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We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in
an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent
Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The
properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In
particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are
all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured
with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the
equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze
the non-equilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to
explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet
formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on,
we find that real-time dynamics shows crossovers reminiscent of poor man’s renormalization group flow used
to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the
formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic
behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections
to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate.
Theoretical results discussed in our paper can be measured using currently available experimental techniques.

I. INTRODUCTION

The Kondo effect is a ubiquitous phenomenon in elec-
tron systems. It was originally studied in the context of the
anomalous temperature dependence of resistivity of metals,
which arises from electron scattering on magnetic impuri-
ties1–3. Subsequent experimental and theoretical work showed
that in systems with a periodic lattice of localized spins and
itinerant electrons the Kondo effect gives rise to a whole new
family of strongly correlated electron systems, the so-called
heavy fermion materials4–8. Strong enhancement of the quasi-
particle mass in these materials has its origin in the formation
of Kondo singlets9–12. Some of the most intriguing examples
of the non-Fermi liquid behavior of electrons have been ob-
served in the vicinity of the quantum critical point between the
heavy fermion phase and the magnetically ordered state6,13.
In mesoscopic systems Kondo effect also takes on a central
role; in particular, transport through small quantum dots in
the Coulomb blockade regime for odd occupation numbers is
strongly affected by the formation of Kondo resonances14–20.
Through its equivalence to the spin-boson problem, the Kondo
model also describes the process of decoherence and dissi-
pation in many-body quantum systems21–26, and macroscopic
quantum tunneling27–31.

From the conceptual point of view, the Kondo effect pro-
vides a striking example of the non-perturbative effect of

interactions in many-body systems. The antiferromagnetic
Kondo interaction is a relevant perturbation , so even for small
Kondo scattering the system ”flows” to the strongly coupled
fixed point at low temperatures32. The character of the low-
temperature fixed point cannot be captured within a simple
mean-field approximation and low energy properties of the
system are very different from those of the original free elec-
trons. Formation of the Kondo resonance at the Fermi energy
intrinsically has a many-body character as manifested, for ex-
ample, by the anomalous Wilson ratio33. Accurate theoreti-
cal analysis from the spin susceptibility to the specific heat
of the Kondo system is possible either in the high tempera-
ture/energy limit, where interactions can be treated perturba-
tively or at very low temperatures where one can start from
the low energy fixed point. Many theoretical approaches in-
troduced to study the Kondo model attest to the importance
and difficulty of this problem. These include perturbative
renormalization group32, Bethe ansatz , large-N 34,35 and non-
crossing approximations36–39, as well as numerical studies uti-
lizing the numerical renormalization group (NRG) , density
matrix renormalization group (DMRG)40, density matrix nu-
merical renormalization group (DM-NRG)41 approaches and
the flow equation method42. The Kondo effect has been one
of the most fruitful areas of condensed matter theory, with
many techniques developed in this field subsequently being
extended to other systems.
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Most of the earlier theoretical work on Kondo systems fo-
cused on equilibrium properties on the linear response to ex-
ternal perturbations. In the last few years, out-of-equilibrium
properties of the system have also become the subject of active
research. This analysis is motivated by experimental studies
of transport through quantum dots at finite bias voltage43–45,
optical spectroscopy46,47, as well as pump and probe exper-
iments48. Theoretical analysis of the out-of-equilibrium dy-
namics of Kondo systems is particularly challenging due to
the interplay of degrees of freedom at different energies.

We have recently seen considerable progress in realizing a
new experimental platforms for studying strongly correlated
many-body systems, using systems of ultracold atoms as a
quantum simulator49. Recent experiments demonstrated the
fermionic Mott state with long-range antiferromagnetic or-
der50, observed spin-charge separation in the one-dimensional
Fermi-Hubbard model51, studied BCS to BEC crossover in the
vicinity of the Feshbach resonance52,53, and observed long-
lived prethermalized state in one-dimensional Bose systems54,
just to name a few. Ultracold quantum gas experiments
promise to shed a completely new light on the Kondo model,
which has been studied for decades in condensed matter en-
vironments. The slow dynamical time scales of ultracold
systems make it possible to study Kondo dynamics in real
time. Such measurements are rather challenging in condensed
matter environments due to the fast timescales of the elec-
tronic degrees of freedom47. In addition, quantum gas mi-
croscopy can probe the impurity and the bath in a spatially
resolved way. This would make it possible for the first time
to measure the spatial structure and dynamics of the Kondo
screening cloud. Recent proposals 55–60 suggest that ultracold
alkaline-earth atoms are ideal candidates to realize both the
isotropic ferromagnetic (FM) and antiferromagnetic (AFM)
Kondo model using static optical potentials. However, beyond
the physics of the isotropic model, a wealth of additional ex-
otic phenomena opens up if one breaks its SU(2) symmetry
and introduces anisotropy between the Kondo couplings.

In this paper, we consider a system of 173Yb atoms in an
optical lattice, such as the one studied recently in experiments
by S. Fölling and collaborators61. We show how by adding
Floquet-type control of interactions one can realize a partic-
ularly intriguing regime of the Kondo model: ferromagnetic
(FM) interactions with tunable exchange anisotropy between
the Kondo couplings Jz and J⊥ corresponding to the z and the
(x, y) directions, respectively. While in the commonly studied
antiferromagnetic (AFM) Kondo model spin anisotropy is ir-
relevant, systems with ferromagnetic easy-axis and easy-plane
couplings behave in a very different way. Systems with easy-
axis anisotropy (|Jz| > |J⊥|) and those with SU(2) symme-
try flow to weak coupling, so that at low temperatures the im-
purity spin becomes effectively decoupled from the conduc-
tion electrons. Easy-plane systems (|Jz| < |J⊥|), by contrast,
have a non-trivial renormalization group flow, which first goes
in the direction of decreasing ferromagnetic coupling, but later
crosses over to the antiferromagnetic regime and flows toward
the strong coupling fixed point. Therefore, at the lowest tem-
peratures, the impurity spin acquires a screening cloud62–64,
although the original microscopic model had ferromagnetic

FIG. 1: (Color.) Experimental realization. (a) Blue (red) atoms de-
note the |g〉 (|e〉) states of alkaline-earth atoms. Only two of the
2I + 1 nuclear spin states of |g〉 atoms are populated initially. A
dim laser pulse excites a small fraction of |g ↑〉 atoms into the |e ⇑〉
state, whereas the |g ↓〉 atoms are left unaltered. The |e〉 atoms are
anchored by a deep optical lattice, acting as impurities that interact
with the itinerant |g〉 atoms through strong on-site interaction. (b)
In the quench experiment discussed in Sec. V B, the |e〉 atoms are
excited at time τ = 0 into the |⇑〉 state, during a time that can be
considered instantaneous on the timescales of the Kondo dynamics.
They gradually lose their spin orientation due to the spin exchange
with the |g〉 atoms. The magnetization of the impurity 〈Sz

e (τ)〉 can
be measured after an evolution time τ .

interactions with easy-plane anisotropy. We consider several
types of experiments that can probe this exotic regime.

Furthermore, we also analyze quench-type experiments
demonstrating the formation of the Kondo cloud in real time.
We find the most intriguing dynamics in the regime of easy-
plane ferromagnetic couplings: whereas the dynamics ini-
tially has ferromagnetic characteristics, it crosses over to anti-
ferromagnetic behavior at long times, as characterized by the
formation of the screening cloud. This calculation can not be
handled using the NRG approach since it requires analyzing
long-time dynamics of the low-temperature system. We thus
use a new nonpertubative variational approach to describe the
time-evolution of anisotropic Kondo systems across the phase
diagram65. We also discuss the measurement of the impurity
spin relaxation in the regime of easy-axis ferromagnetic cou-
plings. We show that the ultracold atomic experiment could
be the first to resolve quantum corrections66 to the well-known
Korringa law67, describing the temperature dependence of the
spin relaxation rate.

II. KONDO MODEL

A. Formulation of the model

To establish notations, we begin by introducing the Kondo
model including some additional terms, which will be used
in subsequent discussions. We will also remind the readers of
some basic facts about the Kondo model that will lay the foun-
dation for analysis in the next sections. The Kondo Hamilto-
nian HKondo = HK

int +HK
bath +HK

m describes the interaction
of a localized impurity spin with the surrounding fermionic
bath. The dynamics of the bath is governed by the Hamilto-
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FIG. 2: (Color.) Anisotropic Kondo phase diagram in the absence of
an effective magnetic field. jz is the dimensionless coupling between
the z components of the impurity and the bath atoms, whereas j⊥ is
associated with spin-flip processes. Gray arrows indicate the poor
man’s scaling renormalization group flows, arising from the second
order perturbation theory32. Couplings in the white region flow to
the line of ferromagnetic fixed points (j⊥ = 0, jz < 0), where
the Kondo impurity remains unscreened. In contrast, all points in
the dark (green) region flow into the antiferromagnetic fixed point,
where the Kondo impurity forms a singlet with the surrounding cloud
of atoms.

nian

HK
bath =

∑
ασ

εασ g
†
ασgασ, (1)

where the operators gασ annihilate a bath atom with spin σ
in the bath eigenmode α. Here, the indices α run over those
eigenmodes of the bath around the impurity which couple to
the impurity. The single particle energies εασ also include a
Zeeman splitting between the |↑〉 and |↓〉 bath fermions. The
density of states of these modes %(ε) factors in the strength of
the coupling of the bath to the impurity (see Appendix A for
the full definition). In a three dimensional %(0) = 0.118/t.
Interaction between the impurity spin Se = (Sxe , S

y
e , S

z
e ) and

the surrounding bath of fermions is given by the anisotropic
Kondo interaction Hamiltonian

HK
int =

1

M

∑
αβ σσ′

(
(Jz/2)Sze σ

z
σσ′ g†ασ gβσ′ (2)

+ (J⊥/2) (Sxe σ
x
σσ′ + Sye σ

y
σσ′) g

†
ασ gβσ′

+ K δσσ′ g†ασ gβσ′
)
,

where the Pauli matrices are denoted by (σx, σy, σz). M
stands for the number of lattice sites of the system, whereas
Jz and J⊥ denote the longitudinal and transverse Kondo cou-
plings. S±e = Sxe ± iSye are spin-flip operators acting on the
impurity. The associated dimensionless couplings jz = Jz%
and j⊥ = J⊥% characterize the coupling strength between the
impurity and the bath, and determine the temperature scale
of the onset of the Kondo effect12. In addition to the spin-
dependent scattering, the impurity also gives rise to the po-
tential scattering term K which is the last term in Eq. (2).
This term has no significant effect on the low energy Kondo
dynamics of the system and can be eliminated using a basis
transformation12.

Using a static external Zeeman field in the experiment
breaks the SU(2) symmetry of the low energy Kondo model
to a U(1) symmetry, associated with the conserved spin in
the z direction. This leads to anisotropy between the Kondo
couplings Jz 6= J⊥. In addition, the field also breaks the π
rotation symmetry along the x or y axis, and therefore allows
for the appearance of additional effective magnetic couplings

HK
m = −me S

z
e −

1

2

mg

M

∑
αβ σ σ′

σzσσ′ g†ασ gβσ′ . (3)

Whereas me acts as an external local magnetic field for the
impurity atom, the coupling mg creates magnetic scattering
for the bath atoms. Note that this scattering occurs only at the
position of the impurity, however, it does not involve the spin
of the impurity. As we discuss in Sec. IV, large enough values
of these magnetic terms can be detrimental to the formation of
the screening cloud in the antiferromagnetic model. However,
modulating the external field restores the π rotation symmetry
of the low energy Floquet Hamiltonian, and the magnetic cou-
plings vanish (see Sec. III B). We show that a combination of
static and modulated external fields can be used to control the
magnetic termsme andmg independently from the anisotropy
a = J⊥ − Jz .

B. Phase diagram and the relevant energy scales

When the effective local magnetic fields me and mg are
zero, the Kondo model is described by the phase diagram
shown in Fig. 2. The universal equilibrium behavior is de-
termined by the dimensionless Kondo parameters defined as
jz = Jz % and j⊥ = J⊥ %. The gray lines in the phase dia-
gram denote the renormalization group flows of the dimen-
sionless Kondo couplings jz and j⊥ under the poor’s man
scaling flow12,32. Note that the sign of j⊥ is not relevant as
it can be changed by a π rotation of the spins in the x-y plane,
but the sign of jz is important.

In the shaded region of the phase diagram in Fig. 2 the pa-
rameters flow towards the strong coupling AFM fixed point,
(jz, j⊥)→∞. At zero temperature, the impurity spin is com-
pletely screened by a cloud of itinerant atoms, whose total
spin forms a singlet with the impurity. The Kondo screening
survives as long as the temperature is below a fundamental en-
ergy scale, called the Kondo temperature, TK (see Appendix
B). A hallmark of the Kondo regime is that every physical
quantity depends on the microscopic model parameters solely
through TK , so determining TK precisely is essential. To bet-
ter understand how we define TK it is useful to discuss the
isotropic situation jz = j⊥ ≡ jeff first. The isotropic cou-
pling jeff is always positive in the AFM region. Then TK is
found to depend on this dimensionless parameter and is regu-
larized by an energy cut-off of the order of bandwidth D12

TK ' D
√
jeff exp(−1/jeff), jeff > 0 . (4)

In the case of anisotropic coupling, TK is associated with the
infrared divergence in the poor’s man scaling equations (dis-
cussed in Appendix B). As a rule of thumb, in the limit when
jeff → 0, the Kondo temperature TK , vanishes exponentially.
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The formation of the Kondo cloud does not survive in the
easy-axis FM (white) region of the phase diagram in Fig. 2,
where the physics is completely different: At low tempera-
tures, apart from some logarithmic corrections, the impurity
spin behaves essentially as a free local moment. Here the fixed
point Hamiltonian corresponds to free fermions with an addi-
tional degeneracy due to the uncoupled spin. In this limit,
the effective coupling jeff is always negative, and represents
a marginally irrelevant interaction. Solving the same scaling
equation (see (34) in Appendix B) allows us to introduce an-
other characteristic energy scale68

E0 ' D
√
|jeff | exp(−1/jeff) , jeff < 0. (5)

This expression is formally similar to that of TK and, further-
more, can be associated with the ultraviolet divergence in the
scaling equations. Therefore, we expect E0, in general, to be
larger than the bandwidth D itself and to diverge in the limit
when jeff → 0. Numerical results for TK and E0 are pre-
sented in Sec. IV A.

Discovering the crossover between these two regions, un-
derstanding the effect of magnetic fields and following the low
energy non-equilibrium dynamics of the impurity constitutes
both a challenge and an opportunity for experiments with ul-
tracold atoms.

III. EXPERIMENTAL REALIZATION OF THE KONDO
HAMILTONIAN

In this section, we present our proposal for creating a tun-
able version of the anisotropic Kondo model Eqs. (2-3) using
alkaline earth atoms. These species have been widely used
both in atomic clocks69–71 and in quantum emulation experi-
ments recently72–79. Their special properties arise from their
closed outer electron shell, making the total electronic angu-
lar momentum zero. Their nuclear spin thus decouples from
the electronic degrees of freedom, and it is not affected by ul-
tracold collisions80. Fermionic isotopes with nuclear spin I
realize systems with SU(N) symmetric interactions80,81. By
populating only N spin components, the symmetry group of
the model is tunable from N = 1 to its maximal value of
2I + 1. This can be as large as N = 6 and N = 10 for 173Yb
and 87Sr, respectively. Furthermore, besides their electronic
ground states 1S0 = |g〉, these atoms exhibit an excited clock-
state 3P0 = |e〉 of exceptionally long lifetime69–71,82. The
ultranarrow linewidth of the |e〉 state is the basis of the signif-
icantly increased precision of recent atomic clocks based on
these species. As the |e〉 state also has a closed outer shell,
the interaction is SU(N ) symmetric in all channels, |g〉 − |g〉,
|e〉 − |g〉 and |e〉 − |e〉74,80,81. In quantum emulation ex-
periments, this makes it possible to realize higher symmetry
analogs of several impurity models, where the role of the im-
purity is played by atoms in the excited state81.

Our starting point is the Hubbard-Anderson model of the
|g〉 and |e〉 states of alkaline-earth atoms. (For a detailed
discussion of the microscopic model of alkaline-earth atoms
in optical lattices we refer the readers to Refs. 81–85.) The
key element of our setup is the state-dependent optical lattice,

which allows to strongly localize |e〉 fermions while keep-
ing the |g〉 atoms highly mobile61. We use a time-dependent
Schrieffer-Wolff transformation to show that the low energy
properties of this system can be described by the Kondo
Hamiltonian. Our analysis extends earlier work on the sub-
ject (see e.g.81) by including both static and modulated Zee-
man fields, which leads to a much broader class of anisotropic
Kondo Hamiltonians.

A. Hubbard-Anderson model

We now outline the steps needed to realize the spin-1/2
anisotropic Kondo model. Two nuclear spin components pro-
vide the analog of electron spin in electron systems. Atoms
are initialized in the |g〉 state in a three-dimensional optical
trap. A weak π-polarized laser pulse is then used to excite a
small fraction of one of the nuclear spin components into state
|e〉 (see Fig. 1 (a)). Different polarizability of |g〉 and |e〉 states
makes it possible to create an optical lattice that anchors the
atoms in the clock-state but creates only a weak lattice poten-
tial for those in the ground state82. Thus, the few impurities
created by the laser pulse are coupled to the Fermi sea of mo-
bile ground state atoms81.

The bath atoms interact with each other through the
nuclear-spin-independent scattering length agg . In case of
173Yb, this is given by agg = 199.4 a0, where a0 denotes
the Bohr radius. As the optical lattice is shallow for the bath
atoms, we assume that they are in the Fermi liquid phase and
the |g〉 − |g〉 interaction only renormalizes the Fermi liquid
parameters. Interaction between the impurities and the gas
is characterized by two scattering lengths a±eg , corresponding
to symmetric and antisymmetric combinations of their orbital
wave functions (|ge〉 ± |eg〉)/

√
2, as shown in Fig. 3. Due to

the Pauli principle, the nuclear spins are thus in a singlet and
triplet state, respectively.

Assuming that both the |g〉 and |e〉 atoms occupy the low-
est vibrational state on each lattice site, their on-site repulsion
is given by U±eg = 4π~2

m a±eg
∫
d3r |wg(r)|2 |we(r)|2. Here,

wg and we denote the Wannier orbitals of |g〉 and |e〉 atoms,
respectively. This expression holds as long as the oscillator
frequency of the local potential is much larger than the on-
site repulsion. When the scattering length of an interaction
channel becomes large, the band gap created by the harmonic
oscillator potential effectively limits the interaction energy86.
In particular for 173Yb, this is the case for the symmetric in-
teraction channel scattering length a+

eg close to 2000 a0
78. In

addition, bound states can strongly influence the interaction
in case of certain trap configurations61,87. The antisymmet-
ric scattering channel is also repulsive, with a−eg = 219.5 a0.
Therefore, the on-site repulsion in the absence of bound state
resonances is much stronger in the symmetric than in the an-
tisymmetric channel. For the computations in this paper, we
use the constant ratio

U+
eg

U−eg
≈ 15.

In the case of a two-component gas, the interaction decou-
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ples in the triplet

|⇑↑〉 ≡ 1√
2

(|ge〉 − |eg〉) |⇑↑〉 ,

|⇓↓〉 ≡ 1√
2

(|ge〉 − |eg〉) |⇓↓〉 ,

|−〉 ≡ 1

2
(|ge〉 − |eg〉) (|⇑↓〉+ |⇓↑〉),

and the singlet channels

|+〉 ≡ 1

2
(|ge〉+ |eg〉)(|⇑↓〉 − |⇓↑〉),

where |⇑〉 and |⇓〉 denote the spin states of the impurity and
|↑〉 and |↓〉 are those of the bath atom. The (nuclear) spin sin-
glet configuration, which interacts with the symmetric molec-
ular potential, therefore experiences stronger repulsive inter-
action than the triplet configuration.

The dynamics of the impurity at the origin i = 0 and the
surrounding gas is thus governed by the Hamiltonian

H = H
(0)
kin +H

(0)
imp.

The kinetic and impurity parts of H are given by

H
(0)
kin = −t

∑
〈i,j〉,σ

g†iσ gjσ, (6)

H
(0)
imp = U (ng0↑ + ng0↓)(ne0⇑ + ne0⇓) (7)

+ Uex

∑
σσ′

g†0σ′e
†
0σ e0σ′g0σ,

where U = (U−eg + U+
eg)/2 and Uex = (U−eg − U+

eg)/2 < 0
are the on-site charge and spin exchange interactions. The op-
erator giσ annihilates a bath atom of spin σ on site i, whereas
e0σ is the annihilation operator of the impurity on site i = 0
with spin σ. At the impurity site, the number operator of the
impurity and bath atoms are given by ng0σ = g†0σ g0σ and
ne0σ = e†0σe0σ , respectively.

Due to the large scattering lengths a±eg and the strong
confinement of the impurities, the system is in the regime
U±eg � t where the Schrieffer-Wolff transformation can be
applied. The impurity site is filled by the |e〉 atom only, and
bath atoms interact with the impurity through virtual tunnel-
ing. This leads to the spin interactions of the Kondo model,
shown in Eq. (2). Since the interaction U−eg in the triplet chan-
nel is much weaker, virtual tunneling into these states has a
higher amplitude. This leads to ferromagnetic isotropic cou-
plings Jz = J⊥ < 0 between the impurity and the bath atoms
(see Sec. III B).

We mention that earlier proposals discussed the opposite
regime of weak to intermediate interactions t & U−eg

58,59. A
caveat of this regime is that the fast formation of a weakly
bound state may change the on-site interaction and break
down the Kondo dynamics at long times (see e.g. the dis-
cussion in Ref. 88).

FIG. 3: (Color.) Low energy spin dynamics in the Hubbard-
Anderson model. (a) Whereas the impurity atom |e〉 is localized by
a strong optical potential, the bath of |g〉 atoms is itinerant, with a
hopping energy t. Energy scales of the system are shown in (b),
with εF denoting the Fermi energy. The impurity interacts with the
bath through on-site interactions U−eg and U+

eg , corresponding to the
triplet and singlet spin channels, respectively. The on-site interac-
tions are much larger than the tunneling matrix element to the im-
purity site. Interactions with the impurity, therefore, happen only
virtually through second-order processes. Since U−eg � U+

eg , the
virtual state is dominated by the spin triplet channel, which leads
to FM Kondo couplings Jz = J⊥ < 0 in the low energy effective
Hamiltonian. An external Zeeman field creates ∆e and ∆g Zeeman
splittings, acting on the |e〉 and |g〉 atoms, respectively.The Zeeman
splitting ∆ = ∆e −∆g leads to level repulsion and mixing between
the singlet and the triplet channels. As a result, the Kondo parameters
become anisotropic and a finite magnetic term appears in the Kondo
Hamiltonian, see Eqs. (2-3).

1. Artificial Zeeman fields

The SU(2) symmetry of the Kondo model can be bro-
ken using an external effective magnetic field. Ultracold ex-
periments with alkaline-earth atoms have used various ways
to create different (effective) Zeeman fields for the |e〉 and
|g〉 atoms. A well-established approach is to create a state-
dependent optical Stark shift, which has been routinely used
for optical Stern-Gerlach separation of the nuclear spin com-
ponents76,83–85. This allows one to create both static and mod-
ulated Zeeman fields for the atoms. By modulating the in-
tensities or detunings of the lasers, time-dependent Zeeman
fields can be created (see Appendix C). Effective Zeeman
fields can also be created using a large external magnetic field,
as has been demonstrated in the recent realization of orbital
Feshbach resonances of alkaline-earth atoms78. This tech-
nique relies on the slightly different Landé g-factors of the
bath and impurity atoms89. It works well in case of static Zee-
man shifts, requiring external magnetic fields of the order of
50 G78. Modulating such large magnetic fields at radio fre-
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quencies can, however, be challenging experimentally.
In an external effective magnetic field, the Zeeman shifts

∆e and ∆g are slightly different in the Hamiltonian

Hkin = H
(0)
kin −

∆g

2

∑
i 6=0

(g†i↑gi↑ − g
†
i↓gi↓), (8)

Himp = H
(0)
imp −

∆e

2
(|⇑〉 〈⇑| − |⇓〉 〈⇓|) (9)

− ∆g

2
(ng0↑ − ng0↓).

In the subspace of the {|⇑↓〉 , |⇓↑〉} states, the interaction
Hamiltonian of the impurity site with a single |g〉 atom reads81

Hex
imp =

(
U −∆/2 Uex

Uex U + ∆/2

)
. (10)

Here, ∆ = ∆e −∆g denotes the difference between the Zee-
man splittings of |e〉 and |g〉 atoms. This magnetic coupling
mixes the singlet |+〉 and triplet |−〉 states and breaks the
SU(2) symmetry of the model. As we show in Fig. 3 (b),
this leads to on-site energies E± = U ±

√
U2

ex + (∆/2)2.
In contrast, the energies of the states |⇑↑〉 and |⇓↓〉 simply get
shifted by ±(∆e + ∆g).

The breakdown of the spin rotation symmetry in the
Hubbard-Anderson Hamiltonian leads to an anisotropy in the
corresponding low energy Kondo model, as we discuss in
Sec. III B. This anisotropy allows us to realize a large frac-
tion of the Kondo phase diagram in Fig. 2. The additional
magnetic terms in Eq. (3) can be used to mimic the effect of
an external magnetic fieldme acting on the Kondo impurity as
well as the magnetic scattering term mg . Oscillating Zeeman
fields on the other hand average the magnetic terms out, while
they preserve the anisotropy of the model (see Sec. III B 2).

In order to reach sensitive control of the Kondo parameters,
the driving frequency often needs to be in the range of U±eg
(see Sec. III B). This means that the driving is usually in the
1 − 10 kHz regime, and it is much faster than the dynamical
timescales of the system

Jz, J⊥ � t� ω ∼ U±eg. (11)

Therefore, on the timescales of Kondo dynamics the modu-
lation averages out, and we can use an effective Floquet de-
scription to model the system, as we show in Appendix D.

B. Kondo parameters of the driven model

In this subsection, we derive the Kondo Hamiltonian gov-
erning the low energy impurity-bath dynamics. Due to the
strong confinement and interaction between the impurity and
the bath atoms, tunneling to the impurity site by bath atoms is
strongly suppressed, t � U−eg, U

+
eg . This is the regime where

the coupling between the impurity and the bath arises from
virtual tunneling to the impurity site. The impurity’s on-site
interaction is described by Hint in Eq. (9), where the period-
ically modulated Zeeman splittings depend on time τ . The

FIG. 4: (Color.) (a) Dependence of the dimensionless Kondo param-
eters jz and j⊥ in Eqs. (20,21) on a static Zeeman splitting ∆ in the
anisotropic Kondo phase diagram. Red line shows the effect of in-
creasing ∆ on the isotropic system jz = −j⊥ = 0.2 (black dot).
Gray lines denote the directions of the poor man’s scaling flow32 in
the absence of magnetic terms. (b, c) Dependence of Kondo model
parameters of Eqs. (2-3) on ∆. Here k = K% denotes the dimen-
sionless potential scattering term and m̃ = me% = −mg% corre-
sponds to the dimensionless magnetic couplings. These parameters
become resonant at the Zeeman field ∆∗ at the edges of the plots.
The Schrieffer-Wolff transformation and the Kondo description is not
valid anymore in the vicinity of ∆∗, as indicated by the dotted line
in (a). [Parameters of the plot: U+

eg = 15U−eg , t = 0.35U−eg , and
εF = 0.]

bath Hamiltonian

Hbath =
∑
α

(εα − σ∆g(τ)/2) g†ασgασ

also has time-dependent energies. The coupling between the
impurity and the bath modes is given by the Hamiltonian12

Hmix =
∑
ασ

V√
M

g†0σ gασ + h.c., (12)

with the hybridization matrix element V =
√
zt, where z de-

notes the coordination number of the optical lattice. The ori-
gin of the mixing term as well as the calculation of the density
of states % of bath eigenmodes is discussed in Appendix A.

1. Static Zeeman field

Here, we discuss how static Zeeman fields can be used to
control the Kondo parameters in Eqs. (1-3). We derive the
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effective Hamiltonian of the system using the Schrieffer-Wolff
transformation S = −S†90 and obtain

Heff = P0 e
S (Hbath +Himp +Hmix) e−SP0, (13)

where the projector P0 maps onto the subspace of excitations
with no |g〉 atoms at the impurity site. States with a single (P1)
and two (P2) |g〉 atoms can be neglected from the low energy
description of the system, as they are separated by an energy
U±eg from the P0 sector. The transformation S is chosen such
that it cancels the coupling between the bath and the impurity
at first order

P1Hmix P0 = P1 [Hbath +Himp, S]P0. (14)

The resulting effective Hamiltonian at second order in S then
becomes

Heff = P0

(
Hbath +Himp +

1

2
[S,Hmix]

)
P0 (15)

We solve the Schrieffer-Wolff equation Eq. (14) using the
ansatz

S =
1√
M

∑
k,σσ′σ̃σ̃′

Γσσ
′

σ̃σ̃′(k) g†0σe
†
0σ̃ e0σ̃′gkσ′ − h.c. (16)

In order to assure spin conservation, the amplitudes Γσσ
′

σ̃σ̃′(k)
should be non-zero only in case when σ+ σ̃ = σ′+ σ̃′. Using
the ansatz in the last equation, we obtain the Schrieffer-Wolff
parameters in the |⇑↑〉 and |⇓↓〉 channels

(U + Uex − εk) Γσσσσ(k) = V. (17)

In the {|⇑↓〉 , |⇓↑〉} basis, the on-site energy Uex mixes spin
channels, and the Schrieffer-Wolff coefficients

Γ(k) =

(
Γ↓↓⇑⇑(k) Γ↓↑⇑⇓(k)

Γ↑↓⇓⇑(k) Γ↑↑⇓⇓(k)

)
(18)

obey a matrix equation[(
Hex

imp 0
0 Hex

bath(k)

)
,

(
0 Γex(k)

− (Γex(k))
†

0

)]
= V.

The Hamiltonian matrix Hex
imp is defined in Eq. (10), whereas

Hex
bath(k) =

(
εk −∆/2 0

0 εk + ∆/2

)
(19)

describes the energies of the incoming modes. The Kondo
parameters only depend on the difference ∆ between the fields
∆e and ∆g but not on their average (see also Appendix D),
which can be removed using a unitary transformation89.

The effective Hamiltonian Eq. (15) takes on the same form
as the Kondo model in Eqs. (2 - 3). We note that during spin-
flip processes |⇑↓〉 ↔ |⇓↑〉, the scattered |g〉 atom changes its
energy with ±∆. In order to make sure that the scattering ex-
changes particles between the Fermi levels of |g ↑〉 and |g ↓〉
atoms, the Fermi energies also need to be separated with this

energy εF↑ − εF↓ = ∆. The imbalance of Fermi energies can
lead to differences in the density of states for the two compo-
nents %↑ 6= %↓. The Kondo scaling equations, and thus the low
energy properties of the model, are determined by the dimen-
sionless product of the couplings and the densities of states,
as we discuss in Appendix B. Therefore, the anisotropies of
the dimensionless couplings might be different from that of
Jz and J⊥.

The Zeeman field dependence of the Kondo parameters at
the Fermi energy is given by

Jz(∆) = 2V 2
Uex

(
U2
k − U2

ex − Uk

Uk+Uex
∆2
)

(U2
k − U2

ex)
2 − U2

k ∆2
, (20)

J⊥(∆) = 2V 2 Uex

(
U2
k − U2

ex

)
(U2

k − U2
ex)

2 − U2
k ∆2

, (21)

where we introduced the notation Uk ≡ U − εk for brevity.
The potential scattering K and the magnetic terms me =
−mg = m become

K(∆) = −V
2

2

2Uk − Uex

U2
k − U2

ex

− ∆2

4

Uk Uex

(U2
k − U2

ex)2
J⊥(∆)

m(∆) = ∆

(
1

2
− V 2 U2

ex

(U2
k − U2

ex)2 − U2
k ∆2

)
. (22)

The dependence of these parameters on the Zeeman splitting
∆ is shown in Fig. 4. In the absence of magnetic field, the
interaction is SU(2) symmetric Jz(0) = J⊥(0) = J , with

J = −2V 2 Uex

U2
ex − U2

k

= −
(
V 2

U−eg
− V 2

U+
eg

)
, (23)

whereas the dimensionless Kondo parameters equal j ≡
J %(0). The applicability of the Schrieffer-Wolff transforma-
tion requires that the broadening parameter over the on-site
interaction Γ̃/U−eg = π j be smaller than unity. Larger cou-
plings could be possible to achieve, however, our calculations
for the Kondo couplings are not reliable in that regime.

At increasing Zeeman splittings, the couplings go into the
|J⊥| > |Jz| easy plane regime. However, the anisotropy is
not sufficient to reach the anisotropic AFM Kondo fixed point
since static Zeeman fields also lead to the appearance of the
finite effective magnetic termm(∆). Due to this term, the RG
flow no longer flows into the AFM fixed point, and the Kondo
screening breaks down. We will show in the next subsection
that this term can be canceled by periodically modulating ef-
fective Zeeman fields.

The primary effect of static external Zeeman fields is that
they create magnetic terms me and mg , which grow linearly
at small values of ∆ (see Fig. 4). These terms can sub-
stantially change the spin susceptibility of the impurity (see
Sec. IV). Our calculations are reliable at small and inter-
mediate Zeeman splittings, but they break down near ∆∗ =
±(U2

k −U2
ex)/Uk, where the Kondo parameters become reso-

nant. At this point, the on-site energy E− turns negative (see
Fig. 3) and double occupancy of the impurity site becomes en-
ergetically favorable, therefore our Kondo description can no
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FIG. 5: (Color.) Kondo model parameters in an oscillating Zeeman
field ∆(τ) = ∆0 cos(ωτ). The dimensionless couplings jz and j⊥
as well as the potential scattering term k = K %(0) are determined
at driving frequencies (a, b) ω = 0.8U−eg and (c, d) ω = 0.95U+

eg

as the Zeeman energy ∆0 increases. The panels on the right show
these parameters as functions of ∆0. As the field has no static com-
ponent, the effective magnetic couplings me and mg vanish. (e, f)
Resonant behavior of the Kondo parameters at frequencies around (e)
U−eg , with a driving amplitude ∆0 = 0.6U−eg , and (f) near U+

eg , with
an amplitude ∆0 = 1.5U−eg . Close to the resonance (dotted part of
the curve) the Schrieffer-Wolff transformation becomes unreliable.
[Parameters of the plot: t = 0.35U−eg , U+

eg = 15U−eg .]

longer be applied. Furthermore, in the vicinity of ∆∗, our as-
sumption that higher order terms in the Schrieffer-Wolff trans-
formation are negligible starts to break down. However, such
large values of the Zeeman field should not be reached in the
Kondo regime t � U±eg . Since the chemical potential dif-
ference needs to be comparable to the Zeeman splitting, ∆
cannot be larger than the bandwidth z t. Therefore, we can
always assume that the static Zeeman field ∆ remains smaller
than U−eg . Since the anisotropy of the Kondo couplings Jz
and J⊥ grows quadratically with ∆, the anisotropy remains
small at such small values of the Zeeman energy. As we show
in the next subsection, modulated Zeeman fields can reach
much larger anisotropies between the Kondo parameters, at
large driving amplitudes.

2. Driven Zeeman field

In order to obtain full control of the Kondo model, it is im-
portant to find a way to tune the anisotropy of the Kondo pa-
rameters independently from the magnetic terms me and mg

in Eq. (3). This can be achieved using a periodically modu-
lated Zeeman field ∆(τ). The main insight is that the mag-
netic term in Eq. (22) is an odd function of the static Zee-
man field ∆. It is therefore expected to average out to zero
when the field is oscillating. In contrast, we expect that the
anisotropy will remain finite, since it is an even function of the
driving (see Fig. 4 and Eqs. (20, 21)). Furthermore, by com-
bining a static and an oscillating Zeeman field components,
both the anisotropy and the magnetic terms can be controlled
individually.

Engineering of driven Floquet Hamiltonians has been suc-
cessfully applied in a wide variety of ultracold atomic sys-
tems. This technique has been used broadly to create syn-
thetic gauge fields, topological bands91–98 and artificial spin-
orbit coupling99. Driving has also been used in interacting
systems to tune the superfluid to Mott insulator transition in
bosonic systems100 as well as to control the interaction be-
tween atoms101,102. Although one could naively expect that
driving interacting systems could lead to heating, these ex-
periments have demonstrated that excessive heating can be
avoided by choosing the driving frequency far from the sys-
tem’s many-body excitations. We achieve this by choosing the
driving frequency to be larger than the bandwidth, as we show
in Eq. (11).

Similarly to the static case, we obtain the low energy Kondo
parameters using a Schrieffer-Wolff transformation, that de-
couples the high energy and the low energy subspace of the
Hubbard-Anderson Hamiltonian. Since the bath and on-site
Hamiltonians contain oscillating terms, the transformation
needs to be time-dependent, and it is chosen to have the same
periodicity as the driving field. The low energy sector con-
tains terms that are much smaller than the driving frequency
ω. This allows us to perform a Floquet expansion in the trans-
formed basis 103–105 in powers of 1/ω, and thereby derive the
static Kondo parameters Jz and J⊥. Since the driving is much
faster than the Kondo dynamics, we can stop at the lowest
order Floquet term, which is simply the time average of the
Hamiltonian. The details of this calculation can be found in
Appendix D, we only present the results here.

Figure 5 shows how the Kondo couplings jz and j⊥ depend
on the amplitude of the oscillating field ∆(τ) = ∆0 cos(ωτ).
Depending on the frequency of the driving, the couplings can
show very different anisotropies. In Fig. 5 (a-b), the driving
ω tuned below U+

eg creates a FM anisotropy at weak Zeeman
fields. After an initial decrease where the couplings reach the
line of FM fixed points J⊥ = 0, they grow again as the driv-
ing amplitude increases. Eventually, the couplings go from
the FM to the AFM phase, allowing the experimental study
of the phase transition. The experimental signatures of this
transition, specific to cold atoms, are discussed in Sec. IV.
The couplings exhibit the opposite behavior when the driv-
ing frequency is tuned below the U+

eg on-site energy of the
singlet spin state, see Fig. 5 (c-d). As the driving ampli-
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tude increases, the system goes into the AFM phase already
at weak driving. We confirmed numerically that the magnetic
couplings me and mg vanish when the driving field’s static
component is zero. In both of the above cases, the driving is
red detuned from the on-site interactions U±eg . By suppress-
ing the phase space available for particle-hole excitations, this
reduces heating of the bath arising from the optical driving.
Since the driving frequency is below the on-site interaction
energies, the excitation processes need to borrow an energy
equal to the detuning δω = U−eg − ω from the bath. When
the temperature is much smaller than the detuning T � δω,
the probability of available quasi-particle hole excitations are
exponentially reduced, leading to suppressed heating effects.

We find that the Kondo parameters depend resonantly on
the driving frequency as it approaches the on-site interactions
U±eg , shown in Fig. 5 (e). The driving field dresses the atoms
entering the impurity site with multiples of the frequency ω.
When the dressed incoming energy approaches one of the on-
site energies, we expect a resonant interaction between the
impurity and the bath atoms, similarly to traditional Fesh-
bach resonances. Our second order Schrieffer-Wolff results
become unreliable close to the resonance when the Floquet en-
ergies become of the order of the coupling V , as indicated by
the dotted parts of the curves. In this regime, the higher order
terms in the expansion can become non-negligible and more
accurate calculations are needed to characterize the Kondo pa-
rameters’ dependence on the driving.

We finally mention that the Kondo parameters can also be
tuned by modulating the optical lattice amplitude, as we dis-
cuss in Appendix E. Similar driving has recently been used
to turn antiferromagnetic into ferromagnetic correlations the
interactions in the Fermi-Hubbard model106. This type of
driving preserves the SU(2) symmetry of the effective spin-
1/2 Hubbard-Anderson Hamiltonian. The Kondo parameters,
therefore, remain isotropic. In addition, this method allows
for extending the physics to SU(N > 2)-symmetric systems,
as the SU(N)-symmetry of the underlying atoms is not bro-
ken.

IV. FERROMAGNETIC TO ANTIFERROMAGNETIC
PHASE TRANSITION

In this section, we discuss the experimental signatures of
the phase transition between the easy-axis and easy-plane fer-
romagnetic Kondo interactions. As Fig. 5 (a, c) shows, pe-
riodically modulated Zeeman fields allow one to tune the
anisotropy of the exchange couplings and cross the phase
boundary that separates the two regimes.

A. Local magnetization

Here, we consider the particular protocol in which dimen-
sionless couplings (jz , j⊥) are linearly tuned from (-0.5, 0) to
(0, 0.5), as indicated by the dashed line in the inset of Fig. 6(a).
The evolution of the characteristic energy scales TK and E0

is displayed in Fig. 6(a). These characteristic energy scales

FIG. 6: (Color.) (a) The evolution of the Kondo temperature TK

in the AF regime and the characteristic temperature E0 in the FM
domain. The parameters (jz , j⊥) are continuously tuned along the
red (dotted) line in the inset from (-0.5, 0) towards (0, 0.5). When
−0.5 < jz < −0.25 the system displays the FM behavior and when
−0.25 < jz < 0 the system is in the AFM state. (b)-(e) Zero and
finite temperature equilibrium magnetization of the impurity 〈Sz

e 〉
across the phase transition. Different line colors corresponds to dif-
ferent magnetic fields, as indicated in panel (b).

were defined in Sec. II B. When (jz , j⊥) = (0, 0.5) the Kondo
temperature is maximum TK ≈ 0.05U−eg . Moving towards
the FM-AFM boundary, TK decreases exponentially and van-
ishes at the phase boundary (jz , j⊥) = (-0.25, 0.25). On the
FM side of the phase boundary, E0 is order of magnitudes
larger,E0 ≈ 102 U−eg and increases towards the (-0.5, 0) point.
Although TK and E0 are the essential energy scales that char-
acterize the two regimes, measuring them is a difficult task in
general.

A more useful way to visualize the transition between the
FM and AFM regimes is to consider the temperature and mag-
netic field dependence of the magnetization of the impurity
〈Sze 〉, shown in Fig. 6 (b-e). The finite temperature mag-
netization was determined using numerical renormalization
group calculations107. In the low temperature AFM regime
(T � TK), the many-body ground state (GS) is a Kondo
singlet, 〈Sze 〉 ≈ 0. In contrast, the ground state becomes a
doublet in the FM regime. In the AFM phase, applying an
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effective magnetic field me . TK does not break up the sin-
glet state. On the other hand, in the FM state, even a small
me is sufficient to lift the degeneracy of the GS and polarize
the local moment. This induces a finite local magnetization
〈Sze 〉 ≈ 1/2. This behavior is clearly captured in Fig. 6(b)
where results for the local magnetization at T = 0 are pre-
sented. At finite temperature T > 0, thermal fluctuations
suppress the impurity magnetization, therefore larger effec-
tive magnetic fields me & T are required to fully polarize the
local spin on the FM side of the transition.

B. Magnetic susceptibility of the impurity

Whereas the ferromagnetic Kondo behavior can be inves-
tigated by measuring the impurity magnetization, this probe
does not tell much about the AFM part of the phase diagram.
〈Sze 〉 can be suppressed both by temperature fluctuations and
by Kondo screening, therefore the on-set of the Kondo effect
cannot be determined by looking at this observable alone. In
this section, we show, however, that the dynamical spin sus-
ceptibility of the impurity can be used to directly detect Kondo
screening. It is, therefore, a useful probe to determine the
phase transition between the AFM and the FM phase.

We investigate the time-dependent correlation of the local
spin Sze (τ),

χzz(τ − τ ′) = i〈[Sze (τ), Sze (τ ′)]〉θ(τ − τ ′) (24)

and determine the corresponding spin susceptibility spectrum
χ′′zz(Ω) = Imχzz(Ω), which can be measured in an ultracold
system using a Ramsey protocol, as described in Ref. 108.
χzz(Ω) can be determined numerically using the numeri-
cal renormalization group. Analytically, however, it is eas-
ier to compute another response function, χ̃zz(τ − τ ′) =

i〈[Ṡze (τ), Ṡze (τ ′)]〉θ(τ−τ ′) instead, using perturbation theory.
In frequency space, the spectral functions of these response
functions are closely related,

χ′′zz(Ω) =
χ̃′′zz(Ω)

Ω2
. (25)

We rewrite the interaction term in the Hamiltonian by intro-
ducing the field ψσ =

∑
α gασ which annihilates atoms with

spin σ in the bath. Using the equation of motion we obtain

Ṡze (τ) =
j⊥
2

∑
σσ′

ψ†σ

(
Sxe σ

y
σσ′ − Syeσxσσ′

)
ψσ′ . (26)

We evaluate χ̃zz(τ) perturbatively order by order in j⊥ and
jz . The 0th order gives

χzz(Ω) =
πj2
⊥

4

1

Ω
. (27)

As it is derived, Eq. (27) is valid in both the FM as well as
in the AFM regime, irrespective of the sign of the exchange
coupling.

FIG. 7: Magnetic susceptibility of the anisotropic Kondo impurity
across the FM to AFM phase transition for T = 0. Figures on the
left (right) show results at zero (finite) magnetic fields. At zero mag-
netic field in the AF regime (a, b), the susceptibility depends lin-
early on the driving frequency χ′′zz(Ω) ∼ Ω, indicating AFM Kondo
screening. This behavior changes on the other side of the phase tran-
sition, where the FM ground state exhibits χ′′zz(Ω) ∼ 1/Ω scaling.
In case of finite magnetic fields, the low-frequency behavior of the
imaginary part of the susceptibility always shows ∼ Ω scaling at
frequencies Ω . B. The symbols in the inset in panel (a) indicate
the points (jz , j⊥) in the phase diagram where the susceptibility has
been computed in each panel.

1. AFM regime

When the system is in the AFM regime, one obtains loga-
rithmic corrections to the exchange coupling at a higher or-
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der. These contributions can be summed up by perturba-
tive renormalization group proceduce12. This amounts to re-
placing the bare coupling j with its renormalized counterpart
j → j(Ω) ≡ 1/ ln(Ω/TK). We then find that

χ′′zz(Ω) ≈ π

4

1

Ω ln2(Ω/TK)
; |Ω| � TK . (28)

In the Kondo limit |Ω| � TK on the other hand, the
spin spectral function takes on a universal form, χzz(Ω) =
f(Ω/TK)/TK . Here, f(x) is a universal function that can be
determined numerically. Its imaginary part can be approxi-
mated as f ′′(x) ∼ x, implying

χ′′zz(Ω) ∼ Ω

T 2
K

; |Ω| � TK . (29)

a behavior which is characteristic for a Fermi liquid33,109. This
leads to a finite spin susceptibility χzz ∼ 1/TK , in agree-
ment with Bethe ansatz results110. Figures 7 (a-b, e-f) show
results for χ′′zz(Ω) obtained using the NRG approach in the
AFM regime. The figures display the Fermi liquid properties
described above: a linear increase, χ′′zz(Ω) ∼ Ω at small fre-
quencies Ω� TK , followed by a broad resonance at Ω ≈ TK ,
and the decay predicted by Eq. (28) at large frequencies. This
behavior survives in the presence of a small magnetic term, as
can be seen in Fig. 7 (e,f). The Kondo state is affected only
by a relatively large magnetic field me & TK .

2. FM regime

At the transition point, the logarithmic correction is asymp-
totically exact down to frequencies Ω → 0. Using the
same procedure, the renormalized coupling becomes j(Ω) =
1/ ln(Ω/E0). In this regime, the spectral function is then
given by

χ′′zz(Ω) ≈ π

4

1

Ω ln2(Ω/E0)
; |Ω| → 0 (30)

and it diverges in the Ω → 0 limit. In the ferromagnetic
phase, however, the effective coupling j⊥(Ω) scales to 0 as
j⊥(Ω) ∼ Ωζ . As a consequence, here χzz displays a power
law behavior, χzz ∼ Ω2ζ−1, as can be seen in Fig. 7 (d). This
singular behavior is also supported by the NRG results (see
panels (c-d) in Fig. 7). In this respect, the FM side of the tran-
sition shows a singular Fermi liquid behavior111, as the fer-
romagnetic coupling tends to zero very slowly. The presence
of a finite magnetic field introduces a new energy scale, given
by the Zeeman energy. This can be associated with the Fermi
liquid scale TFL below which the regular nature of the Fermi
liquid is restored and the χ′′zz(Ω) ∼ Ω behavior is recovered.

V. NON-EQUILIBRIUM DYNAMICS

With several orders of magnitude slower dynamics than
electronic systems, ultracold atoms provide an ideal setup

to test the non-equilibrium dynamics of many-body dynam-
ics112. In addition to their good time resolution, quantum gas
microscopes allow for spatially resolved imaging of both the
Kondo impurity and the bath in real time113,114. After the cre-
ation of the impurity in the |⇑〉 spin state (see Fig. 1b), both the
impurity’s and the bath’s dynamics can be studied. Thereby
the dynamical formation of the Kondo screening cloud could
be measured. the short time dynamics is governed by the
high energy excitations, whereas the long-time behavior is de-
termined by the low energy degrees of freedom. Therefore,
the system’s behavior mimics that of the RG flows, where the
RG parameter’s role is played by the time. Depending on the
value of the bare couplings, the dynamics of the system either
leads to a ferromagnetic or antiferromagnetic behavior at long
times.

A. Relaxation in the easy-axis ferromagnetic regime at finite
temperature

We start this section by focusing on the long-time exponen-
tial relaxation of the impurity in the easy-axis ferromagnetic
regime, as characterized by the Korringa law67,115. Whereas
quantum corrections to the Korringa relaxation have been pre-
dicted early on66, these corrections have not been observed
experimentally so far. We argue that at sufficiently low tem-
peratures, these corrections should be measurable in ultracold
atomic experiments.

In the easy axis FM regime, |J⊥| < |Jz|, the zero tem-
perature behavior of the system is dominated by the spin-
dependent scattering term Jz . This is the white region be-
low the isotropic line on the phase diagram Fig. 2. Here, the
RG flow brings the couplings into the line of ferromagnetic
fixed points, with vanishing spin-flip terms J⊥ = 0. Thus, the
ground state of the system is purely ferromagnetic, and bath
atoms only participate in Ising type spin scattering. Based on
the poor man’s scaling equations, one would expect that the
impurity spin freezes in this regime.

At finite temperature, the RG flow does not take its full
course, and it is stopped when the energy cut-off reaches the
range of the temperature12. At this point, the effective spin-
flip term remains finite but suppressed compared to its bare
value. Due to the thermal excitations from the bath, the impu-
rity relaxes to its equilibrium value with a rate ν(T ). The
temperature-dependence of the relaxation rate has been es-
timated by Korringa based on the phase space available to
thermal excitations in Fermi’s golden rule. The Korringa law
states that the relaxation rate shall depend linearly on the tem-
perature, and the impurity freezes at zero temperature. This
result has been confirmed in a number of NMR measurements
in solid state systems.

However, as has been pointed out early on66, quantum cor-
rections lead to a power law temperature-dependence of the
relaxation rate,

ν(T ) ∼ T 1+η.

This work obtained quantum corrections originally within the
spin-boson model, describing the relaxation of a spin in a de-
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cohering many-body bosonic environment. This model is in-
timately related to the Kondo problem through bosonization
of the bath23. Quantum corrections obtained in Ref. 66 also
describe the relaxation of the Kondo impurity close to the line
of FM fixed points. Making use of the connection between the
Kondo and spin-boson model parameters, the relaxation rate
can be expressed as

η = −jz +
j2
z

4
+ . . .

As Fig. 5 shows, the dimensionless coupling can be as large as
jz ∼ 0.1 − 0.2. The resulting correction to the Korringa law
is of the order of η ∼ 0.1 − 0.2, which could be measurable
in the ultracold setup.

B. Quench dynamics at zero temperature

Ultracold atoms not only make it possible to explore the
equilibrium properties of the screening cloud in the ground
state; they also allow one to study how it is formed starting
from an initial non-equilibrium state. Our discussion will em-
phasize new aspects of the Kondo dynamics that can be ana-
lyzed using quantum gas microscopes. This includes, for ex-
ample, time-dependent spin correlations between the impurity
and spins of the bath atoms.

We now consider quench dynamics of the anisotropic
Kondo model. For τ < 0 the impurity spin is completely de-
coupled from the fermionic bath, and this coupling is switched
on abruptly at τ = 0. This protocol is closely related to the
optical spectroscopy performed in electron systems in exper-
iments by Tureci et al.47. The most intriguing aspect of the
Kondo system that we aim to explore is the formation of the
screening cloud around the impurity spin. This effect is partic-
ularly striking in the ferromagnetic easy-plane regime of the
model: the impurity spin gets screened even though interac-
tions are ferromagnetic, to begin with.

We note that the Kondo model is integrable (when the den-
sity of states can be assumed to be constant)116–119. Hence, the
dynamics should contain signatures of the conservation laws
of the system. We will not discuss integrability aspects of the
problem in the current paper (see Refs. 116–118,120–124 for
a discussion of some of these issues.)

Arguably the most interesting possibility of the ultracold
atomic realization of the Kondo model is the opportunity to
measure its non-equilibrium dynamics in real time. We dis-
cuss smoking gun experimental signatures of this process spe-
cific to cold atomic experiments, at several parts of the phase
diagram. Among other observables, we discuss how quantum
gas microscopy can be used to measure the screening and the
bath’s spin dynamics.

We point out that the time-dependent and spatially resolved
Kondo dynamics is still an area of active theoretical research,
with many open questions. The ultracold atomic toolbox
could provide enormous insight into testing theoretical predic-
tions. Despite the wide variety of methods used to solve this
problem, current techniques are often limited to certain parts
of the phase diagram or they can only determine the dynamics

of the impurity but not that of the bath degrees of freedom.
Earlier works have relied on non-equilibrium Monte Carlo125,
DMRG126,127, TD-NRG , the flow equation method128,129,
time-evolving block decimation (TEBD)130,131, as well as ana-
lytical solutions132–137. Techniques such as perturbative renor-
malization group methods3,138 have been mainly limited to the
regime of weak coupling between the quantum dot and the
reservoirs139–143.

The dynamics of the system is governed by the Kondo
Hamiltonian Eqs. (1, 2) with a vanishing potential scattering
term. In order to make the calculations numerically tractable,
we model the bath by a one-dimensional chain, with a tunnel-
ing t̃. The density of states of the chain is set to %1D(0) =
1/(2πt̃). We consider the quench dynamics starting from the
decoupled initial state |Ψ0〉 = | ⇑〉|FS〉, where | ⇑〉 is the im-
purity spin in a positive spin-z direction and |FS〉 denotes the
Fermi sea of bath fermions, i.e., the ground state without the
Kondo coupling. Using the experimental procedure outlined
in Sec. I, we refer the reader to Appendix F for the details. At
time τ = 0, a π pulse of a weak laser excites a small num-
ber of bath fermions from the |g ↑〉 state into the |e ⇑〉 state.
We determine the time-evolution of the coupled bath-impurity
system. In Fig. 8 (a-c), we plot the impurity-bath spin corre-
lations

Ci(τ) =
∑
σσ′

〈Sze
1

2
(g†i↑gi↑ − g

†
i↓gi↓)〉τ (31)

in FM (a) and AFM (b,c) phases, where i labels a lattice site
and 〈· · · 〉τ denotes an expectation value with respect to the
time-evolving state |Ψτ 〉. (d) shows the correlation Ci=0(τ)
at the impurity site. Note that our calculations can be done
without relying on the bosonization, in which one assumes a
strictly linear dispersion of the bath, see e.g. the TD-NRG
method. This allows us to analyze an experimentally relevant
situation of fermions on a lattice, where a cut-off scale is natu-
rally given by the lattice bandwidth and the energy dispersion
is nonlinear in general.

Figure 8 (a) corresponds to the easy-axis ferromagnetic part
of the phase diagram and demonstrates the formation of the
ferromagnetic correlations. This indicates the triplet state of
the impurity spin and the co-aligned spin cloud in the bath.
The excess local polarization is emitted and propagates ballis-
tically. Inside the light cone of the spin polarization, the fer-
romagnetic correlations develop at the timescale of the Fermi
energy, as a result of the fast response from the Fermi sea.

Above the line of isotropic couplings in Fig. 2, the parame-
ters flow into the AFM fixed point. Mimicking this RG flow,
the dynamics shows shows a cross-over from the easy-plane
FM regime to the AFM phase, as shown in Fig. 8 (b). In the
short time evolution, the corresponding correlation Ci=0(τ)
increases and becomes positive (see Fig. 8 (d)). This indi-
cates the formation of the triplet state between the impurity
spin and the surrounding fermions. At later times, however,
bath fermions near the impurity change their spin polarization
abruptly, and become antiferromagnetically aligned, as signi-
fied by the antiferromagnetic correlation Ci=0(τ) < 0. This
contrasts with the dynamics in the intrinsically AFM regime
with a coupling jz > 0 (Fig. 8 (c)), where the parameters
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FIG. 8: (Color.) Time-evolution after the creation of the impurity. (a-c) show the time-resolved impurity-bath spin correlations Ci(τ) (shown
in Eq. (31)). The excess polarization is emitted ballistically after the Kondo cloud forms around the impurity. The time-evolution of the
correlations Ci=0(τ) at the impurity site and that of the impurity magnetization are shown in (d) and (e), respectively. The dynamics of
these observables follow our expectations based on the RG flow shown in (f). The bare couplings corresponding to figures (a) jz = −0.35,
j⊥ = 0.15, (b) jz = −0.15, j⊥ = 0.35 and (c) jz = 0.15, j⊥ = 0.35 are denoted as FM (rectangle), FM→AFM (star) and AFM (circle).
The easy-axis couplings in (a) flow to the ferromagnetic line of fixed points (j⊥ = 0) the dynamics remains ferromagnetic, as the impurity
becomes ferromagnetically correlated with the surrounding bath of atoms. In contrast, the bare couplings, shown in (b) and (c), flow into the
antiferromagnetic fixed point. After the formation of the Kondo screening cloud, the impurity magnetization decays and the impurity becomes
antiferromagnetically aligned with the surrounding bath atoms. The bare ferromagnetic couplings in (b) determine the initially ferromagnetic
dynamics. However, this quickly crosses over to antiferromagnetic behavior (see also (d)). [The calculation was done for a 1D open chain of
range [−L,L] with L = 200 sites, and with the impurity at the origin. t̃ denotes the tunneling matrix element along the chain.]

monotonically flow into the AFM fixed point (Fig. 2) and thus
the localized fermions exhibit the antiferromagnetic spin cor-
relation Ci=0(τ) < 0 at all times. After the emission of the
ferromagnetic excess spin polarization, correlations between
the impurity and the surrounding spins quickly become an-
tiferromagnetic (see Fig. 8 (b,c)). The nonvanishing corre-
lations outside the light cone can be attributed to the initial
entanglement in the bath Fermi sea in coordinate space137.

We show the dynamics of the impurity magnetization 〈Sze 〉τ
in Fig. 8 (e) in the corresponding regimes. In the AFM phase
with positive jz > 0 (Fig. 8 (f)), the impurity spin monoton-
ically relaxes to zero, indicating the formation of the Kondo
singlet. This is consistent with the results144 obtained in the
spin-boson model, which is equivalent to the bosonized, low-
energy effective theory of the anisotropic Kondo model23.
We find the oscillations with period 2π~/D = π~/2t̃, as
characterized by the bandwidth D = 4t̃. These are asso-
ciated with a high-energy excitation of a particle from the
bottom of the band to the Fermi level145 and were absent in
the bosonized treatments. Correspondingly, the long-lasting
oscillations with the same period can also be found in the
impurity-bath spin correlations, see also Fig. 8 (a,b) and (d).

In the AFM phase, the couplings flow into the infinite AFM
fixed point, which should make the magnetization ultimately
relax to an equilibrium value close to zero (see Fig. 6). Such
an ultimate relaxation is hampered in the plotted timescale due
to the small Kondo temperature of the parameters, leading to
an exponentially slow decay during the FM to AFM crossover.

Figure 9 shows the spin correlations Ci(τ) between the im-
purity and the bath atoms. After the formation of the Kondo
singlet in the long-time regime, the correlations reach the
equilibrium values of the ground state, with spatially depen-
dent AFM correlations. These correlations are only formed
within a finite light cone at intermediate times. At the edge
of the cone, the propagation of the excess spin of the Kondo
impurity leads to FM correlations between the bath and the
impurity (see also Ref. 130).

VI. OUTLOOK

Alkaline-earth atoms allow the realization of a wide vari-
ety of Kondo systems that are beyond the scope of this work.
Whereas we considered localized impurities, mobile heavy
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FIG. 9: (Color.) Non-equilibrium and equilibrium impurity-bath
spin correlations. The correlation Ci(τ) (defined in Eq. (31)) in the
steady-state regime τ = 50/t̃ agrees with the equilibrium values of
the corresponding ground state obtained by the imaginary-time evo-
lution. At the intermediate time τ = 5/t̃, the emitted spin polariza-
tion forms an effective light cone in which the AFM correlations are
partially developed. All the parameters are set to be the same as in
Fig. 8 (c).

impurities are expected to show even more complex behavior.
Such impurities can be realized by introducing shallower lat-
tice potentials56–59 as well as by using atomic mixtures146,147.
In one-dimensional systems, this may lead to the realization
of a two-channel Kondo model, as was shown in Ref. 148. In
higher dimensions, the recoil energy of the collision between
the impurity and the bath atoms could suppress low-energy
spin exchange processes. We, therefore, expect that Kondo
screening will appear only at finite values of the coupling J .
This behavior is also characteristic of narrow-gap semicon-
ductors and semi-metals such as graphene: since the density
of states is suppressed at the Fermi energy, a magnetic impu-
rity only shows a Kondo effect if the strength of the coupling
is strong enough149–155. These band structures can be realized
using honeycomb and optical superlattices, which allow one
to control the density of states at the Fermi level.

Quantum gas microscopy could provide a completely new
experimental perspective on the interplay of two Kondo im-
purities. This system has been studied early on156–159: In
the SU(2) symmetric case, its equilibrium properties depend
non-universally on the dimensionless ratio of the RKKY inter-
action strength and the Kondo temperature. This ratio can be
controlled by changing the spatial separation of the impurities
as well as by modifying the filling of the band159,160. Ultracold
experiments could study the screening process in these phases
in a spatially resolved way. Further intriguing questions arise
in the case of quench dynamics, which is exceptionally hard to
investigate theoretically, especially in the case of anisotropic
interactions, made possible by optical driving.

Creating a Kondo impurity at each site of the optical lattice
realizes the Kondo lattice, the paradigmatic model of heavy-
fermion materials4–8. These systems exhibit enormous quasi-
particle masses as compared to that of the bath fermions.
This mass renormalization should be measurable in transport

and Bloch oscillation measurements. These systems also ex-
hibit quantum critical behavior, topological and exotic super-
conducting orders. Using the periodically modulated opti-
cal fields discussed in this work, one could also realize the
anisotropic Kondo lattice model and study its complex phases.

Further interesting questions arise about the effect of disor-
der on the Kondo dynamics. Optical speckle potentials have
been used extensively to create Anderson localized and diffu-
sive phases in cold atomic baths161–163. Since disorder leads
to local changes in the density of states, the Kondo energy
scales will also become randomly distributed. The disordered
Kondo model still shows non-Fermi-liquid behavior in the
AFM phase164. In quench experiments performed in the lo-
calized phase, spin polarization emitted by the impurity is ex-
pected to show revivals, that might be detrimental to the for-
mation of the Kondo singlet. Three dimensional disordered
systems show diffusive behavior below the mobility edge163.
Instead of ballistic propagation, the spin polarization emit-
ted by the Kondo impurity will propagate diffusively and will
likely lead to a very different time evolution of the impurity-
bath correlations as compared to the disorder free case.

We finally mention that by populating N > 2 spin com-
ponents of alkaline-earth atoms, one can naturally create an
SU(N) symmetric version of the FM Kondo model. As we
discuss in Sec. Appendix C, the optical driving suggested
in this paper can break this symmetry down to a product of
U(1) symmetries. In quench experiments, we expect that the
anisotropy of the Kondo coupling terms will lead to several
different dynamical time-scales. Ultracold experiments would
allow studying the effect of this symmetry breaking on the
Korringa relaxation and on the cross-over from the FM to the
screened phase.
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APPENDIX

Appendix A. DERIVATION OF THE HYBRIDIZATION

In this section, we discuss the derivation of the hybridiza-
tion V in Eq. (12) and the density of states % of bath eigen-
modes. The calculation below applies to cubic lattices in any
dimension d, as well as to arbitrary fillings.

The hybridization couples the impurity site to the bath
modes |α, σ〉 = g†ασ|0〉. This coupling arises from the tun-
neling Hamiltonian between the impurity and the surrounding
sites

Htun = −t
∑
〈δ,0〉, σ

g†δσ g0σ + h.c. = −V
∑
σ

(g†hσ g0σ + h.c.),

where V =
√
zt is the hybridization. In the last equation,

we introduced the creation operator of the hybridizing orbit
|h, σ〉 = g†hσ|0〉, which is the equal superposition of states on
sites neighboring the impurity,

g†hσ =
1√
z

∑
〈δ,0〉

g†δσ.

The bath’s dynamics is described by the hopping Hamil-
tonian on the remaining sites, Hbath = Hkin − Htun. This
operator obeys d-dimensional cubic symmetries. Since the
hybridizing orbit transforms trivially under these symmetry
group, its overlap Λα = 〈α, σ|h, σ〉 with bath modes is non-
zero only for modes with the same symmetry165. These over-
laps are non-trivial due to the boundary conditions the bath
eigenmodes obey at the impurity site. Since Hbath does
not contain the tunnel coupling between the impurity and its
neighbors, its eigenmodes need to vanish at the impurity site.
The density of states %(ω) is defined as

%(ω) =
∑
α

|Λα|2 δ(ω − εα) = M |Λ(ω)|2 ρbath(ω).

incorporates the density of states of these modes, together
with their coupling to the hybridizing orbit. Here, Λ(ω) de-
notes the average matrix element of the hybridizing orbit with
states at energy ω, and ρbath(ω) = 1

M

∑
α δ(ω − εα) is the

density of states of bath atoms.
We determine %(εF ) = − 1

π ImGRh (εF ) using the retarded
Green’s function GRh (τ) = 〈FS|{gh(τ), g†h(0)}|FS〉.
The time evolution of the operator gh(τ) =
exp(iHbathτ) gh exp(−iHbathτ) is generated by the
bath Hamiltonian. We calculate Gh(ω) by introducing an
auxiliary lattice Hamiltonian

H̃bath(λ) = −t
∑
〈i,j〉,σ

g†iσgjσ + λ g†0σg0σ

with the potential λ at the impurity site. For λ → ∞,
H̃bath(λ) is equivalent to the bath Hamiltonian. Therefore,
the Green’s function G̃Rh,λ(ω) generated by H̃bath(λ) also be-
comes identical toGRh (ω) in this limit. We determine G̃Rh,λ(ω)

by expanding it in terms of λ to infinite order. The lowest or-
der term is given by

G̃Rh,λ=0(ω) =
1

zM

∑
k

(εk/t)
2

ω − εk + i0+

=
1

z

∫
dε (ε/t)2 %bath(ε)

ω − ε+ i0+
,

with 0+ denoting an infinitesimally small positive constant. A
straightforward calculation leads to the higher order terms in
the Lippmann-Schwinger equation

G̃Rh,λ(ω) = G̃Rh,λ=0(ω) +
Λ2(ω)

z

∞∑
n=1

λn Πn−1(ω). (32)

The local Green’s function Π(ω) in the last equation is defined
as

Π(ω) =
1

M

∑
k

1

ω − εk + i0+
=

∫
dε

%bath(ε)

ω − ε+ i0+
, (33)

whereas Λ(ω) ≡ (ωΠ(ω)− 1)/t.
The Green’s function in Eq. (32) can be summed up as a

geometric series. After taking the λ→∞ limit, we find that

GRh (ω) = G̃Rh,λ=0(ω)− 1

z

Λ2(ω)

Π(ω)
.

As a final step, we determine the tunneling density of states
from the imaginary part of the last equation,

%(ω) =
1

π

1

zt2
Im

1

Π(ω)
.

Fig. A1 shows %(εF ) together with ρbath(εF ) in spatial di-
mensions d = 1, 2 and 3. At half-filling, the real-part of
Π(ω) vanishes due to particle-hole symmetry, and we find
%(0) = 1/(π2 zt ρbath(0)). In three spatial dimensions, we
get %h(0) = 0.118/t, which is slightly suppressed as com-
pared to ρbath(0) = 0.143/t. In contrast, % is enhanced sig-
nificantly towards the band edges.

We mention that, for a numerical evaluation, it is useful to
express the local Green’s function in Eq. (33) as an integral.
We rewrite the first denominator as an exponential integral and
make use of the integral representation of Bessel functions
J0(x) =

∫ π
−π

dk
2π exp(ix cos(k)). The Green’s function in d

dimensions is thus given by

Π(ω) = − i

2t

∫ ∞
0

dx eix(ω+i0+)/2t (J0(x))
d
.

Appendix B. DIMENSIONLESS PARAMETERS AT
ANISOTROPIC DENSITY OF STATES

In this appendix, we outline Anderson’s poor man’s scal-
ing equations in the case when the density of states of the
fermionic degrees of freedom is different for the two spin
components %↑ 6= %↓. We illustrate how the anisotropy of the
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FIG. A1: (Color) Density of states %(εF ) in a (a) three (b) two and (c)
one-dimensional optical lattice (solid line), as a function of the Fermi
energy εF . The ρbath density of states of the bath (dashed line) is
also shown. In three dimensions, %(εF ) is slightly suppressed near
half-filling as compared to ρbath, whereas it is enhanced towards the
band edges. In contrast, the density of states is always smaller than
ρbath in lower dimensions.

dimensionless Kondo couplings can be different from those
of Jz and J⊥. We discuss a simplified case when the mag-
netic terms in Eq. (3) are neglected and the density of states
is constant within the bandwidth [−D,D] of the bath. Scal-
ing in the more general case (with energy-dependent density
of states and magnetic terms) more detailed numerical cal-
culations. This can be done using numerical renormalization
group methods107.

As a first step, we represent the Kondo interaction Hamil-
tonian in a vectorial form

HK
int =

1

M

∑
αβσσ′

∑
a=x,y,z

Ja S
a
e s

a
gσσ′ c†ασcβσ′ ,

where the bath spins are represented by the spin matrices
sg = (sxg , s

y
g , s

z
g). The couplings are given by (Jx, Jy, Jz) =

(J⊥, J⊥, Jz). In this representation, Anderson’s poor man’s

scaling relations become166–168

δJa s
a
gσσ′

δ logD
= 2i

∑
a′a′′σ′′

εaa
′a′′
(
Ja′s

a′

gσσ′′

)
%σ′′

(
Ja′′s

a′′

gσ′′σ′

)
The dimensionless Kondo couplings are most naturally cho-
sen as

jz ≡ Jz
%↑ + %↓

2
j⊥ ≡ J⊥

√
%↑ %↓.

With this choice, the couplings follow the usual poor man’s
scaling equations that also arise in the case of equal density of
states32,

δjz
δ logD

= − j2
⊥,

δj⊥
δ logD

= − jz j⊥. (34)

Thus, the renormalization group flow of these couplings will
be identical to the ones shown in Fig. 2.

Appendix C. OPTICAL STARK SHIFT

The effective Kondo Hamiltonian only depends on the dif-
ference between the Zeeman shifts of the impurity and bath
atoms. Therefore, it is sufficient to address the impurities that
are in the

∣∣3P0

〉
= |e〉 electronic state to realize the required

driving. We refer the reader to Ref. 84 for the details of how to
realize the optical Stark effect in alkaline-earth atoms. Here,
we only summarize the details specific to our proposal. The
optical setup requires circularly polarized light, coupling the
|e〉 state to an excited state such as

∣∣6s5d 3D1

〉
. Since the

external electron shell in this state is not closed, the hyper-
fine coupling can mix the electronic and nuclear spins. Thus,
nuclear spins can be addressed by optically exciting the elec-
tronic degrees of freedom.

In our proposal, we assume that only the smallest and the
largest nuclear spin states mI = ±I are populated. Due to
its Clebsch-Gordan coefficients, the circularly polarized σ+

laser couples stronger to the nuclear spin states with positive
mI . As Fig. A2 shows, by red (blue) detuning the σ+ mode, a
negative (positive) Zeeman shift ∆e can be realized. A time-
dependent effective Zeeman field can thus be created by mod-
ulating the intensities of the red- and blue-detuned lasers. The
required modulation frequencies are in the kHz regime, which
is easily accessible in current experiments.

When we populate all spin states, each pair of states with
nuclear spin ±mI experience different Zeeman shifts. These
two-dimensional subspaces each obey a U(1) spin rotation
symmetry. The SU(N) symmetry of the model is thus broken
down to U(1)N/2. This symmetry breaking could be used in
future works to realize anisotropy in Kondo models of higher
spin in alkaline-earth atomic systems.
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FIG. A2: (Color.) Schematics of the laser configurations realiz-
ing effective Zeeman shifts for the |e〉 atoms, using circularly po-
larized σ+ laser fields. Only the couplings to the mI = ±5/2
fields are shown. The laser frequencies are detuned relative to the
|e〉 →

∣∣3D1

〉
-transition with a detuning comparable to the hyperfine

splitting. Due to their different matrix elements, the σ+ lasers couple
differently to the two nuclear spin states. Thick arrows denote large
matrix elements whereas narrow ones correspond to weak couplings.
By choosing appropriate detunings of the lasers, a Zeeman shift (a)
∆e < 0 and (b) ∆e > 0 can be realized. Modulated Zeeman fields
can be realized by modulating the amplitudes of the laser configura-
tions in (a) and (b).

Appendix D. TIME-DEPENDENT SCHRIEFFER-WOLFF
TRANSFORMATION

In this appendix, we derive the Kondo parameters of the pe-
riodically modulated model, assuming that the Zeeman fields
∆e(τ) and ∆g(τ) have both static as well as an oscillating
component

∆e(τ) = ∆e0 cos(ωτ) + ∆e1,

∆g(τ) = ∆g0 cos(ωτ) + ∆g1.

The driving frequencies are the same for both states since we
assume that the Zeeman fields are generated by the same laser
field. As a first step, we perform a unitary transformation on
the Hamiltonian that removes the oscillating part of the Zee-
man energy

HZ0(τ) = −∆e0

2
cos(ωτ) (|⇑〉 〈⇑| − |⇓〉 〈⇓|)

− ∆g0

2
cos(ωτ)(ng0↑ − ng0↓)

− ∆g0

2
cos(ωτ)

∑
kσ

σ g†kσ gkσ

by using the unitary transformation W (τ) =
exp

(
−i
∫ τ

dτ ′HZ0(τ ′)
)

that brings the system into the
rotating frame. The Hamiltonian then becomes

H̃(τ) = i(∂τW
†)W +W †HW

= H̃bath + H̃imp(τ) +Hmix.

The transformation does not affect the mixing term and the
transformed bath Hamiltonian only contains the static part of
the Zeeman field H̃bath =

∑
kσ(εk − σ∆g1/2) g†kσgkσ . The

exchange term in the impurity Hamiltonian, however, depends
on the oscillating part of the Zeeman energy,

H̃imp(τ) = U (ng0↑ + ng0↓)(ne0⇑ + ne0⇓)

− ∆e1

2
(ng0↑ − ng0↓)

+ Uex

∑
σσ′

g†0σ′e
†
0σ e0σ′g0σ e

−i(σ−σ′)Φ0(τ)/2.

The phase factor Φ0(τ) =
∫ τ

dτ ′∆0 cos(ωτ ′) in the
last equation is the anti-derivative of the Zeeman splitting
∆0(τ) = (∆e0 − ∆g0) cos(ωτ), and it arises from the Zee-
man energy gains from spin-exchanging collisions with the
impurity.

We derive the low energy effective Hamiltonian using a
time-dependent Schrieffer-Wolff transformation

HSW (τ) = P0

(
i(∂τe

S(τ)) e−S(τ) (35)

+ eS(τ) (H̃bath + H̃imp(τ) +Hmix) e−S(τ)
)
P0.

Similarly to Sec. III B 1, we choose the transformation S(τ)
such that the first order terms cancel the coupling between the
impurity and the bath,

P1 (i∂τS(τ) +Hmix)P0 = P1

[
H̃bath + H̃imp(τ), S(τ)

]
P0.

(36)
We use the ansatz Eq. (16) to solve the last equation numeri-
cally, with time-dependent coefficients. In the |⇑↑〉 and |⇓↓〉
sectors, the time evolution of the coefficients becomes

(−i∂τ + U + Uex − εk) Γσσσσ(k) = V.

Therefore, this channel obeys the same solution Eq. (17) as in
the static case. In the spin-flip channel, the coefficients obey
the equations[
−i∂τ +

(
H̃ex

imp(τ) 0

0 H̃ex
bath(k)

)
,

(
0 Γex(k)

− (Γex(k))
†

0

)]
= V,

with the Hamiltonian matrices

H̃ex
kin(k) =

(
εk −∆1/2 0

0 εk + ∆1/2

)
,

and

H̃ex
imp(τ) =

(
U −∆1/2 Uex e

iΦ0(τ)

Uex e
−iΦ0(τ) U + ∆1/2

)
,

where we used the notation ∆1 = ∆e1−∆g1. As the last two
equations show, the Schrieffer-Wolff transformation only de-
pends on the difference of the Zeeman energies ∆0(τ) and ∆1

but not on their average value. In order to ensure the time peri-
odicity of the transformed Hamiltonian, we require the trans-
formation to be periodic S(τ + T ) = S(τ) as well.
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The Schrieffer-Wolff transformation decouples the low and
high energy sectors of the Hamiltonian. The low energy part
contains terms of the order of V 2/U−eg , whereas the high en-
ergy sector is of the order of U±eg . After the transformation,
the effective Hamiltonian reads

HSW (τ) = P0

(
H̃bath + H̃imp(τ) +

1

2
[Hmix, S(τ)]

)
P0

up to second order in S(τ). As the driving frequency ω is
much larger than the energy scale of the Kondo dynamics
V 2/U−eg , we can simply obtain a low energy effective Hamil-
tonian using the lowest order Floquet term. This is given by
the time average of the effective Hamiltonian103,104

Heff =
1

T

∫ T

0

dτ HSW (τ). (37)

Heff is of the order of O(V 2/U−eg), and the next order correc-
tion, of the orderO

(
1
ω (V 2/U−eg)

2
)
, is negligible given that ω

is usually of the order of the on-site energies. We obtain the
Kondo parameters by comparing Heff in the last equation to
Eqs. (2 - 3).

Appendix E. MODULATION OF THE OPTICAL LATTICE

Varying the optical lattice potential leads to the modulation
of both the hopping t and the on-site interactions U±eg . The
latter depends polynomially on the amplitude of the lattice po-
tential, whereas t is suppressed exponentially49. The driving
therefore leads to the oscillation of the ratios t/U−eg and t/U+

eg .
In order to discuss how the Kondo couplings get modi-

fied by the driving, we first note that the oscillation of an
overall energy scale of the Hamiltonian can be removed by
a gauge transformation. We can thus choose the transforma-
tion such that the tunneling remains constant in the rotating
frame, and only the on-site interactions are modulated. As
Eq. (38) shows, the singlet and triplet sectors shall oscillate at
the same relative amplitude. Neglecting higher harmonics, we
model the driving as

U±eg(τ) = U±eg,0 (1 + δu cos(ωτ)) . (38)

We derive the Kondo parameters using a calculation simi-
lar to Appendix D. We use a periodic Schrieffer-Wolff trans-
formation to decouple the low energy sector of the Hubbard-
Anderson Hamiltonian. We then determine the couplings by
keeping the lowest order Floquet term. Since the driving does
not break the SU(2) symmetry of the model, the Schrieffer-
Wolff transformation is diagonal in the singlet (|+〉) and
triplet (|−〉) spin channels(

−i∂τ + U±eg − εk
)

Γ±(k) = V,

respectively. The effective magnetic terms me and mg thus
remain zero, whereas the Kondo parameters jz = j⊥ = j are

tunable. Fig. A3 shows how j depends on the driving ampli-
tude δu in case of a red-detuned driving ω . U−eg . The lowest

FIG. A3: (Color.) Dimensionless isotropic Kondo coupling j =
jz = j⊥ in the presence of periodically modulated optical lattice
potentials. The driving frequency ω = 14U−eg,0 is red detuned . As
the amplitude δu in Eq. (38) grows, the FM coupling j < 0 ini-
tially decreases in amplitude, then it crosses over to the AFM regime
j > 0. [Parameters of the plot: U+

eg,0 = 15U−eg,0, t = 0.35U−eg and
εF = 0.]

order Schrieffer-Wolff calculation is most reliable for small
driving amplitudes δu � 1, and it will acquire corrections
at larger driving amplitudes. In this regime, the isotropic FM
coupling j will weaken as δu increases.

Appendix F. INITIALIZATION OF THE IMPURITY SPIN

In order to study the non-equilibrium dynamics discussed
in Sec. V B, the impurity has to be created instantaneously in
the |⇑〉 state. This is possible due to the separation of energy
scales in Eq. (11). The ultranarrow linewidth of the |g〉 → |e〉
transition (below 1 Hz) allows one to address the spin states of
the atoms independently. This can be achieved by introducing
an effective Zeeman field optically or using an external mag-
netic field74. The Zeeman splitting can easily be made larger
than the linewidth of the transition. Thus, an appropriately
tuned laser pulse can create only |g ↑〉 → |e ⇑〉 transitions,
while leaving the |g ↓〉 atoms unaltered.

It is also important to ensure that the impurity sites are
singly occupied at the beginning of the dynamics. This can
be achieved if the laser pulse excites only |g〉 atoms only
on singly occupied sites. Since the on-site repulsions are of
the order of U±eg ∼ 1 − 10 kHz, the laser can be tuned such
that the doubly occupied sites become off-resonant. The time
τex to create the impurity needs to be instantaneous on the
timescales of the Kondo dynamics. The finite time duration
of the pulse leads to a frequency broadening of the order of
γ ∼ 1/τex. τex can be chosen such that γ � U±eg so that the
singly occupied sites can be selectively addressed. By choos-
ing J � γ � U−eg , the pulse can still be made instantaneous
on the timescales of the Kondo dynamics.
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13 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Reviews of Modern Physics 79, 1015 (2007).
14 L. Glazman and M. Raikh, JETP lett 47, 452 (1988).
15 T. K. Ng and P. A. Lee, Physical review letters 61, 1768 (1988).
16 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. Kastner, Nature 391, 156 (1998).
17 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science 281, 540 (1998).
18 L. Kouwenhoven and L. Glazman, Physics world 14, 33 (2001).
19 H. Jeong, A. M. Chang, and M. R. Melloch, Science 293, 2221 (2001).
20 H. T. Mebrahtu, I. V. Borzenets, D. E. Liu, H. Zheng, Y. V. Bomze, A. I. Smirnov, H. U. Baranger, and G. Finkelstein, Nature 488, 61

(2012).
21 R. de Bruyn Ouboter and D. Bol, Physica B+ C 112, 15 (1982).
22 W. Zwerger, Zeitschrift für Physik B Condensed Matter 53, 53 (1983).
23 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Reviews of Modern Physics 59, 1 (1987), ISSN

0034-6861, URL http://link.aps.org/doi/10.1103/RevModPhys.59.1.
24 S. Chakravarty and J. Rudnick, Phys. Rev. Lett. 75, 501 (1995), URL https://link.aps.org/doi/10.1103/PhysRevLett.
75.501.

25 S. P. Strong, Phys. Rev. E 55, 6636 (1997), URL https://link.aps.org/doi/10.1103/PhysRevE.55.6636.
26 T. Costi, Physical review letters 80, 1038 (1998).
27 R. F. Voss and R. A. Webb, Phys. Rev. Lett. 47, 265 (1981), URL https://link.aps.org/doi/10.1103/PhysRevLett.47.
265.

28 S. Chakravarty, Physical Review Letters 49, 681 (1982), ISSN 0031-9007, URL http://link.aps.org/doi/10.1103/
PhysRevLett.49.681.

29 S. Han, J. Lapointe, and J. E. Lukens, Physical review letters 66, 810 (1991).
30 J. R. Friedman, V. Patel, W. Chen, S. Tolpygo, and J. E. Lukens, nature 406, 43 (2000).
31 C. H. Van Der Wal, A. Ter Haar, F. Wilhelm, R. Schouten, C. Harmans, T. Orlando, S. Lloyd, and J. Mooij, Science 290, 773 (2000).
32 P. Anderson, Journal of Physics C: Solid State Physics 3, 2436 (1970).
33 P. Nozieres, Journal of low température physics 17, 31 (1974).
34 P. Coleman, Physical Review B 28, 5255 (1983).
35 N. Bickers, Reviews of modern physics 59, 845 (1987).
36 H. Keiter and J. Kimball, Journal of Applied Physics 42, 1460 (1971).
37 N. Grewe and H. Keiter, Physical Review B 24, 4420 (1981).
38 Y. Kuramoto, Zeitschrift für Physik B Condensed Matter 53, 37 (1983).
39 E. Müller-Hartmann, Zeitschrift für Physik B Condensed Matter 57, 281 (1984).
40 S. R. White, Phys. Rev. Lett. 69, 2863 (1992), URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2863.
41 W. Hofstetter, Physical review letters 85, 1508 (2000).
42 F. Wegner, Annalen der physik 506, 77 (1994).
43 A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Physical review letters 74, 4047 (1995).
44 N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, Nature 453, 633 (2008).
45 N. Roch, S. Florens, T. A. Costi, W. Wernsdorfer, and F. Balestro, Physical review letters 103, 197202 (2009).
46 C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M. Claassen, W. Wuester, P. Fallahi, S. Faelt, L. Glazman, J. von Delft, et al., Nature 474,

627 (2011).
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93 J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Physical

review letters 108, 225304 (2012).
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107 A. I. Tóth, C. P. Moca, Ö. Legeza, and G. Zaránd, Physical Review B 78, 245109 (2008).
108 M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 111, 147205 (2013), URL https://link.

aps.org/doi/10.1103/PhysRevLett.111.147205.
109 C. Mora, C. P. Moca, J. Von Delft, and G. Zaránd, Physical Review B 92, 075120 (2015).
110 N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983), URL https://link.aps.org/doi/10.1103/

RevModPhys.55.331.
111 P. Mehta, N. Andrei, P. Coleman, L. Borda, and G. Zarand, Phys. Rev. B 72, 014430 (2005), URL https://link.aps.org/doi/

10.1103/PhysRevB.72.014430.
112 J. Eisert, M. Friesdorf, and C. Gogolin, Nature Physics 11, 124 (2015).
113 M. Miranda, R. Inoue, Y. Okuyama, A. Nakamoto, and M. Kozuma, Physical Review A 91, 063414 (2015).
114 R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y. Takahashi, New Journal of Physics 18, 023016 (2016).
115 L. C. Gupta, Theoretical and experimental aspects of valence fluctuations and heavy fermions (Springer Science & Business Media, 2012).
116 N. Andrei, Phys. Rev. Lett. 45, 379 (1980), URL https://link.aps.org/doi/10.1103/PhysRevLett.45.379.
117 P. Wiegmann, Journal of Physics C: Solid State Physics 14, 1463 (1981).
118 P. B. Wigman, Physics-Uspekhi 25, 183 (1982).
119 N. Andrei, in Low-Dimensional Quantum Field Theories for Condensed Matter Physicists (World Scientific, 1995), pp. 457–551.
120 A. Tsvelick and P. Wiegmann, Zeitschrift für Physik B Condensed Matter 54, 201 (1984).
121 I. Affleck and A. W. W. Ludwig, Physical Review B 48, 7297 (1993).
122 P. Fendley, F. Lesage, and H. Saleur, Journal of statistical physics 85, 211 (1996).
123 A. LeClair and A. W. Ludwig, Nuclear Physics B 549, 546 (1999).
124 H.-Q. Zhou and M. D. Gould, Physics Letters A 251, 279 (1999).
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