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The pairing symmetry of interacting Dirac fermions on the π-flux lattice is studied with the
determinant quantum Monte Carlo and numerical linked cluster expansion methods. The s∗- (i.e.
extended s-) and d-wave pairing symmetries, which are distinct in the conventional square lattice, are
degenerate under the Landau gauge. We demonstrate that the dominant pairing channel at strong
interactions is an unconventional ds∗-wave phase consisting of alternating stripes of s∗- and d-wave
phases. A complementary mean-field analysis shows that while the s∗- and d-wave symmetries
individually have nodes in the energy spectrum, the ds∗ channel is fully gapped. The results
represent a new realization of pairing in Dirac systems, connected to the problem of chiral d-wave
pairing on the honeycomb lattice, which might be more readily accessed by cold-atom experiments.

I. INTRODUCTION

One of the dominant themes of condensed matter
physics concerns unconventional superconductivity.
Beginning with the heavy fermions and cuprates, where
antiferromagnetic interactions are believed to mediate
dx2−y2-wave (for simplicity, referred to below as d-wave)
pairing [1, 2], to s± order in the iron-pnictides [3, 4],
growing classes of materials including, for example,
Sr2RuO4, BC3, SrPtAs, MoS2 and NaxCoO2 have been
suggested to host pairing states in which there are
additional broken parity, translation, time-reversal, and
rotation symmetries.

One of the most well-studied of these systems is
doped graphene, where recent theoretical work has
demonstrated a chiral d-wave superconducting state [5].
The qualitative explanation for this unconventional
phase lies in the fact that the dx2−y2 and dxy
pairing symmetries belong to the same irreducible E2g

representation of the honeycomb geometry, leading to
the possibility that a complex combination might be
energetically favored. However, determining the correct
low temperature superconducting symmetry, especially
in competition with other types of spin density wave
and charge density wave order, and the presence of
significant electron correlation, requires the use of
the most discerning analytic and numeric approaches.
Indeed, methods ranging from mean-field theory [6, 7],
to functional renormalization group [8–11] and high-
precision numerical simulations [12–16] have been applied
to the problem.

The low-energy excitations in graphene are Dirac
fermions, which possess a linear energy dispersion and
density of states. In addition to the possibility of
chiral d-wave pairing, these features lead to a variety of

further unusual phenomena [17]. Given the tremendous
interest in the emergent properties of Dirac fermions,
it is natural to examine their behavior in the absence
of graphene’s six-fold rotational symmetry, and with
different dispersion relations.

In this manuscript, we employ two unbiased
numerical methods, the determinant quantum Monte
Carlo (DQMC) [18] and the numerical linked-cluster
expansion (NLCE) [19, 20], to address this important
issue by examining the pairing symmetry of the π-flux
phase square lattice, which, like graphene, also hosts
Dirac fermions. Originally proposed by Affleck and
Marston to describe the pseudogap regime of the high-Tc
cuprates [21], the π-flux phase has recently been shown
to be generated spontaneously with dynamical fermions
coupled to a Z2 gauge theory in (2 + 1) dimensions [22].
Our key findings are the following: (i) Our numerical
results paint a consistent picture of the dominant pairing
symmetry, which is found to be formed by pair creation
with alternating stripes of extended s-(denoted as s∗-
) and d-wave symmetries; (ii) This mixed structure
originates in a symmetry linking the two pairing orders,
and possesses a full gap, unlike the individual pieces; (iii)
Superconductivity is most robust at intermediate values
of the on-site repulsion U ; and (iv) Mean-field theory
confirms the basic qualitative picture coming out of the
DQMC/NLCE calculations. In the conclusions we will
also address the possibility of engineering such lattices
using optically trapped atomic systems.

II. MODEL AND METHOD

We consider a Hubbard Hamiltonian describing
interacting Dirac fermions in a π-flux model on a square
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FIG. 1. (a) The π-flux lattice in the Landau gauge. The solid
(dashed) lines represent positive (negative) hoppings. The
ds∗-wave pairing symmetry is schematically shown. A gauge
transformation on sites marked by the white bars shows that
s∗- and d-waves are equivalent. (b) The noninteracting energy
spectrum, which shows that the system is a semi-metal with
two inequivalent Dirac points. The corresponding density of
state is linear for low energies and has a Van Hove singularity
at E/t = 2.

lattice where each plaquette is threaded with half a flux
quantum, [23, 24] 1

2Φ0 = hc/(2e),

H =
∑
〈lj〉σ

tlje
iχljc†jσclσ + U

∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
), (1)

where c†jσ and cjσ are the creation and annihilation
operators, respectively, at site j with spin σ =↑, ↓. The
hopping amplitudes between the nearest-neighbor sites
l and j are tlj = t, which we set to 1 as the unit
of energy throughout our paper, and χlj is the Peierls

phase arising from the magnetic flux χlj = 2π
Φ0

∫ xj

xl
A · dx

with A the vector potential. In the Landau gauge we
have A = 1

2Φ0(0, x) and the Peierls phase is given by
χj,j+x̂ = 0, χj,j+ŷ = πjx. The resulting hopping pattern
is shown in Fig. 1(a). The specific form of χlj is gauge-
dependent, allowing for different choices of the Peierls
factors [25]. In the following, results are based on the
geometry of Fig. 1(a). We have verified that results for
other gauge choices are consistent.

The lattice in Fig. 1(a) has a two-site unit cell.
In reciprocal space, with the reduced Brillouin zone
(|kx| ≤ π/2, |ky| ≤ π), the Hamiltonian can be written

as H0 =
∑

kσ ψ
†
kσH0(k)ψkσ with ψkσ = (c1kσ, c

2
kσ)T

and H0(k) = 2t cos kxσx − 2t cos kyσz, with σx,z the
Pauli matrices. The energy spectrum is given by Ek =
±
√

4t2(cos2 kx + cos2 ky). The noninteracting system
is a semi-metal with two inequivalent Dirac points at
K1,2 = (π/2,±π/2) as shown in Fig. 1(b).

The interacting π-flux model is solved numerically
by means of the DQMC and the NLCE methods. We
also validate our results using exact diagonalization (ED)
for a 4 × 4 lattice [25]. In DQMC, one decouples
the on-site interaction term through the introduction
of an auxiliary Hubbard-Stratonovich field, which is

integrated out stochastically. The only errors are those
associated with the statistical sampling, finite spatial
lattice size, and the inverse temperature discretization.
All are well-controlled in the sense that they can be
systematically reduced as needed, and further eliminated
by appropriate extrapolations. At half-filling (average
density of one fermion per site), we have access to low-
temperature results, necessary to determine the pairing
symmetry. Away from half-filling and in the presence
of the “sign problem” [26, 27] in the DQMC, we can
access temperatures down to T ∼ 0.4. The DQMC
simulations are carried out on a 12 × 12 system, which
is large enough to have negligible finite-size effects for
the temperatures studied here [25]. Results represent
averages of 10 independent runs with 10000 sweeps each.

In the NLCE, properties in the thermodynamic
limit are expressed in terms of contributions from small
clusters that can be embedded in the lattice. The
latter are obtained via ED. We use a NLCE for the
square lattice, modified to fit in the reduced symmetry
of the π-flux model, and carry out the expansion up
to the 8th order [20, 28]. NLCE is error free in the
temperature region of convergence and can be used to
gauge systematic errors in DQMC in the common region
of validity. Here we show both the bare results and those
obtained after Euler resummation [25].

The quantity on which we focus [25] is the
pairing structure factor, Sα(q) =

∑
r e
iq·rPα(r), where

Pα(rij) = 〈∆α†
i (0)∆α

j (0) + ∆α
i (0)∆α†

j (0)〉 is the equal-

time pair-pair correlation function. The general (time
dependent) pairing operator is defined as ∆α

i (τ) =∑
j f

α
ij e

τHci↑cj↓e
−τH with fαij = ±1 for the bond

connecting i and j, depending on the pairing symmetry
α. The ∆ds∗ operator which proves to be dominant on
the π-flux phase lattice possesses d-wave phases (fij =
+1 for j = i ± x̂ and fij = −1 for j = i ± ŷ) for sites
on vertical stripes of the lattice with ix odd, and s∗-wave
symmetry (fij = +1 for both j = i± x̂ and j = i± ŷ) for
ix even. As we shall show below, this symmetry has a
larger superconducting response than more conventional
singlet pairings in the s∗, dx2−y2 , sxy, and dxy channels,
and triplet pairings in px, py, and pxy channels[29].

Here we consider only the uniform pairing structure
factor, Sα(q = 0) and its correlated part , Sαcorr, obtained
by subtracting off the uncorrelated parts from Sα. One
can also analyze the uniform pairing susceptibility,

χα(q = 0) =
1

N

∫ β

0

dτ
∑
ij

〈∆α
i (τ)∆α†

j (0)〉 , (2)

which probes the decay of pairing correlations in the
imaginary time as well as spatial directions. As with
the structure factor, a subtraction of the uncorrelated
pieces of χα can be used to evaluate the pairing vertex [2].
Susceptibilities generally have stronger signals in ordered
phases [30]. However they also have larger error bars in
the DQMC and are substantially more costly to compute.
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III. SUPERCONDUCTING PAIRING
SYMMETRY

Spin fluctuations play an important role in pairing
in Hamiltonians with repulsive electronic interactions,
both competing with superconductivity at half-filling and
providing the ‘pairing glue’ upon doping. Unlike in the
square lattice model with equal hoppings, for which the
critical interaction Uc = 0, antiferromagnetic (AF) order
in the π-flux lattice with Dirac fermions only develops
above Uc = 5.64 ± 0.05 [31–34]. However, we find
that short-range AF correlations behave very similarly
in the two models, suggesting that magnetic pairing
mechanisms might be equally robust in the two cases [25].
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FIG. 2. DQMC results for the q = 0 (uniform) sxy-wave,
dxy-wave, px-wave, py-wave and pxy-wave pairing structure
factors as a function of temperature. Here U = 8t and the
densities are: (a) n = 1.00; (b) n = 0.95; (c) n = 0.90;
(d) n = 0.85. All channels are repulsive except for weakly
attractive pxy.

In Fig. 2, we show the correlated part of the uniform
structure factor for several of the pairing symmetries,
at various dopings for U = 8. DQMC can access
low temperatures at half-filling, but is blocked by the
‘sign problem’ in doped systems [26]. Nevertheless,
the increasingly negative correlated structure factors in
the px, py, sxy, dxy modes offer compelling evidence that
these symmetries are suppressed. For the sxy and dxy
this can be understood as a consequence of the tendency
towards AF order, with parallel spin fermions on next-
nearest-neighbor (NNN) sites at odds with the presence
of a singlet pair. The pxy mode is attractive, but its value
is much smaller than s∗ and d-wave pairing (Fig. 3).

We find that s∗-, d-, and ds∗-wave pairings are
an order of magnitude larger than pxy-wave, and that
ds∗-wave pairing is dominant in all parameter regions.
By symmetry, s∗-, d-wave channels are equivalent in
this model. This can be seen as follows: The π-flux
lattice under Landau gauge belongs to the group D2h.
Among the irreducible representations for the group with
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FIG. 3. The ds∗-wave, uniform d-wave and s∗-wave pairing
structure factors vs temperature for U = 8t at densities n =
1.00, 0.95, 0.90, 0.85. s∗-wave and d-wave are identical to the
accuracy of our calculations. Symbols are from the DQMC.
Thin dashed and dotted lines are bare NLCE results for the
7th and 8th orders, respectively. Thick solid lines are results
after the Euler resummation [25].

kz = 0, A1g has the basis function k2
x or k2

y, which are
independent. The s∗ (d)-wave is a linear combination of
the two basis functions k2

x + k2
y (k2

x − k2
y); thus they are

not necessarily equal from the point of view of the crystal
symmetry group. However gauge symmetry, a hidden
symmetry underlying the Hamiltonian, enforces their
equivalence. This can be directly seen by performing
a transformation on the sites marked by white bars in

Fig. 1(a), ci,σ(c†i,σ) → −ci,σ(−c†i,σ), under which the
Hamiltonian remains unchanged while the uniform s∗-
wave pairing becomes d-wave (or vice versa). This
equivalence is confirmed within machine precision in the
NLCE.

As shown in Fig. 3, the ds∗-wave pairing has the
largest correlated structure factor for a range of dopings
about half-filling. Results from NLCE and DQMC are in
very good agreement and point to a saturation of Scorr
at low temperatures at zero and 5% doping (n = 0.95).
However, we are limited to relatively high temperatures
at the other two doping values shown in Fig. 3, where
Scorr continues to increase as T is lowered. We focus on
n = 0.90, and plot Scorr vs temperature for U = 4, 6, 8
and 12 in Fig. 4(a). At low temperature, the structure
factor quickly rises as U increases from U = 4, reaches a
maximum in the intermediate-coupling region, and then
slowly decreases. Figure 4(b) shows the susceptibility χ
vs temperature for different interaction strengths at n =
0.90. For large U , there is a trend for the susceptibility
to rapidly increase at low temperatures. The full ds∗-
wave susceptibility shows a clear enhancement over its
uncorrelated value, implying the pairing interaction is
attractive. As in Fig. 3, the results from NLCE match
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s∗ λ = cos ky ± | cos kx| P ∗s (k) = 2∆ cos kyτx ⊗ I
d λ = − cos ky ± | cos kx| Pd(k) = −2∆ cos kyτx ⊗ I
ds∗ λ2 = cos k2x + cos k2y Pds∗(k) = 2∆ cos kyτx ⊗ σz

TABLE I. The character value λ of the gap matrix and Pα in
Eq.(7) for three typical pairings.

well with DQMC in Fig. 4, indicating that systematic
errors are not significant at the accessible temperatures.

Magnetic orders may compete with the
superconductivity discussed above. We can not
rule out the possibility of a magnetic ground state,
however, lack of nesting, resulting in Uc > 0 for LRAFO,
and the incommensurate filling make the magnetic order
less competitive.
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FIG. 4. (a): Temperature dependence of ds∗-wave pairing
structure factor at density n = 0.9 for different values of
the interaction. The inset shows the structure factor vs U
at a fixed temperature T = 0.4. A maximum is present
at intemediate coupling. Symbols and lines in the main
panels are the same as in Fig. 3. (b): The ds∗-wave pairing
susceptibility as a function of the temperature at n = 0.9 for
different values of U .

IV. MEAN-FIELD DESCRIPTION OF THE
SUPERCONDUCTING STATE

To study the physical properties of the possible
superconducting states further, we analyze the gap
function, ∆α =

∑
i ∆α

i (0) =
∑

k ΦT↑ (k)DαΦ↓(−k),
where

Dα =

(
γ cos ky cos kx
cos kx β cos ky

)
, (3)

and Φσ(k) = (cA,kσ, cB,kσ) and γ, β = 1(−1) for s∗(d)-
wave pairing on each site. The character values λ of the
gap matrix are shown in Table I. s∗- and d-wave have
nodes along the blue lines in Fig. 5, while ds∗-wave is
fully gapped.

A mean-field analysis of the superconducting
spectrum provides a qualitative check on the DQMC
and NLCE results reported above. The nonlocal pairing
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FIG. 5. The lower energy dispersion within the mean-field
theory near the Fermi energy for s∗-wave (or d-wave) (a) and
ds∗-wave (b). Here the parameters are µ = 0.8,∆ = 0.2.

channels can not be decoupled from the on-site Hubbard
term. However at large U , the low-energy physics can
be captured within the t-J model [35]. The single-
occupancy restriction is dealt with in an average way
by the use of statistical weighting factors teff = 2δ

1+δ t

and Jeff = 4
(1+δ)2 J with δ the doping level and the

coupling constant J = 4t2

U . The Heisenberg coupling is
expressed in terms of the spin-singlet operator, Jeff (Si ·
Sj − 1

4ninj) = −Jeffh†ijhij with h†ij = 1√
2
(c†i↑c

†
j↓ −

c†i↓c
†
j↑), with i and j near neighbors. The mean-field

parameter is ∆ij = −Jeff 〈hij 〉/
√

2. In the basis

ψk = (c1,k↑, c2,k↑, c
†
1,−k↓, c

†
2,−k↓)

T , we arrive at the mean-

field Hamiltonian: HMF =
∑

k ψ
†
kHMF (k)ψk + E0 with

HMF (k) = t cos kxτz ⊗ σx − t cos kyτz ⊗ σz − µ
2 τz ⊗

I + 2∆ cos kxτx ⊗ σx + Pα(k) and a constant term

E0 = 4N ∆2

Jeff
. The ground state is then obtained by

minimizing the free energy with respect to the order
parameter ∆ and doping δ, which yields two self-
consistent equations. After a numerical self-consistent
iteration, we find that the order parameter ∆ of the ds∗-
wave pairing has larger values for the low doping levels,
implying it is dominating in the ground state.

It is also straightforward to obtain the energy
dispersion. We plot the bands near the Fermi energy
in Fig. 5. The s∗- or d-wave pairing states are seen to
have nodes, while the ds∗-wave state is fully gapped. A
qualitative argument for the dominance of ds∗ pairing
is the following: As emphasized by Scalapino [2], the
presence of a self-consistent solution of the gap equation
∆k = −

∑
k′ Γkk′

(
∆k′/2Ek′

)
tanh(Ek′/2T ), where Ek

is the superconducting quasiparticle dispersion, for
repulsive interactions Γkk′ necessitates a change in sign
of ∆k, and hence the presence of nodes. However nodes
reduce the overall energy lowering due to gap formation
in the superconducting states. As a consequence, a
symmetry which enables a non-trivial self-consistent
solution, while leaving the gap everywhere large, is
energetically preferred.
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V. CONCLUSIONS

Pairing in the Hubbard model on a π-flux lattice was
studied using exact/large-scale numerical methods. The
s∗- and d-wave symmetries, which are distinct in the most
commonly studied square lattice, are equivalent under
the Landau gauge. Both DQMC and NLCE indicate that
the dominating pairing channel at strong interactions
is an unconventional ds∗-wave, for which the relative
signs of the pairing amplitudes alternate between d-wave
and s∗-wave patterns on adjacent stripes of the lattice.
Within a mean-field analysis, the s∗- or d-wave channels
can be shown individually to have nodes while the ds∗

channel is fully gapped. The results represent a profound
extension of studies of interacting Dirac fermions in
graphene by eliminating the specific symmetries of the
honeycomb lattice. The DQMC studies reported here
cannot access the Van Hove singularity at quarter-filling
(n = 0.5), where the instability to a chiral d-wave state
is especially prominent in graphene [5]. However ED
simulations on small lattices show a sign that the gapless
s∗- or d- channel may dominate there, which warrants
further studies.

Finally, we discuss how this phase might be accessed
by state-of-art cold-atom experiments [36, 37]. It is
by now well-established that Raman-assisted tunneling,
and other methods, can be used to create effective
magnetic fields on optical lattices[36–43], as well as more
complex (non-Abelian) artificial gauge fields[44]. The
hybridization pattern of Fig. 1 corresponds to alternating
±π magnetic flux on adjacent vertical stripes of the
lattice, in precisely the geometry of Ref. [41], which
achieved φ = ±π/2 flux, similarly alternating along the
x̂ direction. As discussed there, changing the wavelength
of the Raman lasers, or the angle between them, allows
for generally tunable φ. The pattern proposed here
has already been realized for bosons [45]. Recent
advances in high-resolution control of the confining
potential, resulting in flat regions [46], can mitigate issues
related to density inhomogeneity. These could, then,
provide a precise and well-controlled realization of the
unconventional ds∗ pairing symmetry described here.
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Appendix A: Context of Pairing Symmetry

In early studies of the Hubbard Hamiltonian on
a square lattice with uniform hopping (no flux),
the amplitudes of the pairing responses of different
symmetries were compared [1]. Figure A1 shows the real
space arrangements of the wave function of the down spin
fermion around the up spin fermion. These correspond
to momentum space pair creation operators,

∆α†
k =

∑
k

fk(α) c†k↑c
†
−k↓ , (A1)

where α distinguishes the different symmetries,

fk(s) = 1 fk(s∗) = cos kx + cos ky

fk(px) = sin kx fk(dx2−y2) = cos kx − cos ky

fk(py) = sin ky fk(dxy) = sin kxsin ky

fk(sxy) = cos kxcos ky fk(pxy) = sin (kx + ky)

fk(pyx) = sin (kx − ky) . (A2)
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FIG. A1. Six of the nine the pairing symmetries available
when the down spin fermion is created on a 3x3 lattice about
the location of the up spin fermion at the center. On-site
s-wave, where the down spin fermion is created at the same
point as the up spin fermion, is not shown, nor are py and
pyx, which are just 90◦ rotations of the px and pxy symmetries
illustrated in the two right-hand panels.

The π-flux lattice we consider here, which breaks
translational symmetry in the x̂ direction, allows for more
complex symmetries, including the ds∗ arrangement of
Fig. 1 of the main text. As illustrated there, the
ds∗ symmetry alternates the dx2−y2 and s∗ patterns of
Fig. S1 as one moves between the ±π flux plaquettes.

Appendix B: Gauge symmetry

The π-flux lattice can be realized with different
choices of the hopping, i.e. with different gauges, as
shown in Fig. A2. The hopping pattern is gauge
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dependent, but so are the phases of the ds∗ hopping.
Two of the alternate choices are shown in Fig. A2. In
Fig. A2(a), the vector potential A = − 1

2Φ0(y, 0) is
chosen. As a check on our algorithm, we performed
simulations of these transformed systems, and verified
that all results are consistent with those in the main text.

+ + +
+

++

+

+
++

-
-- -

(a) (b)

FIG. A2. The π−flux lattice under other gauges. The
corresponding ds∗−wave pairing symmetry is schemetically
shown. The lattice and the pairing symmetry is transformed
from the one under Landau gauge [see Fig.1(a) in the main

text] by a gauge transformation ci,σ(c†i,σ) → −ci,σ(−c†i,σ) on
the sites marked by blue crosses.

T
0.1 1

S co
rr

0.0

0.5

1.0

1.5

S co
rr

0.0

0.5

1.0

1.5

diff

 error

di
ff

, e
rr

or

0.000

0.005

0.010

T
0.1 1 10

di
ff

, e
rr

or

0.000

0.005

L=10
L=12

(a) n=1.00 (b) n=0.95

(c) n=0.90 (d) n=0.85

U=8

ds*-wave

statistical

FIG. A3. The correlated pairing structure factors for two
different lattice sizes, L = 10 (black circles) and L = 12
(blue triangles). The absolute difference for the densities
n = 1.00, 0.95, 0.90, 0.85 at U = 8 is of order 10−3, which
is comparable to the statistical error bars (the corresponding
axis is marked by the red arrow).

Appendix C: Finite Size Effects

In the main text, all DQMC results were obtained
on a 12× 12 lattice. In Fig. A3, we show some results on
10 × 10 lattice to assess finite size effects. The absolute
values of the differences between the two sizes are of order
10−3. We conclude finite-size effects at the temperatures
considered here are small. This fact is also implied by
the agreement between the NLCE calculations shown in

the main text, which represent the thermodynamic limit,
yet match the DQMC results well.

We also note that on the 10 × 10 lattice, the
Dirac points, which are located at (π/2,±π/2), are not
captured by the discrete momenta. As a consequence, the
non-interacting band structure is not degenerate as is the
case on 12× 12 lattice. (In one dimension, at U = 0, the
ground state energy at half-filling of lattices of size 4n and
4n+ 2 approach the thermodynamic limit from opposite
directions owing to the presence/absence of k points at
the Fermi surface). Thus the agreement between the
10x10 and 12x12 lattices is an even more strict validation
that finite size effects are under good control. In general,
for Hubbard Hamiltonians without any threading flux, a
good rule of thumb[47] is that ‘shell effects’ associated
with the discrete momentum grid tend to be noticable
only for U/t . 2 on lattices of the sites studied here.
Above this value, the interaction sufficiently smears the
finite momentum grid to eliminate size effects.

Appendix D: Exact Diagonalization Benchmarks

To benchmark our DQMC simulations, we compare
the DQMC results with those from ED on small sizes.
As shown in Fig. A4, the finite-temperature DQMC
values for the pair structure factors of all the symmetries
precisely approach ED values at zero temperature.

T
0.01 0.1 1 10

0.8
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1.6

2.0

Ss*

Sd

Ss*
0

S
d
0

ED

T
0.01 0.1 1 10

1.2

1.6

2.0

2.4

2.8

S
ds*

S
ds*
0

ED

(a) (b)U=4
n=1

FIG. A4. The DQMC and ED results on 4 × 4 lattice for
n = 1 and U = 4. The finite-temperature DQMC values tend
to those of ED at zero temperature.

Appendix E: Effect of Flux on Local Magnetic
Correlations

Fig. A5 displays the local moment m2 and NN spin-
spin correlation function. m2 is the zero separation
(l = 0) value of C(l) = 〈 12 (nj+l↑−nj+l↓)

1
2 (nj↑−nj↓)〉 and

reflects the degree of local charge fluctuations (double
occupancy). C(l) is rotationally invariant and in our
simulations we average over all three directions to provide
an improved estimator in DQMC simulations. As shown
in Fig. S5(a), m2 increases as U is increased. Although
the two cases φ = 0 and φ = ±π, have nearly the
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FIG. A5. The comparision of the local moment (a) and NN
spin correlation (b) for fermions with linear and quadratic
dispersions. The results are extrapolated to the continuous
imaginary time limit using two separate simulations with
∆τ = 1

16
and ∆τ = 1

12
.

same m2 at high temperatures, this agreement breaks
down at T/t . 1: Dirac fermions have smaller local
moments at low temperatures compared to fermions with
quadratic dispersion. For the NN spin correlation, at
high temperatures the π−flux phase has bigger spin
correlations, but there is a crossover so that at low T
the φ = 0 lattice has larger C1 = C

(
l = (1, 0)

)
.

Appendix F: Divergence of the ds∗-wave pairing
susceptibility

T
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1/

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Euler
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FIG. A6. (a) The inverse of the ds∗-wave pairing
susceptibility as a function of the temperature at n = 0.9 for
different values of U . (b) The inverse of the ds∗-wave pairing
susceptibility divided by the local uncorrelated susceptibility
at r = 0.

At the superconducting transition temperature, the
pairing susceptibility is expected to be divergent. Fig. A6
plots 1/χ as a function of the temperature at n =
0.9. The divergence of χ, especially at small U , is not
completely compelling. However as U increases, the
curves bend downward with growing slope and show an
increasing tendency to cross zero at finite temperatures.
To compare values of the susceptibilities for different U
on a more equal footing, we divide the ds∗-wave pairing
susceptibility by the local uncorrelated susceptibility at
r = 0. The scaled susceptibility dives more rapidly. Due
to the small density at the Fermi surface for the situation
we considered, it is expected that superconductivity may
happen at low temperature, which is beyond the current
capabilities of the DQMC and NLCE methods.

Appendix G: NLCE Resummation

Similar to the Pade approximations widely used
in high-temperature series expansions, in the NLCE,
one can take advantage of numerical resummation
techniques, such as the Euler or Wynn methods [20,
28], to extend the region of convergence to lower
temperatures. Here we use the Euler resummation for
the last five terms in the series. In this method, the
original sum is replaced by

S1 + S2 + S3 +

4∑
l=0

(−1)l

2l+1
∆lu4, (G1)

where Sn is the nth term in the series, un = (−1)nSn,
and ∆ is defined as the forward differencing operator

∆0un = un,

∆1un = un+1 − un,
∆2un = un+2 − 2un+1 + un,

∆3un = un+3 − 3un+2 + 3un+1 − un, (G2)
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S. Nascimbéne, S. Trotzky, Y. A. Chen, and I. Bloch,
Phys. Rev. Lett. 107, 255301 (2011).

[42] “Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices,” M. Aidelsburger,
M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I.
Bloch, Phys. Rev. Lett. 111, 185301 (2013).

[43] “Realizing the Harper Hamiltonian with Laser-Assisted
Tunneling in Optical Lattices”, H. Miyake, G. A.
Siviloglou, C. J. Kennedy, W. C. Burton, and W.
Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[44] “Synthetic gauge potentials for ultracold neutral atoms,”
Y. J. Lin and I. B. Spielman, J. of Phys. B 49, 183001
(2016) and references cited therein.

[45] ”Microscopy of the interacting Harper-Hofstadter model
in the two-body limit,” M. E. Tai, A. Lukin, M. Rispoli,
R. Schittko, T. Menke, D. Borgnia, P. M. Preiss, F.
Grusdt, A. M. Kaufman and M. Greiner, Nature 546,
519 (2017)

[46] “A cold-atom Fermi-Hubbard antiferromagnet,” A.
Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanasz-
Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and
M. Greiner, Nature 545, 462 (2017)

[47] “Quantum Monte Carlo study of the two-dimensional
fermion Hubbard model,” C. N. Varney, C. R. Lee, Z. J.
Bai, S. Chiesa, M. Jarrell, and R. T. Scalettar, Phys.
Rev. B 80, 075116 (2009).


	Unconventional pairing symmetry of interacting Dirac fermions on a  flux lattice
	Abstract
	Introduction
	Model and method
	Superconducting pairing symmetry
	Mean-field description of the superconducting state
	Conclusions
	Acknowledgements
	Context of Pairing Symmetry
	Gauge symmetry
	Finite Size Effects
	Exact Diagonalization Benchmarks
	Effect of Flux on Local Magnetic Correlations
	Divergence of the ds*-wave pairing susceptibility
	NLCE Resummation
	References


