicGe1−c

spheres as a function of inverse reduced sphere radius a/R for
c = 0.25, 0.5, and 0.75. In the inset the dotted lines indicate
the sputter preferentiality for the flat target.

C. Sputter yield amplification

The addition of heavy atoms to a target consisting
of light atoms can increase the partial sputter yield of
the light atom. This phenomenon is known as sputter
yield amplification [59]. For flat SicGe1−c targets and
for spheres of radius 2.5 nm, the MD data displayed in
the left panel of Fig. 7(a) show that the partial sputter
yield of silicon increases as we go from the pure Si target
(c = 1) to the Si0.75Ge0.25 alloy (c = 0.75). Thus, these
data exhibit sputter yield amplification, in contrast to the
MC results shown on the right-hand side of Fig. 7(a).

Sputter yield amplification has been observed both
in experiments [60, 61] and MC computer simulations
[59, 60, 62, 63] of the sputtering of binary materials.
The effect may be considerably stronger than the one
observed by us here. The common explanation for sput-
ter yield amplification is that the heavy ions localize the
collision cascade closer to the surface; the enhanced en-
ergy deposition will thus lead to enhanced sputtering of
the light species even though it is somewhat diluted.

We provide an alternative explanation here: It has
been observed that in many (although not all) cases
the total sputter yield is an approximately linear func-
tion of the concentration [24]. Both our MD and MC
data for flat targets and nanospheres show this linear-
ity, see Fig. 7(b). As shown in Appendix A, this implies
a parabolic dependence of the partial sputter yields on
the concentration if sputter preferentiality is neglected.
Sputter yield amplification occurs when the maximum of
the parabola for the majority material falls within the
interval 0 < c < 1. This is the case when the elemen-
tal sputter yield of the admixed material surpasses that
of the original material by at least a factor of 2; in the
case of preferential sputtering, the ratio of the elemental
materials has to exceed (2 + δ)/(1 + δ), see Eq. (A8).
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FIG. 7: (a) Partial Si sputter yield YSi and (b) total sputter
yield Ytot = YSi + YGe as a function of Si concentration for
the flat target and the four smallest nanospheres. Left: MD
result, right: MC results. The dotted lines are based on linear
fits to the Ytot data and no preferentiality (δ = 0).

This model explains why we do see sputter yield am-
plification in our MD results, but not in the MC data:
Due to spike effects, for instance, the sputter yield of a
flat Ge target is a factor of 2.7 larger than that of a flat
Si target, thus allowing for sputter yield amplification.
In MC, where spikes are not accounted for, this ratio is
only 1.61, prohibiting the amplification. We note that
this explanation is more general than the conventional
one based on the ballistic effects of large atomic masses.
On the other hand, it applies only to systems where the
total sputter yield depends on the atomic concentrations
linearly.

V. SUMMARY

The effect of local surface curvature on the sputter-
ing of binary spherical targets follows that of elemental
targets: the sputter yields are largest if the curvature

radius is of the order of the energy deposition depth.
Towards smaller curvature, the sputter yields decrease
since lateral and forward sputtering no longer contribute.
Towards larger curvature, on the other hand, the sput-
ter yields shrink since the total energy deposited in the
spheres decreases.

For large spheres, the curvature dependence of the
sputter preferentiality δ is weak. In contrast, the prefer-
entiality changes appreciably for high curvatures as the
influence of surface binding becomes more pronounced
than the mass effect.
Experimental data on sputtering of curved sur-

faces have been obtained primarily by bombarding
nanospheres, nanorods or nanowires supported on a sub-
strate. In a number of experiments, nanoscale objects
made of an elemental material (gold) were sputtered
[12, 16, 18]. Ronning et al., however, have sputtered
nanowires composed of the compound semiconductors
ZnO and GaAs [11, 13, 14, 64]. To date, only total sput-
ter yields have been measured. Measurements of the par-
tial sputter yield of each atomic species that make up a
given nanoscale target would be highly desirable.
Our results allow us to discuss the effect of sputter

yield amplification, that is the increase in the partial
sputter yield of a species with decreasing concentration
of the element. For SiGe targets, it occurs for Si in Si-rich
targets, and is caused by the effects of spikes induced by
the admixture of the heavier Ge atoms. A simple model
shows that more generally the effect occurs if the elemen-
tal sputter yield of the admixed material surpasses that of
the original material by at least a factor of (2+δ)/(1+δ).
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Appendix A: A model for sputter yield amplification

Both our MC and MD simulation results shown in
Fig. 7 indicate that the total sputter yield of the SicGe1−c

alloy changes linearly with concentration c, i.e.,

YSi + YGe = cY 0
Si + (1 − c)Y 0

Ge, (A1)

where the superscript ‘0’ denotes the sputter yields of
the elemental targets. Linearity of the sputter yield,
Eq. (A1), also follows from the linearity of energy de-
position, Eq. (7), if sputter preferentiality is neglected
(so that δ = 0) and if the sputter efficiencies λi are as-
sumed to be independent of c. To see this, we begin by
noting that Eq. (16) yields

YSi + YGe = [λSic+ λGe(1− c)]

∫

S

ED(r)dA. (A2)
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According to Eq. (17), if the sputter preferentiality δ is
zero, then λSi = λGe and Eq. (A2) becomes

YSi + YGe = λSi

∫

S

ED(r)dA, (A3)

and linearity of YSi + YGe in c follows from the linearity
of ED(r) if λSi = λGe is independent of c.
Previous simulations of 1 keV Ar impact on a flat

SicGe1−c alloy surface exhibit a quadratic, rather than
linear, dependence of the total sputter yield on c [40].
However, this appears to have been caused by the poor
statistics in these simulations; the total yields we calcu-
lated with our MC code – both for 1 keV and 20 keV
impact energy – as well as our MD results for 20 keV
were found to depend linearly on c.
We now assume Eq. (A1) to also hold for δ 6= 0, as

indicated by our MC and MD results. Recalling the def-
inition of the preferentiality δ given in Eq. (26), we can
eliminate the Ge sputter yield,

YGe =
1− c

c

1

1 + δ
YSi (A4)

from Eq. (A1) and so obtain

YSi

Y 0
Si

=
1 + δ

1 + cδ

[

c2 + c(1− c)r
]

, (A5)

where r denotes the sputter yield ratio of the pure ele-
ments:

r =
Y 0
Ge

Y 0
Si

. (A6)

For δ = 0, YSi/Y
0
Si is a quadratic function of c, and it

displays a close resemblance to our simulation result, as
seen in Fig. 7(a).

Sputter yield amplification occurs if the sputter yield
of Si increases while its concentration decreases, i.e.,

dYSi

d c

∣

∣

∣

∣

c=1

< 0. (A7)

Using Eq. (A5), we find that this is the case if

r >
2 + δ

1 + δ
= 2− δ +O(δ2), (A8)

where the expansion holds for |δ| ≪ 1. Here the prefer-
entiality of the (almost) pure material, δ(c → 1), applies.
It may be shown that given Eq. (A1) holds, Eq. (A8)
even holds if the sputter preferentiality depends on the
concentration, i.e., δ = δ(c).

We conclude that the assumption of a linear change
of the total sputter yield with concentration, Eq. (A1),
predicts a sputter yield amplification effect for r > 2 in
the case of vanishing preferentiality. If Si is preferentially
sputtered, δ > 0, the amplification effect occurs for even
smaller sputter yield ratios r.
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