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The elastic properties of URu2Si2 in the high-magnetic field region above 40 T, over a wide
temperature range from 1.5 to 120 K, were systematically investigated by means of high-frequency
ultrasonic measurements. The investigation was performed at high magnetic fields to better in-
vestigate the innate bare 5f -electron properties, since the unidentified electronic thermodynamic
phase of unknown origin, so called ‘hidden order’(HO) and associated hybridization of conduction
and f -electron (c-f hybridization) are suppressed at high magnetic fields. From the three different
transverse modes we find contrasting results; both the Γ4(B2g) and Γ5(Eg) symmetry modes C66

and C44 show elastic softening that is enhanced above 30 T, while the characteristic softening of
the Γ3(B1g) symmetry mode (C11 − C12)/2 is suppressed in high magnetic fields. These results
underscore the presence of a hybridization-driven Γ3(B1g) lattice instability in URu2Si2. However,
the results from this work cannot be explained by using existing crystalline-electric field (CEF)
schemes applied to the quadrupolar susceptibility in a local 5f2 configuration. Instead, we present
an analysis based on a band Jahn-Teller effect.

I. INTRODUCTION

The heavy-fermion unconventinal superconductor
URu2Si2 undergoes an enigmatic phase transition at
TO = 17.5 K to the so called ‘hidden order (HO)’
phase1–3, whose order parameter still remains unsolved4.
This compound has a body-centered-tetragonal (bct)
ThCr2Si2-type crystal structure (space group No. 139,
I4/mmm; D17

4h). Recently, several experimental find-
ings regarding a possible symmetry lowering of the elec-
tron and/or lattice system in the HO phase have been
reported; including results of magnetic torque5, syn-
chrotron x-ray6, Raman scattering7, and elastoresistance
measurements8. However, the proposed broken symme-
tries conflict with each other. Many theories have been
proposed to explain the HO phase; e.g., higher multi-
polar order from rank 3 to 59–13, hastatic order14, spin
inter-orbital density wave15, and dynamic antiferromag-
netic moment fluctuations.16 There is no comprehensive
interpretation, which can explain all of the experimental
observations.

With high magnetic fields applied along the [001] axis
at low temperatures, URu2Si2 undergoes three meta-
magnetic transitions in the range between 35 and 39 T
which are followed by a collapse of the HO phase17. In
Fig. 1(b), we show a temperature-magnetic-field phase
diagram of URu2Si2 for H ‖ [001], which is constructed
from the data of the present work and previous magne-
tization measurements18. First, the HO phase is sup-
pressed at 35 T, followed by a cascade of transitions,
where the spin-density wave with a propagation wave

vector k = (0.6, 0, 0) is established in the intermediate
phase19. Finally, the system enters the polarized param-
agnetic (PPM) regime in the high-magnetic-field region
above 40 T17. URu2Si2 also exhibits a strong hybridiza-
tion between conduction and 5f electrons (c-f hybridiza-
tion) below T ∗ ∼ 50 K in low magnetic fields. This c-f
hybridization is also suppressed in association with the
collapse of HO under high magnetic fields above 40 T for
H ‖ [001]18. Beyond 40 T, the electronic ground state
of URu2Si2 changes from delocalized to a more localized
5f -electron regime18. Understanding the dual nature of
the uranium 5f electron that are neither fully localized
nor itinerant will likely provide insight in the origin of
the HO. No theory has been developed which fully de-
scribes both the hybridization effect and the localized
electron degrees of freedom. There are two approaches
to overcome these issues; either starting from the itiner-
ant electron system (strong-coupling limit) or from the
localized electron system (weak-coupling limit). A con-
straint is that the ‘symmetry’ of the order parameter it-
self must be the same, both in the itinerant and localized
components of the 5f -electrons as they both play a role
in developing the HO. Ultrasonic measurement is one of
the sensitive probing techniques to investigate both itin-
erant band instabilities, such as the band-Jahn Teller ef-
fect, and the local anisotropic charge distribution, such as
that found in multipolar ordering. Therefore the present
work is aimed at obtaining better information on the
dual nature of the 5f -electron states in URu2Si2. Our
recent investigation of the elastic constant (C11 −C12)/2
of URu2Si2 under pulsed-magnetic fields strongly sug-
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gests that the hybridized electronic state possesses an
orthorhombic (x2 − y2) lattice instability with Γ3(B1g)
symmetry20. The origin of the lattice instability is con-
sidered to be either a potential deformation due to the
Jahn-Teller effect of hybridized bands or a simple CEF
effect of uranium’s 5f electrons; however, the origin of
the Γ3(B1g) lattice instability and its relation to the HO
parameter are still open questions. In order to verify that
the system does not exhibit a lattice instability for other
symmetries, and to examine the theoretical predictions
of CEF ground-state schemes for the high magnetic fields
and related higher-multipolar order parameter scenarios
for the HO phase as well, we study elastic responses of the
other symmetry-breaking strains. In the present work,
we report on the responses of C44 with Γ5(Eg) symme-
try and C66 with Γ4(B2g) symmetry under high magnetic
field, and compare these results with the previously re-
ported (C11 − C12)/2 with Γ3(B1g) symmetry.

II. EXPERIMENTAL DETAILS

We investigated two single crystals of URu2Si2 grown
using the Czochralski technique by a tetra-arc furnace at
UC San Diego (sample #1) and CEA Grenoble (sample
#2). For sample #1, the dimensions are 3.8 × 1.8 × 1.2
mm3 with parallel [110] facets as grown. Residual resis-
tivity ratio (RRR) ∼ 10 was used for (C11−C12)/2, C44,
and C33 measurements. For sample #2, 3.38× 1.67× 1.5
mm3 with parallel [100] facets, annealed in vacuum, RRR
∼29 is used for C11, C44, C66. Note, there is no ob-
vious sample dependence in the magnetic field depen-
dence of C44 for both samples, except for a difference in
the signal-to-noise ratio. The sample surfaces were well
polished and characterized by x-ray Laue diffraction to
check the characteristic symmetries of the facets. Ul-
trasound was generated and detected by using LiNbO3

transducers with a thickness of 40-100 µm, which were
fixed on the sample surfaces with RTV silicone or super-
glue. We used pulsed magnetic fields up to 68 T with
pulse duration of about 150 ms at the Dresden High
Magnetic Field Laboratory. The sound-velocity mea-
surements were performed by using a conventional phase
comparative method using a digital storage oscilloscope.
Ultrasound induces both linear strain and a rotation field
(similar to Raman modes. A summary with D4h point
group are shown in Table I) in the solid, which behave
as conjugate fields for the electric quadrupole or electric
hexadecapole moments. These multipolar responses can
be observed as a sound-velocity change and ultrasonic
attenuation via electron-phonon interaction. The sound
velocity vij is converted to the elastic constant Cij by us-
ing the formula; Cij = ρv2ij. Here, ρ = 10.01 (g/cm3) is
the density of URu2Si2.

FIG. 1. (a) Magnetic field dependence of elastic constants
C11, (C11 − C12)/2, C33, C44, and C66 at fixed temperatures
of 22-23 K for H ‖ [001]. C11 is devided by 10 to allow a
better comparison. (b) The temperature-magnetic-field phase
diagram of URu2Si2 for H ‖ [001] is compiled from the present
ultrasonic experiments and the previous results18. The blue
horizontal lines indicate the trajectories where the pulsed-
field measurements were performed at fixed temperature of
22.5 and 1.5 K. Part (c) is the same as (a) at 1.5 K. The
dotted lines are visual aids.

III. RESULTS

In Fig. 1, we show the magnetic-field dependence of
the following elastic constants C11/10, (C11 − C12)/2,
C33, C44, and C66 at fixed temperatures of (a) 22-23 K
and (c) 1.5 K for H ‖ [001] which are measured with
ultrasonic frequencies of 75 MHz for C11, 159.5 MHz
for (C11 − C12)/2, 78.7 MHz for C33, 164 MHz for C44,
and 166 MHz for C66. At 22-23 K, the elastic constants
C33, C44, and C66 decrease with increasing magnetic-field
through the cross-over region of the c-f hybridization
(below 30 T) and toward the polar-paramagnetic region
(above 45 T), while C11 and (C11 −C12)/2, both related
to the Γ3-symmetry response, increase above 35 T.

The magnetic field-temperature (H-T ) phase diagram
is displayed in Fig. 1(b) for comparison, where the hor-
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TABLE I. Symmetry, symmetrized strain and rotation, and multipole for different elastic constants.

Symmetry (D4h group) Strain and Rotation Multipole Elastic Constant

Γ1(A1g) ǫxx, ǫyy - C33 = −3CB + 4Cu + 4C13

Γ1⊕Γ3(A1g⊕B1g) ǫzz = ǫB/3− ǫB/
√
3 - C11 = 3CB − Cu + (C11 − C12)/2− 2C13

Γ3(B1g) ǫv = ǫxx − ǫyy Ov =
√
3(J2

x − J2
y )/2 Cv = (C11 − C12)/2

Γ4(B2g) ǫxy Oxy =
√
3(JxJy − JyJx)/2 C66

Γ5(Eg) ǫyz Oyz =
√
3(JyJz − JzJy)/2 C44

ǫzx Ozx =
√
3(JzJx − JxJz)/2 C44

Γ1(A1g) ǫB = ǫxx + ǫyy + ǫzz - CB = (2C11 + 2C12 + 4C13 + C33)/9

Γ1(A1g) ǫu = (2ǫzz − ǫxx − ǫyy) Ou =
√
3(2J2

z − J2
x − J2

y )/2 Cu = (C11 + C12 − 4C13 + 2C33)/6

Γ2(A2g) ωxy Hα
z =

√
35(J4

+ − J4
−
)/4i C66, Cv

izontal lines connect to features in the elastic constant
data. In Fig. 1(c), all elastic constants at 1.5 K show suc-
cessive step-like anomalies through the cascade of meta-
magnetic transitions with the destruction of the hidden
order21. The overall tendency to decrease or increase
with field reproduces from the magnetic-field dependence
at 22-23 K [Fig. 1(a)]. Such a clear contrast of decreasing
or increasing tendency in the three transverse modes in
the paramagnetic phase just above TO ∼ 17.5 K supports
the idea that the Γ3-type orthorhombic lattice instability
is related to a symmetry-breaking band instability that
arises due to the c-f hybridization and is probably linked
to the origin of HO in this compound20.

One may consider the possibility of the magnetostric-
tion on the sound-velocity change, since the magnetic
field change of the elastic constant looks very similar
to the magnetization and magnetostriction change in
pulsed-magnetic fields. However, by applying magnetic
field along the [001] axis of URu2Si2, the c-axis length
decreases only by ∆Lc/Lc ∼ 10−4 at 45 T and 1.5 K,
and the a axis expands by the same order of magnitude
due to the Poisson effect22. In the present case, such an
effect would mainly lead to enhance softening of the lon-
gitudinal C11 mode in the vicinity of the cascade transi-
tions. C11 includes a contribution from the bulk modulus
(volume strain). Based on the modified Ehrenfest equa-
tion23, the estimated contribution of the magnetostric-
tion to the sound-velocity change is ∆vij/vij ∼ 10−4,
which is less than only 5% of the total velocity change
∼ 2× 10−3 of the transverse ultrasonic modes C44, C66,
and (C11 − C12)/2. The hardening of (C11 − C12)/2 at
the collapse of the HO phase has a tendency opposite to
the magnetostriction along [100], since it is equvalent to

1/
√
2 of the magnetostriction along [110]. Consequently,

Γ3 elastic response originates from the drastic change of
the transverse acoustic phonon dispersion due to strong
coupling to the 5f -electrons.

In Figs. 2 (d) and (g), we show the isotherms of the
modes C44 and C66 as a function of increasing and de-
creasing magnetic field applied along [001]. For compari-
son, our previous results20 for the (C11 −C12)/2 are also
shown in Fig. 2 (a). From these data, we determined the

elastic constants as a function of temperature in fixed
magnetic field, shown in Figs. 2 (c), (f), and (i). The
middle column conbines 3-dimensional plots of the elas-
tic constants vs. temperature and magnetic field H ‖ c
for the three different symmetries; (b) (C11 −C12)/2 for
the Γ3(B1g), (e) C66 for the Γ5(Eg), and (h) C44 for the
Γ4(B2g) of the D4h point group symmetry. The bottom
of each cubic box shows the H − T phase diagram. The
blue-white-red color gradation indicates the relative stiff-
ness of each ultrasonic mode, stiffer in blue and softer in
red. In the soft-mode regions, the system may indicate
lattice instabilities of the corresponding symmetry. For
example, for the (C11 − C12)/2 mode, the correspond-
ing Γ3(B1g) lattice instability is enhanced in the low-
temperature and low-magnetic-field region, where strong
c-f hybridization occurs, and suppressed at high temper-
atures and high magnetic fields. The Γ4(B2g) and Γ5(Eg)
modes show the opposite tendency. Such a clear differ-
ence in the three transverse modes indicates the presence
of the Γ3(B1g) lattice instability in the HO phase, and in
the strong c-f hybridization region at low-magnetic fields
in URu2Si2.

IV. DISCUSSION

A. Band Jahn-Teller Model:
(Delocalized 5f-electron state)

In Figs. 3 (a), (b), and (c) the normalized elastic con-
stants vs. temperature at various magnetic fields are
shown for (a) Γ3(B1g): (C11 −C12)/2, (b) Γ4(B2g): C66,
and (c) Γ5(Eg): C44, with the phonon background sub-
tracted. For simplicity, we made phenomenological fits to
the elastic constants of ThRu2Si2 measured from 300 K
to 1.5 K in zero magnetic field as the phonon background
shown as the dotted lines in Figs. 2(c), (f), and (i). A
similar subtraction was also performed in our previous
work.24 First, we analyzed the softening of (C11−C12)/2
by using the phenomenological theory of the band-Jahn-
Teller (BJT) effect assuming a rigid degenerate two-band
state25. The solid lines in Fig. 3(a) were calculated from
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FIG. 2. Left column: Magnetic-field dependence of the elastic constants (a) (C11 − C12)/2, (d) C66, and (g) C44 for H ‖
[001] of URu2Si2 at selected temperatures. The lower panel in each figure shows the sound-attenuation change ∆α vs. H .
These data was taken for both increasing and decreasing field. Middle column: Three-dimensional plots of the elastic constants
vs. temperature and magnetic field aligned along the c axis of URu2Si2. The bottom of the boxes shows the magnetic field-
temperature phase diagram of URu2Si2 for H ‖ [001]. Right column: Normalized elastic constants vs. temperature at various
magnetic fields H ‖ [001] converted from (a), (d), and (g), except for the zero-magnetic field data. Green dotted lines indicate
the estimated phonon background. The panels arranged horizontally show the modes, (a), (b), (c) for (C11 −C12)/2 reprinted
from Ref. [20], (d), (e), (f) for C66; and (g), (h), (i) for C44.

the following equation:

(C11 − C12)

2
= Cph − 2d2N0{1− e−(EF−E0)/kBT }. (1)

Here, Cph is the phonon background [as shown in Fig.
2(c)], d is a deformation-potential coupling constant, N0

is the density of states at the Fermi energy EF, and E0

is the energy at the bottom of the conduction band. The
term 2d2N0 is set to be temperature independent. Figure
4 shows the magnetic-field dependence of the fit param-
eters (2d2N0) and (EF − E0). We obtain EF − E0 = 43
K at 0 T and EF − E0 = 28 K at 35 T. The value of
2d2N0 = 0.071× 1010 J m−3 at 0 T gradually decreases
with increasing magnetic field, which is consistent with

the reduction of c-f hybridization under magnetic field,
where causes a weakening of the deformation-potential
coupling. The parameters obtained below 30 T are com-
parable to the values reported for the typical band-Jahn-
Teller system LaAg1−xInx

26, where the compounds with
x = 0 and x = 0.11 do not show structural transition
but exhibit a softening in (C11−C12)/2 due to Γ3 lattice
instability. Here for URu2Si2, the obtained deformation-
potential coupling energy is less than 1/5 of the value of
LaAg (x = 0, 2d2N0 = 0.375 × 1010 J m3), suggesting
that the effect is too weak to induce a structural phase
transition. Above 40 T, the gap and the fitting error bar
drastically increase, which appears to be extrinsic and
shows the limitations of this theory.
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FIG. 3. Temperature dependence of the normalized elastic constants of (a) Γ3: (C11 − C12)/2, (b) Γ4: C66, and (c) Γ5: C44

at various magnetic fields H ‖ [001], where the phonon background is subtracted. Solid lines in (a) are calculated by using
the band-Jahn-Teller model (see text), and the solid lines in (b) and (c) are visual aids. Calculated uniform quadrupolar
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2
2 , (e) Γ4: Oxy and (f) Γ5: Oyz for different CEF schemes (see Table II) at 0 and 60 T.
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B. Crystalline Electric Field Models:
(Localized 5f-electron state)

We compare elastic responses obtained in the high-
magnetic field region with uniform quadrupolar suscep-
tibilities, which are calculated by using CEF schemes in
the 5f2 configuration, proposed thus far. We have con-
sidered a variety of CEF level schemes, especially based
on the U4+(5f2) ionization and non-Kramers 3H4 (J=4)

Hund’s rule ground-state multiplet; a non-Kramers con-
figuration can easily reproduce the reported anisotropic
magnetization along the a and c axis of this compound27.
The details of the four CEF schemes considered are listed
in Table II. It should be noted that the present CEF

scheme 1 has two lowest-lying U-5f singlets; Γ
(1)
1 =

α(|4〉+ | − 4〉)− β|0〉 and Γ2 = i(|4〉 − | − 4〉)/
√
2, which

is identical to the level scheme in the theoretical models
originally predicting the A2g-type hexadecapolar order
as the order parameter of the HO state, which have been
proposed by Haule and Kotliar10, or by Kusunose and
Harima9.

The present analysis allows us to qualitatively com-
pare the measured normalized elastic constants [Figs.
3 (a), (b), and (c)] with the calculated quadrupolar
susceptibilities as shown in Figs. 3 (d), (e), and (f) (Ap-
pendix A). At first glance, none of these CEF schemes
successfully reproduces experimental observations. A
detailed analysis follows below;

(i) (C11 − C12)/2, Γ3(B1g) symmetry:
Only the Scheme 1 and Scheme 3 reproduce the temper-
ature and magnetic field dependence of (C11 − C12)/2.
Scheme 2 shows a steep softening below 20 K at H = 0
T and Scheme 4 shows a broad minimum at around 50 K
at H = 0 and 60 T, inconsistent with the experimental
data at low and high magnetic fields.

(ii) C66, Γ4(B2g) symmetry:
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TABLE II. Labels, CEF level scheme, active multipoles, author and references

Labels Level Scheme (K) Active Multipoles (Symmetry) Authors Ref.

Scheme 1 Γ
(1)
1 − Γ2(60) − Γ3(178) − Γ

(1)
5 (491)−... Hα

z (A2g) Yanagisawa et al. [28]

Scheme 2 Γ
(1)
5 − Γ

(1)
1 (404) − Γ2(1076)−... O2

2(B1g) Ohkawa and Shimizu, Galatanu et al. [29]

Scheme 3 Γ3 − Γ
(1)
1 (44) − Γ2(112) − Γ

(1)
5 (485)... O2

2(B1g) or Txyz(B1u) Santini and Amoretti [30]

Scheme 4 Γ
(1)
1 − Γ

(2)
5 (140) − Γ2(300)... T β

x (Eu) Hanzawa and Watanabe [31]

Only Scheme 3 roughly reproduces the temperature
dependence of C66 at high magnetic field. However, the
expected softening at 0 T in Scheme 3 is not seen in
the experimental data. Scheme 2 again shows a steep
softening at H = 0 below 20 K and Scheme 1 and
Scheme 4 show local minima and upturns; inconsistent
with the experiment.

(iii) C44, Γ5(Eg) symmetry:
Only Scheme 4 reproduces the softening at 60 T,
but its magnetic-field dependence shows an opposite
tendency (no softening in magnetic field). All the other
schemes (1-3) show neither low-temperature softening
nor enhancement under magnetic fields.

Therefore, based on this logic, we conclude that the
present experimental results can not be fully explained
by CEF schemes in the 5f2 configuration. Note that
other CEF schemes have been tested and also resulted
in poor agreement with the experimental data. For ex-

ample, Γ
(1)
1 -Γ4(45 K)-Γ

(2)
5 (51 K)-Γ2(100 K) [32], which

cannot be explained by tetragonal CEF since this theory

is considering many-body effects, Γ
(1)
1 -Γ2(42 K)-Γ

(2)
1 (170

K) [27], and Γ4-Γ
(1)
1 (44 K)-Γ2(112) [30].

Here, we discuss conditions for the application of
the CEF schemes to URu2Si2. As mentioned, the 5f2

non-Kramers multiplet is the best assumption to re-
produce the anisotropy in the magnetization. Because
Jz has diagonal matrix elements in doublet states and
off-diagonal elements between singlet-singlet, doublet-
doublet, while Jx and Jy only have off-diagonal elements
between singlet-doublet. Thus, if the singlet and doublet
states are separated in non-Kramers J = 4 CEF states
(like Schemes 1 and 2), one can naturally get magnetic
anisotropy. Indeed, CEF Schemes 3 and 4, where the sin-
glet and doublet are relatively close (≤ 300 K), cannot
fully reproduce the anisotropic magnetization.
On the other hand, all CEF schemes above are incon-

sistent with the occurrence of the softening in C44 mode,
because the corresponding quadrupolar moments of Oyz

and Ozx, which has ∆J = ±1 transition and always ac-
company with magnetic moment Jz. Thus, it is difficult
to find a CEF scheme which satisfies the mutually exclu-
sive features. Therefore, it is even more challenging to
find a CEF scheme which balances the competing tran-
sitions of Oxy with ∆J = ±2, and Oyz and Ozx with
∆J = ±1 and also reproduces all elastic constant soften-
ings at high magnetic fields, where the present system is

not affected by both c-f hybridization and PPM states.
Therefore, we need to find an appropriate CEF scheme
and/or consider another origin or modulation to repro-
duce the experimental data.
One possibility is a rotation effect33,34. A rotation in-

variant of the Hamiltonian describing quadrupole-strain
interaction will produce a finite modulation of the trans-
verse mode under magnetic field. In the present experi-
ments, the geometry of the C44 mode (k ‖ [100], u ‖ H ‖
[001]) is the case to consider this effect. This ultrasonic
mode induces the strain field ǫzx and also induces the
rotation of ωzx, which will couple to the magnetic torque
of the total angular momentum J . We tried to compute
such an effect on CEF Scheme 3 which originally show
no softening in C44, but the rotation does not reproduce
this. CEF Scheme 1, on the other hand, can generate
the softening in C44 when the rotation effect is consid-
ered (not shown). To verify whether this modulation
exists or not, further measurements of C44 with different
geometries, for example (k ‖ H ‖ [001], u ‖ [100]) and
(k ‖ H ‖ [100], u ‖ [001]), need to be performed.

C. Consideration of Hexadecapolar Contribution

In contrast to C44 and other modes, C66 measured with
(k ‖ [100], u ‖ [010], andH ‖ [001]), has no rotation-effect
contribution. As mentioned, none of these CEF schemes
could reproduce the low-temperature softening of C66 in
high magnetic field.
A possible explanation for this softening is a higher-

rank multipolar contribution, such as an electric hex-
adecapolar contribution to the elastic constant. As
shown in Table I, the transverse ultrasonic mode C66

and (C11 − C12)/2, which propagate in the c plane (k ⊥
[001]) also induce the rotation ωxy, which couples to the

electric hexadecapole Hα
z =

√
35(J4

+ − J4
−)/4i, with Γ2

(A2g) symmetry (Appendix B). This is the theoretically
predicted order parameter of Scheme 1 in Table II. It
should also be noted that recent inelastic x-ray scatter-
ing measurements showed that the 5f ground-state wave
function is composed mainly of Γ1 and/or Γ2, which is
consistent with CEF Scheme 1.35

Additionally, from recent resonant x-ray scattering
measurements, no superlattice reflections or azimuthal
angle-dependences which evidence rank 2 and 3 multipo-
lar order have been observed so far36. Thus, the lower-
rank electric quadrupole order and magnetic octupolar
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FIG. 5. Calculated uniform multipolar susceptibilities includ-
ing the Γ3 (B1g) and the Γ4 (B2g)-Quadrupole terms O2

2 and
Oxy , respectively, and the Γ2 (A2g)-Hexadecapole term Hα

z

by using CEF model 1 (see Table II) (a) temperature depen-
dence at 0 T (open symbol) and 60 T (closed symbol) and (b)
magnetic field dependence at 0 K.

order can be eliminated as candidates for the HO pa-
rameter. The remaining unsubscribed order is an electric
hexadecapole order with A2g symmetry or a composite
order corresponding to this symmetry such as the chi-
ral density wave order with A2g±B1g symmetry.37 Since
the elastic response of chiral density waves are not fully
understood, the following analysis is based on the Hα

z -
type hexadecapolar order predicted by Kusunose et al.9

with CEF Scheme 1, where the Hα
z moment is active.

Figure 5 show the uniform hexadecapolar susceptibility
and quadrupole susceptibility as a function of temper-
ature (Fig. 5(a)) and magnetic field (Fig. 5(b) cal-
culated by using CEF Scheme 1. The susceptibility of
Hα

z (A2g) shows the opposite temperature dependence
as compared to Oxy(B2g) and similar temperature depen-
dence as O2

2(B1g) with a relatively larger matrix element
(Hα

z in Figs. 5 are divided by 100). Again, the response
shows the opposite tendency to the increasing of the soft-
ening in higher-magnetic field regions. Since the rotation
of ωxy is unitary transformation, the hexadecapole mo-
ment will not affect the single-ion Hamiltonian at zero
magnetic field and/or under the field applied along z
([001]) axis. In other words, this hexadecapole will af-
fect the sound velocity only when a finite magnetic field
along xy plane and/or anisotropic multipolar interaction
exist. Thus, we need to assume a large anisotropy in the
coupling mechanism of hexadecapolar-lattice interactions
and a two-electron Hamiltonian to reproduce the oppo-
site elastic responses between the C66 and (C11−C12)/2.
A similar elastic response and characteristic ultrasonic
attenuation were observed in C66 mode of the iron-based
superconductor Ba(Fe1−xCox)2As2 (x = 0.1)38, where a
hexadecapolar order and its instability towards the su-
perconducting phase was predicted. However, the au-
thors mention that the hexadecapolar contribution is es-
timated to be 250 times smaller than the quadrupolar
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FIG. 6. (Left axis): Magnetic field dependence of elastic con-
stant C66 for H ‖ [100] and H ‖ [110] of URu2Si2 at 4.2 K
and 20 K. (Right axis): Calculated (uniform) quadrupolar
susceptibility using the mean-field theory with CEF Scheme
1 as described in the text.

contribution in this iron-based superconductor. There-
fore, the hexadecapolar contribution of the present elas-
tic constants (C11 − C12)/2 and C66 for URu2Si2 is also
expected to be miniscule, and will not reproduce the soft-
ening of C66 in high magnetic fields, unless the hexade-
capolar contribution is strongly enhanced for some un-
known reason.

Using a different approach, we also checked the hex-
adecapolar contribution on the elastic constant C66 in a
magnetic field applied perpendicular to c axis. Figure 6
shows the magnetic-field dependence of the elastic con-
stant C66 for H ‖ [100] and H ‖ [110] of URu2Si2 at 4.2
and 20 K. There is no obvious difference of the data below
and above TO and for both field orientations within the
present measurement accuracy. The quadrupolar suscep-
tibility was calculated using a mean-field approximation,
which assumes the Hα

z -type antiferro-hexadecapolar in-
teraction as the HO parameter, based on the theory of
Kusunose et al.9, which predicts that a very tiny differ-
ence should appear between the [100] and [110] directions
in the antiferro-hexadecapole (AFH) order state. The
calculated uniform quadrupolar susceptibility using the
mean field theory28 with CEF model 1 is also displayed
in Fig. 5. This predicted anisotropy between H ‖ [100]
(red line) and H ‖ [110] (blue line) can not be distin-
guished in the present scale of Fig. 6. We have reported
similar results for the mode (C11 − C12)/2 in the pre-
vious paper [28]. Thus, as in the previous investigation,
higher magnetic fields and/or improved measurement ac-
curacy, such as using static magnetic fields, are required
to ultimately rule out the existence of hexadecapole in-
teraction. In conclusion, a hexadecapolar order is not
indicated within the present measurement accuracy un-
der pulsed magnetic field. The origin of the enhanced
softening of C66 for H ‖ [001] at high magnetic fields
remains an open question.
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D. Comments on the Low possibility of Rotational
Symmetry Breaking in the HO

Finally, we comment on the recently proposed
symmetry-breaking scenarios. Tonegawa et al. reported
that the lattice symmetry is broken from tetragonal to
orthorhombic only when using a sample with very high
RRR as found in synchrotron x-ray measurements6. Ul-
trasound is a highly powerful tool to detect symmetry-
breaking lattice distortions even when the lattice distor-
tions are staggered or small. For example, the tetrago-
nal systems DyB2C2

39 and BaFe2As2
38,40 systems show

a ǫxy-type staggered/uniform lattice distortion due to
anfiferro-/ferro-quadrupolar order. A clear softening to-
wards the phase transitions was observed in the related
symmetric ultrasonic modes. The absence of such soft-
ening in C66 leaves a ǫxy-type orthorhombic lattice dis-
tortion in the HO highly unlikely. Namely, there will be
no tetragonal to orthorhombic (4- to 2-fold) symmetry
breaking in the HO. Instead, the softening is enhanced
above 37 T where the hidden order is suppressed. It
should be noted that C66 shows a relatively large jump at
TO in the temperature dependence at 30 T for H ‖ [001]
[as indicated by the red arrowhead in Fig. 3(b)]. This
fact may suggest the freezing of the related multipolar
degrees of freedom Oxy or Hα

z at TO. However, these
features appear already above the region of the Fermi-
surface reconstruction, which has been pointed out by
Shishido et al. based on the Hall-effect measurement41.
Thus, it is not clear whether the enhancement of the elas-
tic anomaly ofC66 at TO in magnetic field is related to the
origin of pure HO parameter. To more precisely deter-
mine the response of C66 in these magnetic field regions,
further investigation, such as ultrasonic measurements
under static magnetic field around 30 T, are needed.

V. SUMMARY

We performed ultrasonic measurements on URu2Si2 in
pulsed magnetic fields to check the elastic responses of
this compound and found that the Γ3(B1g)-type lattice
instability is dominant at low temperature and low mag-
netic fields. In contrast, we observed enhancements of
the elastic softening of the Γ4(B2g) and Γ5(Eg) symmet-
ric modes towards low temperatures at magnetic fields
above 40 T. We discussed the origin of these elastic re-
sponses based upon the D4h symmetry point group anal-
ysis, starting from a local multipolar state (crystalline
electric field) assuming weak hybridization and used an
itinerant scheme based on the deformation-potential cou-
pling due to the band-Jahn-Teller effect of a strongly c-f
hybridized band which becomes weaker as the field is in-
creased. The present analysis revealed again that the
itinerant-band Jahn-Teller model is more applicable and
the c-f hybridization is important in HO. On the other
hand, the results cannot be explained by the quadrupo-
lar susceptibility based on the crystalline-electric-field

schemes in the 5f2-configuration which have been pro-
posed thus far. To conclude, this work revealed im-
portant information on the elastic response towards the
crossover from the delocalized to the localized electric
state of the present system. However, a comprehensive
interpretation of these elastic responses is still pending,
and further investigations will be required.
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Appendix A: Formulation of the Multipolar
Susceptibility

We start from the CEF Hamiltonian with elastic-strain
mediated perturbation,

H = HCEF +
∑

ǫΓ

∂HCEF

∂ǫΓ
ǫΓ. (A1)

The tetragonal CEF Hamiltonian with Zeeman effect is
written as

HCEF = B0
2O

0
2 +B0

4O
0
4 +B4

4O
4
4 +B0

6O
0
6 +B4

6O
4
6

+ gJµB

∑

i=x,y,z

JiHi. (A2)

Here, Bn
m are the CEF parameters and On

m are the
Stevens operators. The numerical values of Bn

m, which
were used in the present analysis, are listed in Table III.
The second term of Eq. (A1) is explained in terms of

electric multipole-strain interaction. Especially for rank-
2 multipoles (quadrupoles), this term is written as

H
(2)
MS = −g

(2)
Γ3

O0
2ǫv−g

(2)
Γ4

Oxyǫxy−g
(2)
Γ5

{Oyzǫyz+Ozxǫzx}.
(A3)

For rank-4 multipoles (hexadecapoles), we assume a
bilinear coupling between hexadecapoles and rotations
with the same Γ2(A2g) symmetry instead of using a sym-
metrized strain ǫΓ as a perturbation field,

H
(4)
MS = −g

(4)
Γ2

Hα
z ωxy. (A4)
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TABLE III. CEF parameters for the present analysis

Labels Level Scheme (K) B0
2 (K) B0

4 (K) B4
4 (K) B0

6 (K) B4
6 (K)

Scheme 1 Γ
(1)
1 − Γ2(60) − Γ3(178) − Γ

(1)
5 (491)−... 12.0 -0.43 -3.2 -0.011 0.053

Scheme 2 Γ
(1)
5 − Γ

(1)
1 (404) − Γ2(1076)−... -26.0 -0.01 0.3 0.062 -0.05

Scheme 3 Γ3 − Γ
(1)
1 (44) − Γ2(112) − Γ

(1)
5 (485)... -7.6241 -0.09658 -0.49981 -0.01165 0.07022

Scheme 4 Γ
(1)
1 − Γ

(2)
5 (140) − Γ2(300)... -7.3985 -0.01727 1.11324 0.00890 -0.11656

Here, g
(2)
Γ and g

(4)
Γ are the coupling constants for the

rank-2 and rank-4 multipoles, respectively. OΓ and Hα
z

are quadrupole and hexadecapole operators, respectively.
Those are listed in Table I and the quadrupole operators
are also defined in Appendix B. The free energy of the
local 5f electronic states in the CEF can be written as

F = U = NkBT ln
∑

n

exp{−En(ǫΓ)/kBT }. (A5)

Here, N is the number of ions in a unit volume, En(ǫΓ) is
a purturbated CEF level as a function of strain ǫΓ. n is
the number index for J multiplets and their degenerate
states. U gives the internal energy for the strained sys-
tem, which is written in terms of the symmetry strains
and elastic constants listed in Table I as,

U =
1

2
{CBǫ

2
B + CBuǫBǫu + Cuǫ

2
u + Cvǫ

2
v

+ C44(ǫ
2
yz + ǫ2zx) + C66ǫ

2
xy}. (A6)

Here, C = −(C0
11 + C0

12 − C0
13 − C0

14)/
√
3. In second

perturbation, the temperature dependence of the elastic
constant is given by

CΓ(T,H) = C0
Γ −N(g

(2)
Γ )2χΓ(T,H). (A7)

Here, C0
Γ is the background of the elastic constant.

The single-ion multipolar susceptibility χΓ is defined as
the second derivative of the free energy with respect to
strain (in the ǫΓ → 0 limit),

−(g
(2)
Γ )2χΓ = −

〈

∂2En

∂ǫ2Γ

〉

+
1

kBT

{

〈

(

∂En

∂ǫΓ

)2
〉

−
〈

∂En

∂ǫΓ

〉2
}

.

(A8)

Here, the angle brackets mean the thermal average. Note
that, when we use the rotation ωxy as a conjugate field
for the hexadecapole moment, we need to assume some
mechanism of the anisotropic hexadecapolar interaction,
e.g., a two electron state, as discussed in Ref. 38, because
the rotation ωxy is a unitary transformation for the sys-
tem, i.e., it does not change the single-ion Hamiltonian
at zero magnetic field. If Eq. (A4) is valid, we can sub-
stitute ωxy for ǫxy in the formulas above to determine the
hexadecapolar susceptibility. Eq. (A6) can be rewritten

in the form of a normalized elastic constant as shown in
Fig. 3 (a), (b), and (c).

∆(CΓ(T,H)− C0
Γ) =

[

CΓ(T,H)− C0
Γ(T )

C0
Γ(T=1.5K)

]

=
N(g

(2)
Γ )2

C0
Γ(T=1.5K)

χΓ(T,H). (A9)

In the present analysis, we assume C0
Γ(T ) = Cph(T ) as

the phonon contribution, which is obtained from the elas-
tic constant of ThRu2Si2 without 5f -electron contribu-
tion. We now have the tools to compare the temperature-
and magnetic-field dependence of the normalized elastic
constants with the quadrupole susceptibility by assum-

ing A = N(g
(2)
Γ )2/C0

Γ(T=1.5K) being independent from T

and H .

Appendix B: Definition of Multipolar Moments and
Equivalent Operator Expression

The electric multipolar operators are defined by mul-
tipolar expansion of the electrostatic potential as,

Qlm ≡ e

nf
∑

j=1

rijZ
∗
lm(rj). (B1)

Here, e < 0 is the electron charge, nf is the number of f
electrons. Zlm(rj) is written by using spherical harmon-
ics Ylm(rj) as,

Zlm(rj) ≡
√

4π/(2l+ 2)Y ∗
lm(rj). (B2)

Eq.(B1) can be rewritten by replacing (x, y, z) in Zlm

with spherical tensor operators Jlm with following trans-
formations,

xnxynyznz → nx!ny!nz!

(nx + ny + nz)!

∑

P

P(Jnx
x Jny

y Jnz
z ).

(B3)
Here, P is a sum of all possible permutations. Opera-
tor Jlm has the following commutation relation, with the
ladder operator J± = Jx ± iJy:

Jll = (−1)l

√

(2l − 1)!!

(2l)!
(J+)

l, (B4)
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[J−, Jlm] =
√

(l +m)(l −m+ 1)Jlm−1. (B5)

Following are quadrupolar and hexadecapolar operators,
which are used in the present analysis:

i) Rank 2 (Quadrupole)

Γ3(B1g) :

O2
2 =Ov = i√

2
[J22 + J2−2] =

√
3
2 (J2

x − J2
y ) (B6)

Γ4(B2g) :

Oxy = i√
2
[−J22 + J2−2] =

√
3
2 (JxJy − JyJx) (B7)

Γ5(Eg) :

Oyz = i√
2
[J21 + J2−1] =

√
3
2 (JyJz − JzJy) (B8)

Γ5(Eg) :

Ozx = i√
2
[−J21 + J2−1] =

√
3
2 (JzJx − JxJz) (B9)

ii) Rank 4 (Hexadecapole)

Γ2(A2g) :

Hα
z =

√
35

4i
[−J44 + J4−4]

=

√
35

8
{(J3

xJy + J2
xJyJx + JxJyJ

2
x + JyJ

3
x)

− (JxJ
3
y + J2

yJxJy + JyJxJ
2
y + JxJ

3
y )} (B10)
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25 B. Lüthi, Physical Acoustics in the Solid State (Springer,
2006).

26 K. Knorr, B. Renker, W. Assmus, B. Lüthi, R. Takke, and
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