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We introduce a simple model to describe the formation of heavy Weyl semimetals in non-centrosymmetric
heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of
interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected
to give rise to a temperature-dependent re-configuration of the Fermi arcs and the Weyl cyclotron orbits which
connect them via the chiral bulk states. Our theory predicts a strong temperature dependent transformation
in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the
renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport mea-
surements.

Heavy fermion materials are a tunable class of compounds
in which strong electron correlations give rise to a wealth of
metallic, superconducting, magnetic and insulating phases. A
new aspect of these materials is the possibility of topologi-
cal behavior, epitomized by the topological Kondo insulator
(TKI) SmB6

1–6, in which a topologically non-trivial entangle-
ment between local moments and conduction electrons, gives
rise to Dirac surface states7–10. An important second class of
topological behavior occurs in the presence of broken inver-
sion or time-reversal symmetry, which transforms the quan-
tum critical point between normal and topological insulators
into a Weyl semimetal phase, with relativistic chiral fermions
in the bulk and Fermi arc states11–13 on the surface. Various
Weyl semimetallic phases have been proposed and discovered
in weakly interacting systems14–16. Most Weyl semimetals are
non-centrosymmetric crystals11.
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FIG. 1. (a) Topological Quantum Critical Point (tQCP) at the nexus
between normal and topological Kondo insulators (KI/TKIs) and
heavy Weyl semimetals (hWSMs). g and W are the band tuning
and inversion symmetry breaking parameters, respectively. At the
tQCP, charge neutrality pins the bulk Dirac cone to the Fermi energy
(occupied bands indicated by light blue). Finite W > 0 splits the
Dirac point into four symmetry-related Weyl points, pinned to the
Fermi energy. (b) Breaking of inversion symmetry leads to a finite
onsite hybridization W > 0.

A preponderance of noncentrosymmetric heavy fermion
materials offers an exciting opportunity to explore strongly
interacting, or “heavy Weyl semimetals” (hWSMs)17,18.
Four candidates have already come to light: CeRu4Sn6

19,

Ce3Bi4Pd3
20, CeRu4Sb12

21,22 and YbPtBi23. Optical mea-
surements on CeRu4Sn6

19 and transport measurements on
CeRu4Sb12

21,22 indicate anisotropic semimetallic behavior.
More remarkably, the recent observation of a giant T 3 compo-
nent to the specific heat of Ce3Bi4Pd3

20 and YbPtBi23 reveals
the presence of point-node excitations.

Recent density functional calculations17,24 confirm that
heavy fermion systems are expected to host Weyl points with
surface Fermi arcs. Lai et al.18 have recently proposed a tight-
binding model for heavy Weyl semimetals18, predicting that
the density of states near the Weyl nodes is strongly renormal-
ized by the hybridization with f-electrons. These works raise
a number of open questions:

• what is the relationship between heavy Weyl semimet-
als and topological Kondo insulators?

• beyond renormalization, what are the qualitative effects
of strong interactions?

In this letter, we propose a simple a two-band model which
links the emergence of heavy Weyl semi-metals at the topo-
logical quantum critical point (tQCP) between Kondo and
topological Kondo insulators to the development of a parity-
breaking on-site hybridization between d- and f -states in non-
centrosymmetric Kondo lattices[Fig. 1(a)].

One of the qualitative effects predicted by our model, is the
phenomenon of Kondo breakdown, whereby the loss of coor-
dination of local moments at the surface leads to a reduction
of the surface Kondo temperature. This phenomenon has been
proposed as the origin of light surface quasiparticles observed
in SmB6

25. The analogous effect on the Fermi arcs causes
them to reconfigure their geometry [Fig. 2] as a function of
temperature, giving rise to a strong temperature dependence
in the inter-surface cyclotron orbits26–28.

Dzero et al. have emphasized that the spin-orbit driven
topological behavior in heavy fermion systems derives from
the odd-parity hybridization between d (φd) and f -orbitals
(φf )1–3 given by the Slater-Koster overlap integral

Ṽαβ(R) =

∫
d3xφ∗dα(x−R)V(x)φfβ(x), (1)

where V(x) is the electronic potential. Inversion symme-
try in centrosymmetric crystals fully eliminates the onsite
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FIG. 2. (a) Kondo Breakdown in a heavy Weyl semimetal, contrast-
ing the spectrum before (solid lines) and after (dashed lines) surface
Kondo breakdown as a function of kz at kx = 0. Surface spectrum
(b) before and (c) after surface Kondo breakdown: red and blue lines
indicate the Fermi arcs on the top and bottom surfaces respectively.
Black dots indicate the projection of the Weyl nodes onto the surface.
Parameters were taken to be (tx, ty, tz, µ, α, Vx, Vy, Vz,W2, b, λ) =
(2, 1, 1,−6,−0.1, 0.7, 0.7, 1.05, 0.8, 0.89, 0.087) in Eq. (5). (d)
Schematic of the Weyl orbits, where arrows indicate the quasipar-
ticle trajectory.

hybridization between the opposite parity d and f states
(Vαβ(0) = 0) [Fig. 1(b)], and in momentum space, the
residual intersite components of the hybridization then ac-
quire the odd-in time, odd-in momentum, relativistic form
Vαβ(k) ∼ k · ~σ near the high symmetry points. The band-
crossing permitted by this nodal hybridization drives the for-
mation of topological Kondo insulators. On the other hand,
in non-centrosymmetric crystals, the asymmetric potential
V(x) 6= V(−x) distorts the f and d orbitals and eliminates
parity conservation, giving rise to a finite onsite d-f hybridiza-
tion Wαβ = Ṽαβ(R = 0)[Fig. 1(b)]. Under the influence of
this perturbation, topological Kondo insulators become heavy
Weyl semimetals as shown in Fig. 1(a). A minimal model
for the hybridization that captures these features in a two-band
model is obtained by generalizing the nearest-neighbor model
introduced by Alexandrov, Coleman, and Erten25 (ACE) to in-
clude an additional onsite term as follows:

Ṽ (R)αβ =

{
−i~vR · σαβ , R ∈ n.n.
w0 + i ~w · σ R = 0.

(2)

where the vector ~vR = (v1R1, v2R2, v3R3) describes the
strength of the nearest neighbor hybridization while w0 and
~w describe the inversion-symmetry breaking onsite hybridiza-
tion terms, in a time-reversal invariant form.

Model— We use a non-centrosymmetric modification of the
ACE model25

H =
∑

i,j,σ,σ′

Ψ†iσHij,σσ′Ψjσ′ + U
∑
i

nif↑nif↓, (3)

where

Hij,σσ′ =

(
(−tci,j − µcδij)δσσ′ Ṽσσ′(Ri −Rj)

Ṽσσ′(Ri −Rj) (−tfi,j − µfδij)δσσ′

)
.

(4)

Here Ψ†iσ = (c†iσ , f†iσ) with c†iσ and f†iσ are the creation oper-
ators for conduction and f-electrons. tc/fij is the hopping am-
plitude and µc/f is the chemical potential for c/f electrons.
U is the onsite Coulomb repulsion between f-electrons.

In the large U limit, a slave-boson approach leads to the
mean-field Hamiltonian29, H =

∑
k Ψ†(k)H(k)Ψ(k) +

Nsλ(|b|2 −Q) with

H(k) =

(
εc(k)− µ ∑

j Vjσj sin kj∑
j Vjσj sin kj εf (k) + λ

)
+

(
0 W0 + i ~W · ~σ

W0 − i ~W · ~σ 0

)
. (5)

Vi = vib and Wi = wib are the renormalized hybridiza-
tion terms, b is the slave boson projection amplitude. The
f-hopping amplitude becomes t̃f = b2tf The dispersion of
the conduction electrons is taken as εc(k) = −2

∑
i ti cos ki

and εf (k) = αεc(k) for simplicity. The constraint field λ
imposes the mean-field constraint Q = nf + b2 with Q being
the local conserved charge associated with the slave boson ap-
proach in the infinite U limit, and is taken to be Q = 1. Ns is
the total number of sites. We solve the slave-boson mean-field
Hamiltonian self-consistently [see Appendix A].

The spectrum of the Hamiltonian [Eq. (5)] is

E(k) = h0 ±
√
h2

1 +W 2
µ + ~V 2

k ± 2
√
W 2
µ
~V 2
k − ( ~W · ~Vk)2,

(6)

where h0/1 = 1
2 [εf (k) + λ± (εc(k)− µ)], W 2

µ = W 2
0 + ~W 2

and ~Vk = (V1 sin k1, V2 sin k2, V3 sin k3).
The energy spectrum has line or point nodes determined by

the intersections between three surfaces: SI where h1 = 0,
SII , where (W 2

µ − ~V 2
k )2 = 0 and SIII where ~W · ~Vk = 0.

When there is no common intersection between these sur-
faces, the ground-state remains a fully gapped insulator. How-
ever, once W exceeds a critical value, a semi-metallic state
develops. There are two cases:

• Line-node semimetal ( ~W = 0) for which the constraint
SIII is trivial. Since SI and SII are spheroids that
share the same center, they intersect to form two rings
{r1, r2} = SI ∩ SII of gapless excitations [Fig. 3(a)]
[see Appendix E for the detailed discussion].

• Weyl semimetal ( ~W 6= 0). Here SIII is the plane nor-
mal to ~W , intersecting with rings {r1, r2} at four Weyl
points [Fig. 3(b)].

Time reversal and reflection symmetries play an important
role in Weyl semimetals. Our model preserves time-reversal
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FIG. 3. (a) A line-node semimetal: when ~W = 0, the line-node
solution from Eq. (6) is determined by the intersections {r1, r2} =
SI ∩ SII indic ated by blue lines. (b) A Weyl semimetal: When
~W 6= 0, point-node solutions of Eq. (6), indicated by blue dots,
develop at the intersections of plane SIII normal to ~W with the line-
nodes, SI ∩ SII ∩ SIII .

symmetry, T −1H(k)T = H(−k), where T = iσ2K and K
is the conjugation operator. In the absence of W0, provid-
ing the inversion-symmetry breaking vector ~W = Wl̂ points
along a crystal axis l̂, then the model also retains reflection
symmetries in the two planes with normals ĵ 6= l̂ perpendicu-
lar to l̂. For our model, the reflection operator is Rj = σjτ3
and R−1

j H(k)Rj = H(kR), where kR is the wavevector re-
flected in the plane perpendicular to ĵ and τ are the Pauli ma-
trices in c, f space. Suppose for example ~W = W2ŷ, then the
energy spectrum has four Weyl points located in the ky = 0
plane, each related to one-another by time reversal and reflec-
tion symmetriesRx andRz .

The effective Hamiltonian near the Weyl points is obtained
from Eq. (5) by projecting it onto the eigenvectors of the
two central bands [see Appendix B]. For ~W = W2ŷ, we
have four Weyl points ~k0, Rx~k0 = (−kx0, 0, kz0), Rz~k0 =

(kx0, 0,−kz0), and T~k0 = −~k0 related by reflection and
time-reversal symmetries, respectively. The effective Hamil-
tonian can be expressed in a general form

Heff(~k0, δk) =[A(~k0)]iαδkiσα. (7)

with implied summation on i ∈ [x, y, z] and α ∈ [0, 1, 2, 3]

with σ0 = I2×2. Here [A(~k0)]iα is a three by four matrix
defined at each Weyl point ~k0, each proportional to the hy-
bridization amplitudes Vi [see Appendix B]. These four effec-
tive Hamiltonians are related by reflection and time-reversal
symmetries (Rx(z) : Heff(~k0, δk)→ Heff(Rx(z)

~k0, Rx(z)δk)

and T : Heff(~k0, δk) → Heff(−~k0,−δk)) which constrains
the four Weyl points to lie at the same energy.

We now examine the effect of “Kondo breakdown” on the
Fermi arcs. The topological charges C = ±1 [see Appendix
C] associated with the Weyl points give rise to the formation
of Fermi arcs which link the projections of oppositely charged
Weyl points onto the surface Brillouin zone (BZ). The analytic
form of the localized Fermi arcs can be derived from the effec-
tive Hamiltonian [see Appendix D]. In the presence of interac-
tions, the reduction in co-ordination number of the f-elections
at the surface suppresses the surface Kondo temperature T ∗K
below that of the bulk, T sK < TK . In the intermediate tem-
perature regime T sK < T < TK , the bulk is topological but
the conduction electrons at the surface are liberated from the

local moments, leading to surface Kondo breakdown. The sur-
face Kondo breakdown scenario has been confirmed in inho-
mogeneous mean-field approach25 and dynamical mean field
calculations30. To model this effect, we suppress the slave bo-
son amplitude b to zero on the surface layer of hWSMs and
recompute the Fermi arcs.

The effect of Kondo breakdown on the surface spectra for
a (010) slab geometry is shown in Figs. 2(a)-(c): we see that
the intersections between two surface chiral modes sink be-
neath the Fermi sea. This effect causes the right and left chi-
ral modes to bulge outwards, leading to a differential recon-
figuration of the Fermi arcs on opposite surfaces as shown in
Fig. 2(c). In fact, the detailed configuration of the Fermi arcs
will in general depend on the microscopic parameters of the
Hamiltonian. For example, in CeRu4Sn6

17, the nonequivalent
cleavage surfaces are found to give rise to different configu-
rations of Fermi arcs. This indicates that the Fermi arcs are
sensitive to the surface morphologies and chemical potential.
The configuration of the Fermi arcs will also be sensitive to
the surface hybridization. Thus the surface Kondo breakdown
introduces the reconfiguration of the Fermi arcs. The config-
uration of the Fermi arcs is a global property of the system,
dependent on both bulk and surface properties. In particular,
the configuration depends on the locations of the projected
Weyl points on the surface BZ and the detailed dispersions
of the surface spectrum. On the other hand, the topology of
each Weyl point is a local property, with a generic form as
described by Eq. (7). The finite topological charge C = ±1
of the Weyl point, ensures the formation of Fermi arcs which
link with the projections of oppositely charged Weyl points
on the surface BZ. However, this local property does not con-
strain the way the pairs of oppositely charged Weyl points are
linked.

The reconfiguration of the Fermi arcs will have various dis-
tinct signatures in both angle-resolved photoemission spec-
troscopy and quantum oscillation measurements. In a field,
quasiparticles on the surface move under the influence of the
Lorentz force k̇ = −evS × B, where vS is their velocity,
processing from one projected Weyl point to another. When
they reach a Weyl point, the gapless bulk chiral Landau level
provides a transport channel to coherently move the quasipar-
ticles between surfaces, giving rise to closed inter-plane Weyl
orbits,26,27 as shown in Fig. 2(d). Quantization of the Weyl or-
bital motion leads to discrete energy levelsEn = πh(n+γ)vB

L+βk0/(eB) ,
where k0 is the length of the Fermi arcs, µ is the chemical po-
tential, L is the thickness of the sample, γ is a constant, and
β = vB/vS with vB being the bulk velocity. Such Landau
levels have been observed in Shubnikov-de Haas oscillations
in Cd3As2, a weakly interacting Dirac semimetal which is the
crystal-symmetry-protection analogy of a Weyl semimetal28.

One of the most dramatic consequences of the differential
reconfiguration is the merger of two small orbits into a single
large orbit as shown in Fig. 2(d), and the effect that will mod-
ify the quantum oscillations. Suppose the chemical potential
is fixed to be µ and vary the magnetic field B, the nth energy
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level crosses the µ with the condition

1

Bn
=


e
βk0

(
vBπh
µ (n+ γ)− L

)
, T < T sK < TK

e
β′(k′0+k1)

(
vBπh
µ (n+ γ)− 2L

)
, T sK < T < TK ,

(8)

where k′0 and k1 are the arc-lengths on the bottom and top
surfaces respectively [see right panel in Fig. 2(d)], while
β′ = vB/v

′
S with v′S being the surface velocity of quasipar-

ticles with surface Kondo breakdown.
During the transition of surface Kondo breakdown, the

spacing of the density of states as a function of 1/B has a dra-
matic change, ωB−1 = eπhvB

βµk0
→ eπhvB

β′µ(k′0+k1) . The magnetic
field 1/B threshold of observing this oscillation also changes
from eL/βk0 → 2eL/β′(k′0 + k1). The differential recon-
figuration of the Fermi arc states can be detected by measur-
ing the change of oscillation frequency and a threshold of the
magnetic field in Shubnikov-de Haas oscillations.

The renormalized velocity of the Weyl semimetals de-
scribed in Eq. (7) is proportional to the hybridization ampli-
tude Vi ∝

√
TKD where TK is the Kondo temperature and D

is the band width of the conduction electrons31. This “square-
root” renormalization effect is weaker than that seen in heavy
fermion metals, due to the hybridization origin of the nodes.
From Ref. [17], the velocity of Weyl fermion in CeRu4Sn6

is v∗ ∼ 0.2 eVÅ. For the weakly interacting Weyl semimet-
als such as TaAs32 and TaP14, the velocity of Weyl fermion
v ∼ 2 − 3 eVÅ. The renormalization effect in hWSMs is
about a factor of ten.

Many of the thermodynamic and transport properties in
hWSMs are affected by this quasiparticle renormalization
effect. One of the most dramatic effects, is the renor-
malization of the cubic specific heat. A large T 3 specific
heat has been reported in the candidate hWSM materials
Ce3Bi4Pd3

20 and YbPtBi23. As pointed out by Lai et al.18

this significant enhancement of specific heat likely derives
from the cubic dependence on renormalized velocity Cv =
∂
∂T

∫
εf(ε)g(ε)dε ∝ (T/v∗)3 with g(ε) = ε2

2π2v∗3 being the
density of states. In addition to the specific heat, an en-
hancement of the high-field thermopower33 is also expected.
The high-field thermoelectric properties of the Weyl/Dirac
semimetals contrast dramatically with those of doped semi-
conductors, with a thermopower that grows linearly, without
saturation, in a the magnetic field, α := ∆V/∆T ∝ BT/v∗,
where ∆V and ∆T are the voltage and temperature differ-
ence, respectively. The non-saturating behavior leads to a
large thermopower which has been observed in weakly inter-
acting Dirac semimetal Pb1−xSnxSe34. The high-field ther-
mopower is thus enhanced by the mass renormalization in
hWSMs.

Concluding, we have proposed a hybridization-driven
model for heavy Weyl semimetals, arguing that the onsite hy-
bridization between f and d orbitals in non-centrosymmetric
crystals drives topological Kondo insulators into hWSMs.
One of the effects of the strong interactions is surface Kondo
breakdown, which leads to a reconfiguration of Fermi arcs
on both surfaces that should appear in quantum oscillations,

while the renormalization of velocity in hWSMs affects ther-
modynamic and transport properties.

There are a number of interesting new directions for re-
search into hWSMs that deserve mention. One aspect that
deserves exploration is the influence of non-symmorphic
space group symmetries. According to topological band
theory35, such symmetries can lead to nodal points with much
higher multiplicities, giving rise to a cluster of nested Dirac
cones. A particularly interesting case is the candidate hWSM
Ce3Bi4Pd3, the space group No. 220 (I 4̄3d) is expected to
produce an eight-fold degenerate double Dirac point. These
nodal lines are expected to give rise to “drumhead surface
states”13,36,37 [see Appendix E], which can potentially cause
charge/spin density wave and superconducting instabilities. A
second interesting direction, is the possible use of molecular
beam epitaxy (MBE) techniques38, which open up the possi-
bility of artificially engineered hWSMs where tuning the de-
gree of inversion symmetry breaking can be used to explore
the vicinity, and possible instabilities of the topological quan-
tum critical point39,40.
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Appendix A: Self-consistent slave boson mean-field solutions

In the large U limit, a slave-boson approach leads to the
mean-field Hamiltonian29, H =

∑
k Ψ†(k)H(k)Ψ(k) +

Nsλ(|b|2 −Q) with

H(k) =

(
εc(k)− µ ∑

j Vjσj sin kj∑
j Vjσj sin kj εf (k) + λ

)
+

(
0 W0 + i ~W · ~σ

W0 − i ~W · ~σ 0

)
. (A1)

Vi = vib and Wi = wib are the renormalized hybridiza-
tion terms, b is the slave boson projection amplitude. The f-
hopping amplitude becomes t̃f = b2tf The dispersion of the
conduction electrons is taken as εc(k) = −2

∑
i ti cos ki and

εf (k) = αεc(k) for simplicity. The constraint field λ imposes
the mean-field constraint Q = nf + b2 with Q being the local
conserved charge associated with the slave boson approach in
the infinite U limit, and is taken to be Q = 1. Ns is the total
number of sites.

The saddle point equations can be obtained from δ〈H〉
δb = 0
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and δ〈H〉
δλ = 0.

1

Ns
∑
k,σ

〈f†k,σfk,σ〉+ b2 = 1 (A2)

1

2Ns
∑

k,σ,i,j,α,β

{(vi sin ki[σi]αβ + w0δαβ + iwj [σj ]αβ)

(A3)

〈c†k,αfk,β〉+ h.c.}+ b(λ− 1

Ns
∑
k,σ

〈ε̃f (k)f†k,σfk,σ〉) = 0,

(A4)

where ε̃f (k) = 1
b2 εf (k) is the bare spectrum of the f-electron.

In the paper we consider the case of non-zero on-
site hybridization w2 6= 0. For the specific calcula-
tions carried out in the paper, we have chosen the bare
parameter values to be (vx, vy, vz, w2, α, tx, ty, tz, µ) =
(0.786, 0.786, 1.179, 0.89,−0.126, 2, 1, 1,−6), leading to a
self-consistently determined slave boson amplitude and the
constraint field with values (b, λ) = (0.89, 0.087).

Appendix B: Effective two dimensional Hamiltonian near the
Weyl points

Now we analyze the effective Hamiltonian around the Weyl
points. We consider the inversion breaking hybridization
W2 6= 0 such that the Weyl points are located at ky = 0
plane. The locations of the Weyl points in momentum space
satisfy

− 2tx cos kx0 − 2tz cos kz0 − (µ+ 2ty) = 0,

W 2
2 = V 2

1 sin2 kx0 + V 2
3 sin2 kz0. (B1)

We can expand the Hamiltonian around the Weyl points up to
linear terms in k.

H(δk) ∼ H0 +H1(δk), (B2)

where

H0 = [V1(sin kx0)σ1 + V3(sin kz0)σ3]τ1 +W2σ2τ2, (B3)

and

H1(δk) =
1

2
(1 + α)[2tx sin kx0δkx + 2tz sin kz0δkz]τ3

+ [V1(cos kx0δkx)σ1 + V2δky

+ V3(cos kz0δkz)σ3]τ1. (B4)

Here we have dropped terms proportional to the identity ma-
trix which only shift the spectrum without changing the band
topology. To obtain the effective two-dimensional Hamilto-
nian in the vicinity of the Weyl points we first find two eigen-
vectors ofH0 with zero energy,

|v1〉 =
1√

2(V 2
1,kx0

+ V 2
3,kz0

) + 2V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0
V1,kx0 +

√
V 2

1,kx0
+ V 2

3,kz0

0
−V3,kz0

0

 ,

|v2〉 =
1√

2(V 2
1,kx0

+ V 2
3,kz0

) + 2V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0
0

V3,kz0

0

V1,kx0 +
√
V 2

1,kx0
+ V 2

3,kz0

 . (B5)

where V1(3),kx/z0
= V1(3) sin kx(z)0,and V2,ky0

= V2 with ~k0

being the position of the Weyl point.
The effective two dimensional Hamiltonian is then ob-

tained by projecting the Hamiltonian onto these eigenvalues,
[Heff ]i,j = 〈vi|H1(δk)|vj〉 with i, j = 1, 2, giving rise to

Heff(δk) = −h0,~k0
σz − V2,ky0

δkyσx +
V1,kx0

+
√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

[
V1,kx0

Ṽ1,kx0
δkx + V3,kz0 Ṽ3,kz0δkz

]
σy,

(B6)

where h0,~k0
= 1

2 (1 + α)[2tx sin kx0δkx + 2tz sin kz0δkz], and Ṽ1(3),kx(z)0
= V1(3) cos kx(z)0.

For simplicity, we express the Hamiltonian as

Heff(δk) = (Aδkx +Bδkz)σz + (Cδkx +Dδkz)σy + Eδkyσx, (B7)
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where

A = −1 + α

2
(2tx sin kx0), B = −1 + α

2
(2tz sin kz0) C =

V1,kx0
+
√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

V1,kx0
Ṽ1,kx0

,

D =
V1,kx0

+
√
V 2

1,kx0
+ V 2

3,kz0

V 2
1,kx0

+ V 2
3,kz0

+ V1,kx0

√
V 2

1,kx0
+ V 2

3,kz0

V3,kz0 Ṽ3,kz0 , E = −V2,ky0 . (B8)

Appendix C: Topological invariance of the Weyl points—Berry
curvature

The topological invariance of the Weyl points is the Berry
curvature computed from a two-dimensional surface encir-
cling the Weyl point. The definition of the Berry curvature
is

C =
i

2π

∑
α∈occ.

∫
d2k〈∂kiuα|∂kjuα〉 − (ki ↔ kj), (C1)

where uα are the occupied bands and the two dimensional
integral is a closed surface around one Weyl point.

Now we compute the Berry curvature around the Weyl
point by using Eq. (B6). Without loss of generality, we define
k̃x = Aδkx +Bδkz , k̃z = Cδkx +Dδkz , and k̃y = Eδky .

We now choose a fixed radiusR around the Weyl point with
R2 =

∑
i=x,y,z k̃

2
i . The occupied band with energy −R is

u−(θ, φ) =

(
− sin θ

2e
−iφ

cos θ2

)
, (C2)

where we parameterize k̃z = R cos θ, k̃x = R sin θ cosφ, and
k̃y = R sin θ sinφ.

The only non-vanishing component of the Berry connection

is

Aφ =
1

R sin θ
〈u−(θ, φ)|∂φu−(θ, φ)〉 =

i

2R
cot θ. (C3)

The Berry curvature around the Weyl point is then

C =
i

2π

∫
sphere

ds(∇× ~A) =
i

2π

∫
R2 sin θdθdφ

−i
2R2

= 1.

(C4)

The Berry curvature of teh the other time-reversal related
Weyl points at −~k0, is C = −1.

Appendix D: Fermi arc states in the effective Hamiltonian

We analyze the Fermi arc state from the effective two-
dimensional Hamiltonian in Eq. (B6). In the presence of
(010) surface, the effective Hamiltonian around the Weyl
point is expressed as

Heff. =

(
Aδkx +Bδkz −iCδkx − iDδkz − iE∂y

iCδkx + iDδkz − iE∂y −Aδkx −Bδkz

)
.

(D1)
We consider a cylindrical surface surrounding the Weyl point
with radius k0. The effective Hamiltonian becomes

Heff. =

(
Ak0 cos θ +Bk0 sin θ −ik0

√
C2 +D2 cos(θ − φ)− iE∂y

ik0

√
C2 +D2 cos(θ − φ)− iE∂y −Ak0 cos θ −Bk0 sin θ

)
, (D2)

where φ = cos−1 C√
C2+D2

, δkx = k0 cos θ, and δkz = k0 sin θ.
There are two boundary states on this cylinder surrounding the Weyl point

uy>0 =

(
1
0

)√
2κe−κy with ER(θ) = Ak0 cos θ +Bk0 sin θ, (D3)

uy<0 =

(
0
1

)√
2κeκy with EL(θ) = −Ak0 cos θ −Bk0 sin θ,

where κ = −k0E
√
C2 +D2 cos(θ − φ) > 0. These boundary states are the origin of the Fermi arc states.

Appendix E: Time-reversal symmetric nodal ring semimetallic
phase

The Hamiltonian of hWSMs with non-vanishingW0 can be
expressed as

H(k) = H0(k) +H1(k), (E1)

where H0(k) = 1
2 (εc(k) + εf (k))σ0τ0 and H1(k) =

1
2 (εc(k)−εf (k))σ0τ3+

∑
i=1,2,3 Vi sin kiσiτ1+W0τ1.H1(k)
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FIG. 4. (a) Schematic plot of the bulk nodal rings centered at ky axis. On the (011) surface, the surface flat bands will emerge inside the
circles which are the projection of the bulk nodal rings. The surface spectrum as a function of (kx, k′z = 1√

2
(kz − ky)) from the Hamiltonian

Eq. (5) with (tx, ty, tz, µ, α,Wx,Wy,Wz,W0) = (2, 1, 1,−6.5,−0.1, 2, 2, 2, 1.8). (b) in the absence of surface Kondo breakdown and (c)
in the presence of surface Kondo breakdown. The surface spectrum as a function of k′z = 1√

2
(kz−ky) at kx = 0, (d) in the absence of surface

Kondo breakdown and (e) in the presence of surface Kondo breakdown.

has a chiral symmetry, S−1H(k)S = −H(k), where S = τ2.
In the presence of chiral symmetry, one can off-block diag-
onalize H1(k) by a unitary transformation, V†H1(k)V =

H̃1(k), where

V =
1√
2

(
I2×2 iI2×2

iI2×2 I2×2

)
, H̃(k)1 =

(
0 D(k)

D†(k) 0

)
,

(E2)

with D(k) = i(εc(k)− εf (k)) + 2
∑
i Vi sin kiσi +m0. The

eigenvectors of H̃(k) satisfy(
0 D(k)

D†(k) 0

)(
χ±(k)
η±(k)

)
= ±λ(k)

(
χ±(k)
η±(k)

)
.

(E3)

These eigenvectors are also the eigenvector of H0(k)
and they determine the topological invariant. We pick
χ±(k) = 1√

2
u(k), Then Eq. (E3) leads to η±(k) =

± 1√
2

1
λ(k)D

†(k)u(k). The flat band Hamiltonian Q(k)can be
obtained from the projector

Q(k) =I− 2
∑
α∈occ.

|uα(k)〉〈uα(k)|

=I−
(

u(k)
− 1
λ(k)D

†(k)u(k)

)(
u†(k) − 1

λ(k)u
†(k)D(k)

)
=

1

λ(k)

(
0 u(k)u†(k)D(k)

D†(k)u(k)u†(k) 0

)
=

(
0 q(k)

q†(k) 0

)
. (E4)

The topological invariance of the nodal ring is characterized
by a winding number of a one-dimensional loop encircling the
ring. The winding number can be calculated from the q-matrix
integral

ν =
1

2πi

∮
L
dkTr[q−1(k)∂kq(k)]. (E5)

In our model, the winding number of the nodal rings is ν =
±1, which leads to surface flat bands bounded by the nodal
rings projected on the surface Brillouin zone13,36. As shown
schematically in Fig. 4(a), two nodal rings are centered along
ky axis. On (011) surface, the flat band surface states emerge
inside the bulk rings projected on the (011) surface Brillouin
zone.

Finally, we have investigated the Kondo breakdown on
these surface flat bands, summarizing the results in 4. In
the absence of the surface Kondo breakdown, the surface flat
bands emerge on (011) surface (Fig. 4(b) and (d)). . In
the presence of the surface Kondo breakdown, the surface flat
bands sink beneath the Fermi sea as shown in Fig. 4(c) and
(e).
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