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In the spirit of recently developed LDA+U and LDA+DMFT methods we implement a com-
bination of density functional theory in its local density approximation (LDA) with a k– and
ω−dependent self–energy found from diagrammatic fluctuational exchange (FLEX) approximation.
The active Hilbert space here is described by the correlated subset of electrons which allows to
tremendously reduce the sizes of matrices needed to represent charge and spin susceptibilities. The
method is perturbative in nature but accounts for both bubble and ladder diagrams and accumu-
lates the physics of momentum resolved spin fluctuations missing in such popular approach as GW.
As an application, we study correlation effects on band structures in V and Pd. The d–electron
self–energies emergent from this calculation are found to be remarkably k–independent. However,
when we compare our calculated electronic mass enhancements against LDA+DMFT, we find that
for the long standing problem of spin fluctuations in Pd, LDA+FLEX delivers a better agreement
with experiment, although this conclusion depends on a particular value of Hubbard U used in the
simulation. We also discuss outcomes of a recently proposed combinations of k–dependent FLEX
with DMFT.

PACS numbers:

I. I. INTRODUCTION

Although electronic structure calculations utilizing a
combination of local density functional and dynamical
mean field theories (so called LDA+DMFT) became a
method of choice for studying realistic correlated elec-
trons systems1, the search for a more accurate treatment
of the electron self–energy continues to be an active field
in the many–particle physics of condensed matter. Since
DMFT accounts for local electronic correlations by corre-
sponding solution of the Anderson impurity problem, ex-
tensions of this method to small clusters, such as Dynam-
ical Cluster Approximation (DCA)2 or cellular version
of DMFT (C–DMFT)3 have been proposed in the past
and more recently, two promising developments, a dual
fermion (DF) approach4 and a dynamical vertex approx-
imation (DΓA)5, have been elaborated. Unfortunately,
combinations of these approaches with LDA and their
applications to real materials are complex, time consum-
ing and have so far been scarce6.

One recent development is the combination7 of the
DMFT with the much celebrated GW approach8 that,
in contrast to LDA+DMFT, tries to treat dynamically
screened Coulomb interaction from first principles using
a summation of a series of the particle–hole bubble dia-
grams, and does not rely on any ad hoc parametrizations
such as ”Hubbard U”. Another advantage of the method
is the treatment of the local self–energy using DMFT and
the access to its k–dependence via the use of the GW
diagram. Interestingly however, that GW itself misses
an important physics associated with a well–known elec-
tronic mass renormalization due to paramagnons which

has been recovered in the summation of the so called
particle–hole ladder diagrams long time ago9. Thus, in-
cluding both the bubble and ladder diagrams in a unified
way with DMFT may provide more accurate interpola-
tion for the k–dependence of the self–energy.

There was indeed a very long interest in such develop-
ment. The paramagnons or spin fluctuations (SF) were
originally shown to suppress electron–phonon pairing in
conventional superconductors10 but capable of producing
d–wave pairing in unconventional superconductors11,12.
The proposed Fluctuational Exchange Approximation
(FLEX)13 includes both particle–hole ladders and bub-
bles as well as particle–particle ladder diagrams, with
the latter contribution being found of lesser importance
at least in some models14. It was the method of choice in
many studies of strongly correlated systems in the past15.
A proposal to combine FLEX with LDA in a form of
a LDA++ method came out in the earlier days of the
LDA+DMFT developments16. Very recently, a combi-
nation of FLEX and DMFT on the level of a single–
band Hubbard model in 2D was shown to reproduce a
dome–like behavior of critical temperatures characteris-
tic of cuprates superconductors17.

Unfortunately, a completely first principles treatment
of the ladder diagrams represents a challenge. First, the
response functions in such theory are all four–point func-
tions in real space and not two–point functions as in the
GW method. Second, and most important, it has long
been recognized that it is not the bare Coulomb but some
semi–phenomenological Stoner–like interaction I should
represent the short–range repulsion between correlated
electrons in the ladder series9. The access to this quan-
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tity within local density functional theory has allowed to
compute spin fluctuational spectra together with para-
magnon enhanced self–energies in V and Pd18. A more
recent formulation of the method using all–electron basis
sets and accurate summations over unoccupied states19

has also allowed a few applications to selected transition
metals20.

Despite earlier excitement, the LDA based approaches
to spin fluctuations did not receive a wider recognition
because being a homogeneous electron gas theory LDA
may seriously underestimate I for many correlated sys-
tems, and it has been stressed that the Hubbard param-
eter U should be used instead21. This gave rise to a
famous LDA+U method22.

In the absence of a first principles treatment of the in-
teraction that enters the ladder diagrams we still have to
rely on parametrizations in terms of U . However, the re-
maining part of the algorithm is implementable in prin-
ciple: the FLEX self–energies for correlated electrons,
ΣFLEX(k, ω) can be computed using contributions from
both bubble and ladder diagrams, and subsequently com-
bined with LDA using a method of projectors. This is
exactly as it is done in LDA+U and LDA+DMFT. Fur-
thermore, the method can be extended by adding DMFT,
as it has been recently shown for models17,23. The k–
dependent corrections within such method are attributed
to the diagrammatic FLEX which captures the important
physics of spin fluctuations and is simpler to implement
than recently proposed DF and DΓA approaches. As the
danger of partial diagrammatic summations was pointed
out in a recent work23 we bear in mind that such schemes
are perturbative in spirit and should not be literally used
for any U .

In this work we describe an implementation of such
method and provide applications to V and Pd. It is
quite remarkable that the non–local FLEX self–energies
that we extract in our implementation are fairly k–
independent which justifies the use of local approxima-
tions. We calculate the mass enhancements of the d–
electrons and compare them against LDA+DMFT cal-
culations performed using numerically exact Continuous

Time Quantum Monte Carlo (QMC) method24 and other
published DMFT calculations25. We find that FLEX de-
livers larger electronic masses than DMFT and agrees
better with experiment, however, this conclusion depends
on the value of U that is used in the simulation. We
also comment on the performance of recently proposed
DMFT+FLEX schemes17,23 to the problem of mass en-
hancement in these two metals.

The paper is organized as follows. In Section II, we pro-
vide a general description how the self–energy for corre-
lated electrons is combined with LDA (SELDA family of
methods) and give specific details about our FLEX imple-
mentation. Various forms of self–consistency conditions
are also discussed. In Section III, our applications for V
and Pd are described. In Section IV, we conclude with
the perspective on possible applications of such method
to other systems.

II. II. FAMILY OF SELDA METHODS

The family of approaches that combine the self–energy
for correlated electrons with LDA (the SELDA family),
relies on a separation of sites given by the positions {τ}
inside the unit cell of the lattice onto uncorrelated and
correlated sites denoted hereafter by the positions {t}.
The site dependent projector operators are introduced
with the help of radial solutions φat(rt) = φlt(rt)i

lYlm(r̂t)
(where rt = r−t) of the one–electron Schroedinger equa-
tion taken with a spherically symmetric part of the full
potential.26. The Hibert space {a} inside the designated
correlated site t may further restrict the full orbital set by
a subset of correlated orbitals, such, e.g., as 5 for l = 2 or
7 for l = 3. Here, we keep the spin index explicitly, there-
fore treat the non–local self–energy Σ̂σσ′ ≡ Σσσ′(r, r′, ω)
as the matrix in spin space. It is viewed in travelling
wave representation

Σk
σσ′(rτ , r

′
τ ′ , ω) =

∑
R

eikRΣσσ′(r, r′ −R, ω) (1)

as follows

Σk
σσ′(rτ , r

′
τ ′ , ω) = δτtδτ ′t′

∑
aa′

φat(rt)Σ
corr
aσta′σ′t′(k, ω)φ∗a′t′(r

′
t′), (2)

and is only non–zero when the legs r r′ land inside the correlated sites. A single–particle LDA Hamiltonian with
relativistic Pauli term is a 2x2 matrix operator

Ĥσσ′ = −∇2δσσ′ + V LDAσσ′ (r). (3)

Since LDA potential already includes correlations in some average form, there exists a site diagonal double counting

term V
DC(t)
aσa′σ′ which has to be subtracted from the self–energy Σcorraσta′σ′t′(k, ω) in Eq.(2). There is a vast literature

about it, therefore here we ignore this subject and refer the reader to a recent work and references therein27.
We represent the Green function of the lattice in terms of some, possibly non–orthonormal, basis set χk

ατ (r), such
as the one used in a full potential multiple–κ linear muffin–tin orbital (LMTO) method28, as follows

Gk
σσ′(r, r′, ω) =

∑
ατα′τ ′

χk
ατ (r)Gαστα′σ′τ ′(k, ω)χk∗

α′τ ′(r′). (4)
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The inverse of the interacting Green function is the matrix

G−1
αστα′σ′τ ′(k, ω) = 〈χk

ατ |(ω + εF )δσσ′ − Ĥσσ′ − Σ̂σσ′ + V̂ DCσσ′ |χk
α′τ ′〉

= (ω + εF )Ok
αστα′σ′τ ′ −Hk

αστα′σ′τ ′ − Σk
αστα′σ′τ ′(ω) + V k,DC

αστα′σ′τ ′ . (5)

It is expressed via the matrix elements of the LDA Hamiltonian, the overlap matrix, the correlated block of the
self–energy Σcorraσta′σ′t′(k, ω) and of the double counting potential, as follows

Hk
αστα′σ′τ ′ = 〈χk

ατ |Ĥσσ′ |χk
α′τ ′〉, (6)

Ok
αστα′σ′τ ′ = δσσ′〈χk

ατ |χk
α′τ ′〉, (7)

Σk
αστα′σ′τ ′(ω) =

∑
ata′t′

〈χk
ατ |φat〉Σcorraσta′σ′t′(k, ω)〈φa′t′ |χk

α′τ ′〉, (8)

V k,DC
αστα′σ′τ ′ =

∑
aa′

〈χk
ατ |φat〉V

DC(t)
aσa′σ′ 〈φa′t|χk

α′τ ′〉. (9)

We note that the k–dependence of the matrix element Σk
αστα′σ′τ ′(ω) comes here from both the non–trivial behav-

ior for Σcorraσta′σ′t′(k, ω) as well as from the projector 〈χk
α|φat〉. Therefore, even for methodologies utilizing the local

approximations, such as LDA+U and LDA+DMFT, the corresponding poles of the single–particle Green functions
acquire the k–dependence induced by the hybridization effects with non–interacting electrons.

Given the prescription for computing the matrix Σcorraσta′σ′t′(k, ω), the poles of the single–particle Green function

can, for example, be analyzed by diagonalizing the non–hermitian matrix Hk
αστα′σ′τ ′ + Σk

αστα′σ′τ ′(ω)− V k,DC
αστα′σ′τ ′ for

each frequency ω with the help of its right and left eigenvectors∑
α′σ′τ ′

[Hk
αστα′σ′τ ′ + Σk

αστα′σ′τ ′(ω)− V k,DC
αστα′σ′τ ′ − pkj(ω)Ok

αστα′σ′τ ′ ]R
kj
α′σ′τ ′(ω) = 0, (10)∑

αστ

Lkj
αστ (ω)[Hk

αστα′σ′τ ′ + Σk
αστα′σ′τ ′(ω)− V k,DC

αστα′σ′τ ′ − pkj(ω)Ok
αστα′σ′τ ′ ] = 0. (11)

A. FLEX Self–Energy

The prescription for computing the matrix Σcorraσta′σ′t′(k, ω) within the subset of correlated electrons can be
obtained by a variety of methods. The dynamical mean field theory uses a k–independent approximation:

Σcorraσta′σ′t′(k, ω) ≡ δtt′Σ
DMFT (t)
aσa′σ′ (ω) and solves the corresponding Anderson impurity problem subjected to a self–

consistency condition. The treatment of the substitutional site disorder can utilize a coherent potential approximation

(CPA)30, Σcorraσta′σ′t′(k, ω) ≡ δtt′ΣCPA(t)
aσa′σ′ (k, ω), where the subset {a} should, in principle, refer to all orbitals (not only

the ones restricted by a particular angular momentum l) within the substituted site t of the lattice. The technique
is similar to DMFT as it has been recently implemented for studies of surface vacancies in TaAs Weyl semimetal31.
The fluctuational exchange approximation relies on the diagrammatic summation of the bubble and ladder diagrams:
Σcorraσta′σ′t′(k, ω) ≡ ΣFLEXaσta′σ′t′(k, ω).

We now briefly describe our implementation for computing the FLEX self–energy. All calculations are performed
on the real frequency axis at zero temperature (T = 0). We neglect the particle–particle ladders which are known
to be small, at least for the problem of paramagnons where the most divergent term is given by the particle–hole
ladders. Contrary to the bubble diagrams which are expressed via two–point functions in the real space, the ladder
diagrams rely on the 4–point functions in general, but the use of the on–site Hubbard–type interactions allows one
to express all quantities via the charge and spin (longitudinal and transverse) susceptibilities which are two–point
functions. Despite this simplification gives the scaling with the number of atoms in the unit cell as N2

{τ}, it is still a

computationally very demanding problem because the number of matrix elements for representing the susceptibility
grows as N2

{τ}N
4
orb where Norb is the size of the complete orbital manifold per atom needed. This, for example, slows

down the calculation of the GW method. However, the restriction by the correlated subset simplifies the calculation
tremendously, because now the susceptibility matrices have the size N2

{t}N
4
corr.

We now define the susceptibility within the correlated subset. It is represented by the convolution of two Green
functions on the frequency axis

πaσbst,b′s′a′σ′t′(q, ω) = −i
∑
k

∫ +∞

−∞

dω′

2π
Gbstb′s′t′(k + q, ω′)Ga′σ′t′aσt(k, ω + ω′)eiω

′0+

. (12)
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For the non–interacting (LDA) Green’s functions

Ga′σ′t′aσt(k, ω)→ G
(0)
a′σ′t′aσt(k, ω) =

∑
j

〈φa′t′ |ψkjσ′〉〈ψkja|φσt〉
ω − εkj − i0+sign(εF − εkj)

, (13)

represented in the basis of the Bloch wave functions that diagonalize the LDA Hamiltonian

ψkjσ(r) =
∑
ατ

Akj
αστχ

k
ατ (r), (14)

0 =
∑
α′σ′τ ′

(Hk
αστα′σ′τ ′ − εkjOk

ατα′τ ′)A
kj
α′σ′τ ′ , (15)

the resulting expression for susceptibility matrix elements is given by

πaσbst,b′s′a′σ′t′(q, ω) =
∑
kjj′

θ(εF − εkj)− θ(εF − εk+qj′)

ω + εkj − εk+qj′ + i0+sign(εF − εkj)− i0+sign(εF − εk+qj′)
×

〈ψkjσ|φat〉〈φbt|ψk+qj′s〉〈ψk+qj′s′ |φb′t′〉〈φa′t′ |ψkjσ′〉. (16)

We note that exactly as in the spirit of the LDA+U and LDA+DMFT methods, the index aσbs here describes the
active Hilbert space of the atom t, where a and b are orbital while σ and s are spin degrees of freedom. For d–electrons
its size is only (5 ∗ 2)2 = 100. This is much smaller of the full Hilbert space needed to describe the susceptibility
matrix.

We next introduce the on–site Hubbard matrix U
(t)
aba′b′ which describes the Coulomb interaction matrix elements

among correlated orbitals within a given atomic volume Ωt

〈φaφa′ |
e2

r
|φbφb′〉Ωt = U

(t)
aba′b′ . (17)

We use such parametrization so that the screening effects in U can be taken into account by an external calculation
or phenomenologically. It is useful to define the interaction as the difference between bare and exchange terms and
introduce spin indexes explicitly so that the indexation matches the one for susceptibility

Iaσbst,a′σ′b′s′t′ = δtt′ [δσsδσ′s′U
(t)
aba′b′ − δσs′δσ′sU

(t)
ab′a′b] (18)

This allows to drop the indexation and manipulate with matrix products symbolically. Define the dielectric function
matrix for the correlated subspace

ε̂(q, ω) = 1̂− Î π̂(q, ω). (19)

Its inverse gives rise to the interacting susceptibility

χ̂(q, ω) = π̂(q, ω)ε̂−1(q, ω), (20)

and to the dynamically screened interaction for the correlated manifold

K̂(q, ω) = Î + Î[χ̂(q, ω)− 1

2
π̂(q, ω)]Î . (21)

The subtraction of 1
2 π̂(q, ω) takes care of the single bubble diagram that appears twice in both bubble and ladder

series.
The FLEX self–energy appears as the integral over frequencies

ΣFLEXaσta′σ′t′(k, ω) = −
∑
bb′

∑
ss′

∑
q

∫ +∞

−∞

dω′

2πi
Kaσbst,b′s′a′σ′t′(k− q, ω′)G

(0)
bstb′s′t′(q, ω + ω′)eiω

′0+

. (22)

Here we have used the non–interacting LDA Green function G(0) within the correlated subset, Eq. (13). To evaluate
the frequency integral in practice, we use spectral representation for the dynamically screened interaction K which al-
lows to perform integration over frequencies analytically. This is similar how it is done in some GW implementations8.
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Finally, we check the Hartree–Fock limit and show that the FLEX self–energy goes exactly to the one used in the
LDA+U method. Replace the interaction matrix by site diagonal, frequency and q independent matrix I in Eq.(22)

Kaσbst,a′σ′b′s′t′(q, ω)→ Iaσbst,a′σ′b′s′t′ ≡ δtt′I(t)
aσbs,a′σ′b′s′ . (23)

The frequency integral in Eq. (22) is performed by closing the contour in the upper plane due to eiω
′0+

. Then,
the only poles in the upper plane, (i.e. those corresponding to the occupied states), contribute and we obtain the
definition of the density matrix for correlated electrons

∑
k

∫ +∞

−∞

dω′

2πi
G

(0)
bstb′s′t′(k, ε)e

iω′0+

=
∑
kj

〈φbt|ψkjs〉〈ψkjs′ |φb′t′〉
∫ +∞

−∞

dω′

2πi

eiω
′0+

ω′ − εkj − i0+sign(εF − εkj)

=
∑
kj

θ(εF − εkj)〈φbt|ψkjs〉〈ψkjs′ |φb′t′〉 = nb′s′t′bst. (24)

The Hartree–Fock limit is now recovered

ΣFLEXaσta′σ′t′(k, ω) → ΣLDA+U
aσta′σ′t′ = −

∑
bb′

∑
ss′

Iaσbst,b′s′a′σ′t′nb′s′t′bst

= δtt′
∑
bb′

∑
ss′

I
(t)
aσa′σ′,b′s′bsn

(t)
b′s′bs, (25)

where only site diagonal density matrix for the correlated electrons is needed

n
(t)
b′s′bs = nb′s′tbst. (26)

This ΣLDA+U is used in the LDA+U method.

B. Note on Self–Consistency

We now comment on the self–consistency condition
within this approach. First, due to the existence
of generating functionals for both GW and FLEX
approximations8,13, it looks like the self–consistency with
respect to the Green functions and the interactions has
to be implemented. However, at least within the GW
method the subject was studied in some details with ap-
plications to some real materials32. The short answer is
that finding fully self–consistent solution within the bub-
ble diagrams is not a good idea because while providing
better total energies, it worsens the one–electron spectra.
There is also a technical part of the problem that once
the complex self–energy is introduced, the polarizability
(12) can no longer be represented in its simple form (16)
and alternative formulations via, for example, imaginary
time axis need to be implemented.

The self–consistency is however an important step
within DMFT as it allows to describe, for example, the
Mott transition. One can easily combine the non–local
FLEX self–energy with the DMFT local self–energy, in
accord with the recent proposals17,23

ΣDMFT+FLEX(k, ω) = ΣDMFT (ω) +

ΣFLEX(k, ω)− ΣDC(ω).(27)

This allows to utilize sophisticated impurity solvers de-
veloped in DMFT community. Here, the subtracted
double counting term ΣDC(ω) utilizes the FLEX ap-

proximation itself as the impurity solver17, where one
calculates the local polarizability πloc(ω) =

∑
q π(q, ω)

which is represented in this method as the product of
the two local Green functions, that will subsequently
appear in Eq. (12) once the summation over q is per-
formed. Then, the local interaction, as in Eq. (21), is
computed which gives rise to the local impurity self–
energy within the FLEX approximation. We denote it
hereafter as ΣDC(ω) = ΣDMFT (FLEX)(ω). Another op-
tion for ΣDC(ω) is to use the local FLEX self–energy23

ΣFLEXloc (ω) =
∑
k

ΣFLEX(k, ω). (28)

Note that DMFT(FLEX) approach has been recently ap-
plied to study the mass enhancement in Pd25. We dis-
cuss the outcomes of various approximations for the self–
energy in V and Pd in the following section.

Another sort of self–consistency that was developed
in the past is the quasiparticle self–consistency. That is
when not the full self–energy but its value at ω = 0 and
its frequency derivative around ω = 0 describing mass
enhancement data are used to reconstruct new densities
and resulting quasiparticle Green’s functions. It was de-
veloped in connection with the GW approach, and was
shown to reproduce the band gaps of semiconductors
quite well33. A combination of the LDA and Gutzwiller’s
method (called LDA+G) explores a similar idea34 where
the variational Gutzwiller method is used to find those
self–energy parameters. It was also implemented in a
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most recent combination of the GW and DMFT called
QSGW+DMFT35.

It is fairly straightforward to implement this sort
of self–consistency within the described LDA+FLEX
method. The polarizability is still represented by its non–
interacting form (16) since quasiparticle approximation
for the Green functions assumes real eigenvalues. It is
also easy to update the position of the Fermi level and
restore the new density at each iteration which replaces
the LDA density in Eq. (3). However, in our applications
to V and Pd we did not find any noticeable changes in
the obtained self–energies and the spectral functions for
d–electrons when doing these updates, and the results ob-
tained at first iteration by using the LDA band structures
are already very close self–consistency. It would probably
make more sense doing it when evaluating total energies
but this topic is beyond the scope of the present work.

III. III. APPLICATIONS TO V AND PD

Here we describe applications of our LDA+FLEX im-
plementation to V and Pd. These two elemental metals
have been at the center of interest for a long time, and, in
particular Palladium, whose strong spin fluctuations are
known to destroy superconductivity10 and contribute to
specific heat renormalization by λ ∼ 0.3 − 0.410,18,36,37.
Most recent LDA+DMFT study25 addressed the mass
enhancement of Pd in great detail but extracted smaller
λ = 0.03 − 0.09 for the values of U ranging from 1 to
4 eV using LDA+DMFT method with the FLEX ap-
proximation as the impurity solver. Vanadium is known
to be less paramagnetically enhanced and its specific
heat renormalization may well be described electron–
phonon interactions alone37. However, a room for spin–
fluctuational contribution still exists as λ based on the
FLEX calculated self–energy with Stoner–type LDA in-
teraction strength was earlier found to be 0.218. It is also
known that one needs a pretty large value of the effective
Coulomb pseudopotential µ∗ ∼ 0.3 to adjust the super-
conducting critical temperature of V to the one known
from experiment37, part of which may be attributed to
λ.

For our band structure calculational framework we use
double–κ full potential LMTO method as implemented in
Ref.28. Experimental lattice constants, touching muffin–
tin spheres, and LDA parametrization of Ref.29 are uti-
lized. The Green functions, susceptibilities and interac-
tions are computed on the grid of 400 frequencies and
for 256 non–equivalent wave vectors set by (20,20,20)
divisions of the reciprocal unit cell. All integrals over
the BZ are performed using grids set by (60,60,60) di-
visions of the reciprocal unit cell with help of a version
of the tetrahedron method adapted for linear response
calculations28.

As far as determining precise value of U for these ma-
terials, there is some obvious uncertainty here. One es-
timate can be given by associating it with the Stoner

parameter which was calculated for these metals to be as
small as 0.025 Ry (0.34 eV)41. The upper estimate can
also be obtained from the Stoner criterion of magnetism,
i.e. when the static interacting susceptibility as given
by Eq. (20) diverges. We have analyzed eigenvalues of
the wavevector dependent dielectric matrix, Eq. (19), at
ω = 0 in the active space of d–electrons and found that
the negative eigenvalues appear at Uc = 0.31 Ry for V
and at 0.26 Ry for Pd. These critical values should sig-
nalize that the system undergoes the spin density wave
(SDW) transition within this approach. (The use of local
quantities in Stoner criterion, i.e. the ones summed over
q, lead to Uc = 0.43 Ry for V and at 0.59 Ry for Pd). We
perform all computations for a range of U values varying
it from 0 to 0.2 Ry.

We now discuss our calculated d–electron self–energies.
Our results for V and Pd are shown in Fig. 1
where we plot matrix elements of ReΣFLEX(k, ω) and
ImΣFLEX(k, ω) for both T2g and Eg electrons. Here we
use some representative value of U=0.2 Ry (2.7 eV) but
our conclusions remain the same for the whole range of
U ’s that we studied. The Hartree Fock values for ReΣ are
subtracted in both plots. To illustrate the k–dependence,
the self–energies are given for several wave vectors k cho-
sen along (0ξξ) direction of the Brillouin Zone (BZ). It is
remarkable that the k–dependence in these plots is quite
small suggesting that the local self–energy approximation
may be adequate. We also compared the self–energies
for other k–points in the BZ and came up with a similar
conclusion. We subsequently calculate the ΣFLEXloc (ω) as
a sum over k–points whose frequency dependence is also
visualized in Fig. 1 by small circles. We see a close agree-
ment between ΣFLEXloc (ω) and ΣFLEX(k, ω) for both T2g

and Eg matrix elements.

Based on our calculated d–electron self–energies
ΣFLEX(k, ω), we calculate poles of single particle Greens
functions and plot the obtained ImG(k, ω) for V and Pd
in Fig. 2. Here we compare the results of our many–body
calculation with the energy band structures obtained by
LDA. Although many versions of the double counting
potentials currently exist27, to illustrate the k− and ω
dependence of the FLEX self–energy we merely subtract
from ΣFLEX(k, ω) its local value, Eq. (28), at ω = 0
in order to visualize ImG(k, ω). As one sees, the pri-
mary effect of the self–energy is the renormalization of
the d–electron bandwidth and a small broadening that
is acquired by the d–electrons due to the appearance of
the imaginary part of ΣFLEX(k, ω). We use the same
self–energies (calculated at U=0.2 Ry) as plotted in Fig.
1.

Note that although the present data suggests the no-
tion of locality for the self–energy in real space, we draw
this conclusion from the plots that are given at energy
scale of ±1 Ry (our Fig. 1), which is of course much
larger of typical energies of paramagnons known to be
strong in Pd. To verify the presence of spin fluctuations
within our method, we have plotted the imaginary part
of the interacting spin susceptibility for Pd at small fre-
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FIG. 1: Calculated self–energy Σ(k, ω) (top is the real part, and bottom is imaginary part) using FLEX approximation for t2g
and eg electrons in V and Pd for the wavevector k traversing along (0ξξ) direction of the Brillouin Zone. The circles show the
result of the sum over all k–points representing the local FLEX self–energy. A representative value of Hubbard U=0.2 Ry is
used in these plots, but the notion of locality persists for a whole range of U’s.

quencies and for several wave vectors q. The result is
shown in Fig. 3 where one sees the divergent behavior
of Imχ(q, ω) at frequencies . 0.01 Ry when q → 0 that
is characteristic of damped ferromagnetic spin waves18.
Zooming the precise behavior of the self–energy at this
scale would be interesting in principle, but likely requires
a lot more elaborated study with the full inclusion of tem-
perature broadening in the simulation and understanding
the role of the self–consistency within FLEX.

We now would like to compare the results of our cal-
culations with the self–energies obtained using DMFT
and directly with experiment. Unfortunately, the most
accurate solvers developed to date are based on the
Continuous Time Quantum Monte Carlo method (CT–
QMC)24, which work on imaginary time–frequency axis,
and obtaining frequency dependence of the self–energy
on the real axis involves an analytical continuation al-
gorithm which is known to be not very accurate. How-
ever, one can easily perform calculations of correlation
induced electronic mass enhancement in both metals us-
ing DMFT(QMC) since it can be extracted directly from
the knowledge of ΣDMFT (QMC)(iωn) on imaginary axis.
The mass enhancement is then determined as the Fermi
surface average of the frequency derivative of the self–
energy taken at either ω = 0 or at iωn → 0. This is also
a more sensitive way to compare various approximations

for the self–energy.

In order to perform LDA+DMFT(QMC) calculations
we downloaded Embedded DMFT code developed by
Haule38: The LDA part of the code uses the full–
potential Linear Augmented Plane Wave method (FP–
LAPW) as implemented in the WIEN2k package39. A
k–grid of 26 x 26 x 26 divisions of the reciprocal unit cell
and a plane–wave cutoff of RMTKmax = 8 were used in
the LDA calculation. To deal with the DMFT impurity
problem, cubic harmonics representation as a basis was
utilized, and the CT–QMC solver based on hybridiza-
tion expansion40 was used at temperature T = 290K and
1909 Matsubara points on imaginary axis. The double–
counting potential was determined under the “nominal”

occupancy scheme38 where a nominal valence of n
(0)
d = 3

was used for the case of Vanadium and n
(0)
d = 10 for

Palladium.

Fig. 4 shows our calculated mass enhancements for
V or Pd. To gain some physical insights on approxi-
mations used in these simulations, we choose to provide
these data as a function of U . One can see that for small
values of U both FLEX and DMFT give very similar
mass enhancements. This is quite easy to understand
because when U goes to zero, due to the emergent lo-
cality of the self–energy evident from Fig. 1, the FLEX
provides a good approximation for solving the impurity
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FIG. 2: Effect of FLEX self-energy on the calculated poles of
single particle Green’s functions for V and Pd as compared
with their LDA band structures . The local FLEX value
at ω = 0 is subtracted from ΣFLEX(k, ω) when visualizing
ImG(k, ω). Hubbard U=0.2 Ry is used.

problem while self–consistency imposed by DMFT is not
essential1. However, as U increases, FLEX delivers sig-
nificantly larger values of λ than DMFT. This can also be
understood since we start approaching the spin density
wave transition which occurs at Uc = 0.31 Ry for V and
at 0.26 Ry for Pd within FLEX.

A recent publication addressed the specific heat renor-
malization in Pd using LDA+DMFT method with FLEX
as the impurity solver. The deduced λ was found to be
in the range 0.03− 0.09 for the values of U between 1 to
4 eV. This is in accord with our LDA+DMFT(QMC)
simulation as seen from Fig. 4. At least within
LDA+DMFT(FLEX), the result for such small mass en-
hancement can be understood from the Stoner argument,
if we ignore DMFT self–consistency. The structure of
the expression for the susceptibility is then RPA like, it
is the same in both momentum–resolved and local cases.
Then the use of the local susceptibilities instead of mo-
mentum resolved ones in Eqs. (19)–Eq. (21) results in

FIG. 3: Imaginary part of interacting susceptibility ma-
trix (taken as sum of its diagonal matrix elements) for Pd
plotted as a function of frequency for several wave vectors
q =(ξ00)2π/a with ξ =0.1 (squares),0.2 (circles), 0.3(trian-
gles), 0.4 (rhombs). Hubbard U=0.2 Ry is used.

SDW instability at higher values of critical U (Uc=0.43
Ry for V and Uc=0.59 Ry for Pd) while our fixed value
of U = 0.2 Ry produces less enhanced local interacting
susceptibility and a smaller mass enhancement. Overall,
the trends that we monitor here are pretty much expected
from a vast amount of simulations performed on models1.
Thus, one can conclude that from the standpoint of the
comparison with the experiment, both DMFT(QMC)
and DMFT(FLEX) calculations underestimate the mass
enhancement of Pd, while our full momentum resolved
FLEX implementation is capable to provide a more re-
liable estimate, at least for the range of the values of U
employed in the present study. One can speculate that
FLEX still gives an unreliable result while DMFT needs
a significantly larger value of U to deal with this prob-
lem but the possibility of magnetic ordering transition
at larger U ’s should not be overlooked. Another option
is the need for self–consistent treatment of spin fluctua-
tions and electron–phonon interactions while extracting
the specific heat renormalization but this study is well
beyond the scope of the present work.

One can finally comment on the results of a re-
cently proposed DMFT+FLEX scheme17, Eq. (27). As
a result of the weak coupling regime that we study
here for V and Pd, we can approximate ΣDMFT (ω) by
ΣDMFT (FLEX)(ω) = ΣDC(ω), and the mass enhance-
ments that would be obtained within it will practically
coincide with the ones that we find within FLEX it-
self. If, on the other hand, one uses23 ΣDC(ω) =
ΣFLEXloc (ω), Eq. (28), and because the d–electron self–
energies ΣFLEX(k, ω) are found to be well approximated
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FIG. 4: Comparisons between LDA+FLEX and
LDA+DMFT approximations for predicting correlation
induced electronic mass enhancement factor λ in V and
Pd. The calculations with Dynamical Mean Field Theory
are performed using Quantum Monte Carlo method as
implemented in Ref.38.

by ΣFLEXloc (ω), the mass enhancements that would be
obtained now will be the ones that we find from DMFT,
thus bringing no advantage in such combination at least

for the problem of Pd.

IV. IV. CONCLUSION

In conclusion, by implementing a combination of k−
and ω− dependent self–energy found from fluctuational
exchange approximation with LDA, we are able to incor-
porate the effect of momentum resolved spin fluctuations
on the calculated single particle spectra of real materi-
als. Applicability of the approach was demonstrated for
two elemental metals, V and Pd whose self–energies have
been found remarkably k–independent justifying the use
of local approximations. However, we find corresponding
mass enhancement data to be different when comparing
the results of our calculations with local LDA+DMFT
approach, where LDA+FLEX delivers better agreement
with experiment for the range of values of U . 0.2
Ry. The method is naturally combinable with Dynam-
ical Mean Field Theory which would allow to properly
take into account all sorts of local excitations, includ-
ing satellites, atomic multiplets, etc. that are frequently
seen in photoemission spectra of real correlated systems.
We are hoping that such extension may also provide ad-
ditional clues on the electronic properties of unconven-
tional superconductors, where one can track materials
dependence of the superconductivity, which is somewhat
lacking when addressing this problem using model Hamil-
tonians.
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