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Abstract

How to make a model of a non-Fermi-liquid metal with efficient current dis-

sipation is a long-standing problem. Results from holographic duality suggest a

framework where local critical fermionic degrees of freedom provide both a source

of decoherence for the Landau quasiparticle, and a sink for its momentum. This

leads us to study a Kondo lattice type model with SYK models in place of the

spin impurities. We find evidence for a stable phase at intermediate couplings.
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1 Introduction

How to make a model of a metal which is not a Fermi liquid, both in terms of the single-

electron physics and in terms of its transport properties, is a long-standing problem in

theoretical physics. A general field-theoretic strategy to make a non-Fermi liquid metal

(NFL) is to couple a Fermi surface to some other gapless degrees of freedom. If those

modes are bosonic (such as gauge fields or fluctuations of an order parameter)1, the

coupling must be (at least) trilinear, schematically ψ†ψφ, and the Landau quasiparticle

decays predominantly by emission of soft φ modes. This process does not change the

current much; in such models, therefore, the transport lifetime is much longer than the

single-particle lifetime. On the other hand, there seem to exist NFLs where the two

timescales are comparable, and have the same temperature dependence. This suggests

that there should be other ways to make a NFL.

Not long ago, some people [2, 3, 4, 5, 6] were desperate enough to make progress on

this problem that they tried to use gauge/gravity duality: an exotic large-N conformal

field theory with a dual description in terms of Einstein gravity in one higher dimension

was subjected to a chemical potential for a global U(1) symmetry.2 The retarded

Green’s function of local fermionic operators in the resulting state revealed a Fermi

surface in momentum space, near which the self-energy behaved as a power-law in

1For a review of the large literature, see [1].
2For a more leisurely discussion of these issues, see also §5 of [7].

1



frequency:

Gψ(ω, k)
small ω∼ 1

ω − vFk⊥ − G(ω)

with G(ω) ∼ ω2ν , indicative of a non-Fermi liquid metal. The special case of ν → 1/2,

where G ∼ ω logω, is the marginal Fermi liquid Green’s function of [8].

In [5], the power-law behavior was traced the region of the extra-dimensional ge-

ometry near the black-hole horizon. With the benefit of some hindsight [5, 9], the key

feature of the near-horizon geometry of the black hole in this construction is that it

describes a z = ∞ fixed point: its fluctuations are power-law in frequency, and es-

sentially3 independent of momentum – they are localized critical excitations. Hence,

when coupled to a Fermi surface, they are able to render incoherent the propagation

of the quasiparticles, and at the same time absorb arbitrary amounts of their momen-

tum. Therefore, in a model where the quasiparticle decay is dominated by scattering

off these excitations, the transport lifetime will equal the single-particle lifetime, and

the power law in the conductivity ρ(T ) will match that of the fermion self-energy, as

in the marginal Fermi liquid phenomenology [8].

The holographic construction summarized above, or even its ‘semi-holographic’ re-

duction [5, 9], have the drawback that the description of the z = ∞ fixed point is

in terms of a mysterious gravitational system, whose dynamics is only under control

in a limit N → ∞ with infinitely many degrees of freedom at each point in space.

Corrections to this limit require one to confront quantum gravity, or at least the back-

reaction of quantum effects on the geometry [11, 12]. It would be useful to replace the

near-horizon AdS2 × R2 region of the geometry with a more tractable locally critical

system.

Such local quantum criticality is a fascinating idea, whose realization is desirable

also as a justification of dynamical mean field theory [13, 14]. Such a fixed point is

roughly a critical theory at each point in space, and hence requires the participation of

many degrees of freedom. As explained in [15, 16, 17, 18], this intuition can be made

precise by studying the dependence of the density of states on the energy. Dimensional

analysis requires
dn

dE
(E) = eS0δ(E) + eS1

1

E
.

The first term represents a groundstate entropy S0 and violates the Third Law of

Thermodynamics. The second term is not integrable and requires the appearance

of a new energy scale which violates the z = ∞ scaling and, as a consequence of

this argument, cannot be disentangled from the low energy physics. The holographic

3In fact, as emphasized in [10], in the holographic construction described above, there is a weak,

analytic dependence on the momentum. The authors of [10] call this ‘semi-local criticality’. This is a

feature of the holographic strange metal construction that we will not reproduce.
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construction is most naturally interpreted in the canonical ensemble, and at T � µ

and leading order in N , gives an extensive entropy which remains nonzero at T → 0,

suggesting a violation of the Third Law and the associated instabilities. The low-

energy fate of the construction is obscured since classical gravity requires N → ∞
before T/µ → 0, and by the fact that the gravity construction involves many degrees

of freedom besides the Fermi surface.

This discussion motivates the study of more accessible constructions of z =∞ fixed

points, to which one might couple a Fermi surface. With this in mind, we cannot avoid

thinking about the SYK (Sachdev-Ye-Kitaev) model [19, 20, 21, 22], which is a solvable

model of local quantum criticality, and which has many features in common with

(dilaton) gravity in AdS2 [23, 24, 21, 22]. For our purposes of destroying quasiparticles,

we require a z =∞ fixed point with fermion operators carrying a conserved U(1) charge.

Such a generalization of the SYK model is provided in [22]:

HSYK =
N∑
ijkl

Jijklχ
†
iχ
†
jχkχl Jijkl = 0, J2

ijkl =
J2

2N3
. (1.1)

Its low-energy physics should be similar to dilaton gravity plus electromagnetism in

AdS2.

A single SYK model has no notion of space, since each fermion talks to every other.

Since we are interested in the effects of the z = ∞ fixed point on the physics of the

Fermi surface, we must introduce some notion of locality. Therefore, we consider a

lattice of SYK clusters, decoupled from each other at the outset. Depicting a single

‘cluster’ of complex fermions as , a 1d implementation of the model can be

illustrated as follows:

Figure 1: A cartoon of the model we study in this paper. Each blob represents an independent SYK

model. The vertical edges represent the random couplings gix. The horizontal edges represent the

translation-invariant hopping amplitudes t.

The model is a rather direct and crude discretization of the AdS2×Rd near-horizon
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geometry of the extremal charged black hole in AdSd+2. Nevertheless, we will see that

it reproduces many of the features of interest of the holographic strange metal of [5, 6].

To be specific, the hamiltonian we will study is H = H0 +Hint, with

H0 = −t
∑

〈xy〉∈lattice

ψ†xψy + h.c.+
∑

x∈lattice

HSY K(χxi, J
x
ijkl), Hint =

∑
x,i

gixψ
†
xχxi + h.c.

where ψx, χxi are complex canonical fermion annihilation operators, with {ψ†x, ψy} =

δxy. Since ψ form a Fermi surface under H0, we refer to them as itinerant fermions.

We occasionally refer to the χ modes as cluster fermions. The couplings gix are inde-

pendently Gaussian:

gix = 0, gixgjy = δijδxyg
2/N.

There are some precedents for our study. The result of hybridizing conduction

electrons with the SY (as opposed to SYK) model, and its connection with holog-

raphy, is studied in [23, 24]. The model studied in this paper is simpler in that no

fractionalization is required to write down the Hamiltonian.

The system we study here has some similarities with models of heavy fermions,

and in particular those devoted to understanding NFL behavior in those systems, such

as, for example, [25]. This paper solves a model of conduction electrons coupled to

localized f -electrons by random hybridization terms. The f -electrons have random

site energies and a uniform Hubbard U . The model is approximated using dynamical

mean field theory. There is a large literature studying such heavy-fermion-like models

using DMFT. One goal of this work is to understand better the local (momentum-

independent) form of the self-energy assumed by the DMFT analysis.

Some related work has also appeared during the overly long gestation of our project.

[26] makes lattices of SYK clusters, coupled by a less dangerous four-fermion coupling,

and studies the propagation of information. [27] studies the coupling of a single SYK

cluster to fermions which can hop (essentially in infinite dimensions) by the same kind

of hybridization term we study; this model lacks a notion of locality, however. [28]

couples non-locally several flavors of SYK clusters. [29] studies the phase diagram of

two clusters by quadratic terms. Most recently and closest to our work, [30, 31, 32]

study a chain of SYK clusters coupled by (random and non-random) quadratic links;

although the starting point does not have a Fermi surface, the resulting states of

matter may be closely related to ours. Studies of higher-dimensional generalizations

of the SYK model, with various motivations, include [33, 34, 35, 36, 37, 38, 39, 40].

In particular, [40] realizes a bosonic analog of the semi-holographic construction using

SYK chains.

In the next section, we analyze the model at large N , arriving at the same picture

as in the semi-holographic models. The advantage of having an explicit model of the
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z → ∞ fixed point is that we can analyze the extent to which the large-N and low-

energy limits commute. In section §3, we analyze limits of the space of couplings

and map out possible phase diagrams. In section §4, we attempt to make the fixed

point perturbative by continuing in the number q of fermions participating in the SYK

interactions. In section §5 we describe a DMRG study to decide between the possible

phase diagrams proposed in §3.

Figure 2: A diagram of the model in two spatial dimensions. The vertical (blue) bonds represent

the random hybridization couplings gxi. The black horizontal bonds are the uniform hoppings, t.

Most of our work applies in any number of spatial dimensions, and only the dis-

cussion of §5 is specific to one dimension. To emphasize this we include a diagram of

the model in two dimensions in Fig. 2. In Fig. 3 we sketch our picture of the phase

diagram of the model in the space of couplings J/t, g/t studied here.

2 Large-N analysis

2.1 SYK review

We will use the complex fermion avatar of the SYK model described in [22], and here we

provide a brief description of its relevant known properties. The degrees of freedom are

a set of canonical fermions χi ({χi, χ
†
j} = δij, {χi, χj} = 0, i = 1..N) governed by the

Hamiltonian (1.1). The object of interest to us is the disorder averaged fermion green

function G(τ − τ ′) =
〈
χ†a(τ)χa(τ

′)
〉

. This quantity can be calculated diagramatically

by noticing that the only diagrams which survive disorder averaging are the ones in

which interaction vertices can be grouped into pairs with identical indices.

The diagrams contributing at leading order in 1/N are those in which the vertices
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Figure 3: A (possibly optimistic) cartoon view of the proposed phase diagram. Orange: “reverse

Kondo” refers to the regime where one linear combination of the fermions in each cluster hybridize

with the mode of the Fermi surface at that site, leaving behind at low energies a chain of clusters with

N − 1 modes. Even for large J , we expect that the hybridization term is a relevant perturbation of

the SYK hamiltonian, so we expect this phase to continue into the upper right corner where t is the

smallest energy scale. Cyan: When g/J is too small (at fixed N), the hybridization is unable to mix

the levels of the clusters, and in the infrared, the Fermi surface decouples; this phase is labelled FS

× SYK. We estimate this phase boundary to occur where g is comparable to the single-cluster level

spacing: g ∼ ∆E ∼ e−aNJ . At infinite N , therefore, this phase does not persist.

are paired as locally as possible starting from the interior of the diagram moving

outwards: this leads to the series of so-called melon diagrams. This says that the

one-particle irreducible part of G, the self energy Σ, is itself a product of Green’s

functions: Σ(τ) = J2G2(τ)G(−τ). Since there are no quadratic terms in H, the free

propagator is G0 = (iω)−1 in frequency space.

At small frequencies and strong coupling, the free (iω)−1 part of Schwinger-Dyson

equation for the fermion propagator G−1(ω) = (iω)−1 − Σ(ω) becomes negligible com-

pared to the self energy, resulting in the following closed set of integral equations for

the Green’s function:

∫
ds G(τ − s)Σ(s) ≈ −δ(τ), Σ(τ) = J2G(τ)2G(−τ) = .

These equations allow a power law solution for the Green’s funciton; here we quote the

result from [22]:

GSY K(ω) = −i
( π
J2

)1/4
√

2β

π

Γ(1
4

+ βω
2π

)

Γ(3
4

+ βω
2π

)
, GSY K(ω) = −i

( π
J2

)1/4 sgn ω√
|ω|
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at finite and zero temperature respectively, and at half filling. Away from half filling,

the Green’s function has a phase which we discuss in section 4. Most significantly, we

note that the mass dimension of the SYK field is ∆(χ(τ)) = −1
4
.

We can consider generalizing the (q = 4)-fermion interactions of HSY K to more

general powers: H(χ) = Ji1···iqχ
†
i1
· · ·χiq . Redoing the above analysis gives ν(q) = 2−q

2q

and mass dimension ∆q(χ(τ)) = −1
q
. We will take advantage of this parameter in §4.

It is also possible to define - and consider coupling to - the bath field

χ̃i ≡
∑
jkl

Jijklχ
†
jχkχl

which is the object multiplying χi in HSY K . The bath field has correlator and scaling

dimension 〈
χ̃†(ω)χ̃(ω)

〉
∝ (iω)+ 1

2 , ∆(χ̃(t)) =
3

4
.

For general q, these are modified to
〈
χ̃†(ω)χ̃(ω)

〉
∝ (iω)

q−2
q and ∆(χ̃(t)) = q−1

q
.

2.2 Using SYK clusters to kill the quasiparticles and take

their momentum

The system we will study for the rest of the paper has H = HFS +HSY K +Hint with

HFS =
∑
〈xy〉

tψ†xψy + h.c. =

∫
ddkε(k)ψ†kψk, Hint =

∑
x,i

gixψ
†
xχxi + h.c.

We denote respectively the unperturbed and full 〈ψψ〉 propagators with a thin and

thick black line. The 〈χχ〉 propagator, denoted by a red line, includes the full series of

melon diagrams. Disorder contractions are drawn as a dashed line.

=
1

ω − vFk⊥
, =

〈
χ†xχy

〉
, = disorder contraction

The itinerant-fermion Green’s function is given by a series of alternating ψ and χ

propagators. The only choice to make is how to contract the various interaction vertices

in doing the Gaussian disorder averages. Any pattern other than the one shown below

constrains an index sum over SYK flavors and is therefore suppressed by powers of

1/N :

= + + + . . .

Thus, the ψ self-energy is Σ(ω, k) = g2G(ω) (just as in the holographic model). If

we are interested in low energy physics near the Fermi surface, the SYK clusters are
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in the conformal limit and the Green’s function behaves as

Gψ(ω, k)
small ω

=
1

ω − vFk⊥ − g2GSY K(ω)

This is of the same form as found in the charged black hole calculation. In that

context, various ν arise, but all have ν ≥ 0. In contrast, our model has ν = −1
4
,

that is, G(ω) ∼ ω−
1
2 . This self-energy is not only non-analytic, but also infinite at

ω → 0. As a consequence, the Green’s function vanishes at the Fermi surface. The

spectral density A(k, ω) = 1
π
ImG(k, ω) near the Fermi surface is illustrated in Fig. 4.

For general q, the exponent is 2ν = 2
q
− 1, still negative for all q > 2.

Figure 4: The self-energy diverges at ω = 0, leading to a zero of the Green’s function, and of the

spectral density A(k, ω), exactly at the Fermi surface.

Coupling to the bath field χ̃ would seem to give a more-familiar positive value of

ν = +1
4
. For general q, it would give ν = q−2

2q
, which approaches a marginal fermi

liquid as q → ∞. We will see below, however, that this is a place where the N → ∞
and low energy limits do not commute.

The conductivity from the itinerant fermions can be calculated using the Kubo

formula. In the large N limit, the transport analysis of [41, 42] (and related semi-

holographic analyses [43, 44]) can largely be carried over. The temperature dependence

of the DC conductivity is a power-law determined by the localized-fermion Green’s

function exponent as σ ∝ T−2ν . In particular, coupling to the SYK fermion and

coupling to the bath field yield, at large N , a resistance which is proportional to T−1/2

and T 1/2 respectively.
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The divergence of the resistance as T → 0 is related to the fact that the hy-

bridization coupling is a relevant perturbation; this is a similar phenomenon to the

resistance minimum in the Kondo problem [45]. In the Kondo case, the interaction is

only marginally relevant, and hence the resistance minimum occurs at an exponentially

low scale; here, for q > 2 the interaction is relevant by a finite amount. In the limit

q → 2, the interaction becomes marginal, suppressing the temperature at which the

resistance rise sets in. We study this limit further in §4.

Does the Fermi surface delocalize the clusters?

Contributions to the cluster fermion Green’s function G are again of the form

+ + + +. . .

where the only decision to be made is the manner of disorder contraction. Here is a

place where the randomness of the hybridization couplings gix is crucial: the processes

by which Gxy would develop off-diagonal terms vanish by the disorder average over gix.

The cluster fermions therefore stay localized, on average (however GxyGxy will not be

zero).

+

+

+

+ · · ·

Figure 5: The corrections to the

localized-fermion propagator G at order

1/N .

Futhermore, the onsite corrections to the SYK

Green’s function are small; they are of order 1/N .

The leading order correction is obtained by sum-

ming the ‘turtle’ diagrams in Fig. 5. Taken to-

gether, this series of diagrams combines into the

object g2

N
G2

0(ω)
∫

d̄dk G(kω), as we show in Ap-

pendix A. Thus there is the possibility that the

SYK-ness of the cluster fermion will be disrupted

at parametrically low energies. In Appendix A, we

show that this correction in fact does not modify

the leading low frequency behavior, even at fre-

quencies small compared to 1/N .

Now consider the effects of δG on the itinerant

propagator. The leading-in-N self-energy G(ω) itself diverges like ω−1/2 at low fre-

quency. It therefore dominates over δG, which vanishes at asymptotically small ω, as

we show in Appendix A.

2.3 Replica analysis

The leading-order diagrammatic calculation above can be reproduced by a replica cal-

culation. It suffices to consider a single cluster impurity. The replicated action before
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any disorder averaging is

S[ψ, c] =
∑
a

∫
dτ
∑
i

c̄iaτ∂τciaτ + f̄xaτ (∂τ − ξ(∂x)) fxaτ

+
∑
ijkl

Jijklc̄iaτ c̄jaτckaτclaτ +
∑
i

gic̄iaτfaτ (rimp) + h.c.

Here ξ(k) is the band dispersion. In what follows, we will occasionally drop the time

arguments for compactness of writing. In that case the argument τ is always accom-

panies the replica index a and τ ′ with b. Averaging over gs with a gaussian weight of

width g produces a term

I ≡ exp

(
g2

2N

∫
dτdτ ′f̄a(rimp, τ)fb(rimp, τ

′)
∑
i

caτic̄bτ ′i

)
.

This is decoupled with two hermitian Hubbard Stratonovich (HS) fields ρab(τ, τ
′) and

σab(τ, τ
′). By ‘hermitian’, we mean ρab(τ, τ

′) = ρ?ba(τ
′, τ).

I =

∫
DρabDσab exp

[
−1

2

∫
dτdτ ′ N

∑
ab

ρ2
ab(τ, τ

′) + σ2
ab(τ, τ

′) +
1

2

∫
dτdτ ′g

(∑
ab

ρabF
−
ab + iσabF

+
ab

)]

where F±ab = ψ̄a(τ)ψb(τ
′)±

∑
i c̄ia(τ)cib(τ

′).

Introducing two sets of Hubbard-Stratonovich fields following Bray-Moore [46] and

Sachdev [22], we can factorize the contribution from the average over J as∫ ∏
ijkl

dJijkl e
−N3

J2
ijkl

J2 e
∫
dtJijklc̄icj c̄kcl = e

J2

4N

∑
ab

∫
dt

∫
dt′|

∑
i c̄iatcibt′ |4

=

∫
[dQdP ] exp

(∫
dτdτ ′

∑
ab

(
− N

4J2
Qab(τ, τ

′)2 − N

2
Qab|Pab(τ, τ ′)|2 +QabPba

∑
i

c̄iacib

))
(2.1)

where Q and P are real and complex symmetric and hermitian fields, respectively.

Dropping the “site” index on the cluster fermions, the replicated disorder averaged

action takes the form
∑

ab S0[ψ] +NS1[c] +NS2(ρ, σ,Q, P ) with

S0[ψ] =

∫
dτdτ ′ddx ψ̄axτ

(
δab∂τ − δabξ(∂x)−

g

2
δd(x− rimp)(ρab + iσab)

)
ψbxτ ′ ,

S1[c] =

∫
dτdτ ′ c̄aτ

(
δab∂τ +

g

2
(ρab − iσab)−QabPba

)
cbτ ′ ,

S2(ρ, σ,Q, P ) =
1

2

∫
dτdτ ′

(
ρ2
ab + σ2

ab +
1

2J2
Q2
ab +Qab|Pab|2

)
.
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The saddle point equations for Q,P, ρ, and σ resulting from this effective action give

us the standard SYK saddle point results

Pab = 〈c̄aτcbτ ′〉 , Qab = J2|Pab|2

supplemented by two additional relations for the fields ρ± iσ.

ρ+ iσ = −g 〈c̄aτcbτ ′〉 , ρ− iσ =
g

N

〈
ψ̄aτ,x=0ψbτ,x=0

〉
.

Upon integrating out ψ and c degrees of freedom, and assuming no replica symmetry

breaking (and setting the position of the cluster at the origin rimp = 0) one finds the

effective action (e−NSeff ≡
∫

[DcDψ]e−S),

Seff = S2(ρ, σ,Q, P )−ln det
(
∂τ −QP +

g

2
(ρ− iσ)

)
− 1

N
ln det

(
∂τ − ξ(∂x)−

g

2
δd(x)(ρ+ iσ)

)
.

We can identify

ΣSY K = J2G|G|2 +
g2

N
Gψ(x, x), Σψ = g2Gsyk

which reproduces the previous result. In fact the replica analysis goes a step beyond

the analysis of the previous section: it sums the series of corrections to the SYK

propagator in powers of g2/N , of which we only explicitly analyzed the first term. The

δ(x) in these equations appears because we studied a single impurity, and yields a

momentum-independent self energy upon Fourier transforming.

3 Towards finite N

3.1 Renormalization group analysis of impurity problem

Consider a single SYK cluster coupled to the itinerant mode. There is quite a bit of

physics in this impurity problem, and it will be an extremely useful starting point. As

we noted in §2.3, the large-N analysis is basically identical.

Weak coupling. First consider the regime where g � t, J . In this case, the corre-

lation length of ψ is large compared to the lattice spacing, and we can treat the itinerant

fermions in the continuum. Following the literature on the Kondo problem [45], only

the s-wave mode of the Fermi surface ψ0(k) ∼ k
∫
dΩ̂ψ(Ωk) couples. Linearizing the s

wave mode near the fermi surface with a bandwidth cutoff Λ the Hamiltonian for the

left/right moving fields ψL/R =
∫ Λ

−Λ
dk e±ikrψ0(k + kf ) is [45]

HFS =
vF
2π

∫ ∞
0

dr
(
ψ†L∂rψL − ψ

†
R∂rψR

)
11



This implies that the free fields under consideration have mass dimension [ψL/R] = 1
2
.

The scaling dimension of the SYK fields was determined in the low energy analysis in

the previous section and found to be 1/4 for the fermion field and 3/4 for the bath

field. The perturbation we are considering are of the forms

∆H = gψ†L(0)χ, ∆H̃ = g̃ψ†L(0)χ̃.

The scaling dimension of the coupling constant g determines whether the hybridiza-

tion becomes more or less important at low energies. Demanding that the action

is dimensionless, the coupling to the bath field has mass dimension −[
∫
dt ψ†χ̃] =

−
(
−1 + 1

2
+ 3

4

)
= −1

4
and is therefore irrelevant. The coupling to the fundamental

field χ has dimension −[
∫
dt ψ†χ] = −

(
−1 + 1

2
+ 1

4

)
= +1

4
, and is therefore relevant.

Here again we depart from the holographic construction, where G ∼ ω2ν with positive

ν – according to the above analysis the construction studied here, only G with negative

ν can dominate the infrared physics.

Strong coupling. Now consider the regime where g � t, J . This is a highly-

underscreened Anderson model. At each site, the itinerant fermion ψ(x) is coupled to

a particular linear combination 1
N

∑
i giχi(x) ≡ χ̃N(x) of the SYK fermions at site x.

Take linear combinations of the χi to orthogonalize the first N − 1 with χ̃N . Then in

the limit where |g � J | (where g is the average of the gi), we can simply neglect the

four-fermion interactions involving c̃N and the result of the hybridization is simply to

pair up ψ(x) and χ̃N(x) at each site, leaving behind at low energy only N−1 decoupled

SYK clusters. This can be called a reverse Kondo phase: whereas the Kondo effect

describes the absorption of an impurity into the Fermi sea of conduction electrons, here

the situation is reversed: the impurities absorb the conduction electrons!

→

Figure 6: When g � J , we can neglect the SYK interactions, and our problem becomes quadratic.

Hybridizing a localized fermion (flat band) with an itinerant fermion produces this bandstructure.

3.2 Possibilities for the phase diagram

Considerations of the topology of coupling space constrain the possibilities for the low-

energy behavior of our system. Given that g is a relevant perturbation of the decoupled
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fixed point with g = 0, and given that at large g, it produces a mass gap, the possible

RG flow diagrams are as follows:

1: 2: 3:

Figure 7: Possible behaviors of the beta function for g, given the known asymptotics. Arrows point

toward the infrared.

The middle case (2) is nongeneric4. Therefore, if we find a fixed point, it is stable.

In the following section, we will study the half-chain entanglement entropy. The above

scenarios for the beta function would imply the following rough consequences for this

quantity, respectively:

1: 3:

Figure 8: Behavior of the half-chain entanglement entropy in scenarios 1 and 3 of Fig. 8.

The respective scenarios would imply these behaviors of the half-chain entropy if the

system were translation invariant. Although there are examples of highly-disordered

fixed points which exhibit logarithmic area-law violation [47, 48], it is not clear whether

this is inevitable.

We note that the behavior in scenario 3 does not violate RG monotonicity [49] of

the ‘central charge’, because the UV fixed point is tensored with decoupled, localized

clusters and is not a field theory. More generally, in a system without Lorentz sym-

metry,
(

d
d logL

)2

S 1
2

may be positive. There are indeed known examples of disordered

[50] and otherwise non-relativistic systems [51] where the ‘central charge’ (coefficient of

4A well-known example where the beta function has a double zero is in the BCS phase diagram,

where β(V ) ∝ V 2 + .... Here the double zero occurs at the free theory, and is therefore protected by

dimensional analysis.
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logL) increases towards the infrared. Note further that the condition we are violating,(
d

d logL

)2

S 1
2
< 0, is a stronger condition than d2

dL2S 1
2
< 0. In any case, the quantity

S 1
2
(L) does not obey a known convexity theorem analogous to that of [52], which ap-

plies instead to the entanglement entropy as a function of subsystem of size ` of a fixed

total system5.

4 Coupling a Fermi surface to SYK2.0001 clusters

In the limit q → 2, the coupling
∫
ψχ† becomes marginal. Therefore, in this limit,

there is a hope that the NFL fixed point we’re after can be accessed perturbatively in

g. Indeed, as we sketch here, this seems to be the case.

Consider the replicated and disorder-averaged euclidean partition function6 at T =

0

Zn =

∫
[dψdχ]e−S0−g2a2−2∆(q)

∫
dτ

∫
dτ ′

∑
x,i ψx(τ)χxi(τ)†χxi(τ ′)ψx(τ ′)† .

Replica indices accompany the time labels and are suppressed. Here S0 is the action

for the fixed point described by a Fermi surface〈
ψ†(ω, k)ψ(ω, k)

〉
0

=
1

iω − vF |k − kF |

times decoupled SYKq clusters at each site in their conformal limit,〈
χ†(τ)χ(0)

〉
0

= C(J)sign(τ)|τ |−2/q.

Here C(J) = CJ−2/q with C > 0 [22, 53]. The factor of a2−2∆(q) (where 2−2∆(q) = q−2
q

is the scaling dimension of χψ†)) has been pulled out of g to make g dimensionless.

We implement the RG as in [54], by expanding

Zn = Zn
?

(
1− g2

〈∫
dτ

∫
dτ ′ψ(τ)χ(τ)†χ(τ ′)ψ(τ ′)†

〉
0

+g4

〈∫
dτ

∫
dτ ′ψ(τ)χ(τ)†χ(τ ′)ψ(τ ′)†

∫
dτ ′′

∫
dτ ′′′ψ(τ ′′)χ(τ ′′)†χ(τ ′′′)ψ(τ ′′′)†

〉
0

+ · · ·
)
.

(4.1)

5Thanks to Tarun Grover for helpful discussions of these constraints on the behavior of S(`, L).
6In many disordered systems, one must consider the RG evolution of the probability distribution for

the disorder. The renormalization group strategy pursued here, of studying the flow of the disorder-

averaged action, assumes that the Gaussian disorder-distribution for gix is self-similar under an RG

transformation – we are allowing only its variance g to evolve.
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We wish to let g = g(a) run with the UV cutoff a in such a way as to cancel the

dependence of Z on a, perturbatively in g. The cutoff dependence appears explicitly in

the perturbation term and implicitly in the need to regulate collisions of the integrations

|τ − τ ′′| > a.

The contractions in the O(g2) term produce corrections to the renormalized action

of the form

δS = g2

∫
dτ
(
ψ†(τ)ψ(τ)A+ χ†(τ)χ(τ)B

)
where

B =

∫
a

dτ
〈
ψ†(τ, x)ψ(0, x)

〉
0

=

∫
a

dτ

∫
d̄ωe−iωτ

∫
d̄dp

iω − vF |p− kF |
=

∫
a

dτ

∫
d̄dpe−vF p⊥τ

' 1

2

∫ β

−β
dτ

Ωd−1

(2π)d︸ ︷︷ ︸
≡Kd

kd−1
F

∫
dp⊥e

−ivF p⊥τ︸ ︷︷ ︸
= 1
vF τ

= −Kdk
d−1
F

vF

(∫ a

−β
+

∫ β

a

)
dτ

τ
= 0 (4.2)

and

A =

∫
a

dτ
〈
χ†(τ)χ(0)

〉
0

= C(J)

∫
a

dτsign(τ)|τ |−2/q = 0.

In (4.2), β was introduced as an IR regulator7. A, were it nonzero, would be an

innocuous correction to the ψ chemical potential. Away from half-filled clusters, where

|G(τ)| 6= |G(−τ)|, we find A ∼ a1−2/q. Similarly, B would be a correction to the

chemical potential for χ. In [22, 53], such a chemical potential is included in the

analysis; the phase of G depends on it, but it is otherwise innocuous as well.

The interesting term for us is the (connected) contraction of the g4 term which

renormalizes g2. This is

δg2 = − 1

2

= (−1)2 1

2

∫
a

dτ
〈
χ†(τ)χ(0)

〉
0

〈
ψ†(τ, x)ψ(0, x)

〉
0

+ h.c.

' 1

2
C(J)

Kdk
d−1
F

vF

∫
a

dττ−2/qτ−1 ' 1

2
C(J)

Kdk
d−1
F

vF
a−2/q . (4.3)

The minus sign in the first line is from the relative sign between the O(g4) term and

the O(g2) term in (4.1). The minus sign in the second line is from the fermion loop –

7 Note that since zero is a bosonic matsubara frequency, it is important that we integrate from

−β to β (and divide by two), rather than just a to β. The latter would give B
?∼ log aT . Thanks to

Aavishkar Patel for patient explanations of this point.
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we are contracting non-adjacent fermion operators. Crucially, C(J) is positive for all

values of the parameter θ (which is determined by the filling).

Therefore,

βg2 ≡ d

d log a
g2 = (2− 2∆(q))g2 +

1

2
C(J)

Kdk
d−1
F

vF

(
−2

q

)
g4 +O(g6).

Here

2− 2∆(q) =
q − 2

q
= 1− 2

2 + ε
= ε+O(ε2), − 2

q
= − 2

2 + ε
= −1 + ε+O(ε2).

Besides the trivial fixed point at g = 0, this indicates a fixed point 0 = βg2(g = g?) at

g2
? =

2vF

C(J)Kdk
d−1
F

ε+O(ε2),

which is indeed at weak coupling, parametrically in ε. We note that it is also para-

metrically small in the area of the Fermi surface, kd−1
F , suggesting that perhaps the

physics at q = 4 can be captured by this analysis. The fixed point depends on J like

g2
? ∼ C(J)−1 ∼ J2/q.

5 Numerical analysis

We have attempted to perform some quantitative studies of the model considered in this

paper, in the special case of a one-dimensional chain. We use the standard technique

for numerical studies of one dimensional systems, the density matrix renormalization

group (DMRG) [55]. Specifically, we use a single site matrix product state sweeping

algorithm [56]. There are several factors which make it difficult to study this system

numerically.

The unusually large size of the local Hilbert space at each site (which is 2Nsyk+1, as

opposed to 2 for a spin 1/2 chain or 4 for spinful fermions) means that the computa-

tional resources required at a given bond dimension are significantly larger than what is

needed for studying spin chains. Furthermore, as is the case in most studies of systems

with quenched disorder, we are interested in correlation functions averaged over many

disorder realizations. Therefore, at each set of coupling constants, we must perform

enough trials to achieve convergence. In some cases the number of trials required is

relatively small (∼ 50) and in other cases it is larger (∼ 500).

We use two different methods for our DMRG study. One is a completely standard

MPS based DMRG sweeping algorithm in which we take Nsyk = 6 on each site. This
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number is not very large, but is perhaps comparable to the numbers one might hope

for in material realizations of such a model.

The other method, which we’ll refer to as the truncation method, begins with

Nsyk = 12 on each site. The size of the local Hilbert space here is too large to work

with in our DMRG algorithm, so we form an isometry which projects the Hamiltonian

into the subspace spanned by the 128 = 64 ∗ 2 lowest energy eigenstates. That is, we

exactly diagonalize Hsyk with 12 modes in the presence of one extra fermionic mode

which the Hamiltonian doesn’t act on. So we truncate a Hilbert space of the form

212⊗ 2→ 64syk ⊗ 2. The entire Hamiltonian, as well as the hybridization and hopping

terms, are projected into this truncated space.

The idea behind the truncation approach is that the properties of interest (in par-

ticular, the singular self-energy) arise due to the special low energy physics of the SYK

cluster. The expressions given for the Green’s functions of the large N theory con-

sidered in section 2.2 were all valid at low energies and at momenta near the Fermi

surface. The relevant energy scales to compare are the hybridization coupling g and

the bandwidth D of the states that are retained. This is found to be D ∼ 0.26J at

Nsyk = 12.

To help map out the phase diagram, one of the most convenient and easily accessible

quantities we can measure is the entanglement entropy of subregions of the chain (EE).

In particular, (a review is [57]) a one dimensional conformal field theory (CFT) in the

thermodynamic limit has an entanglement entropy which grows with the size L of the

subregion as c
3

logL, where c is the central charge of the CFT8. Similarly, for a CFT

on a space of length L, the half-chain entanglement entropy scales with the system

size as c
6

logL. Thus, measuring the growth of the half-chain entanglement entropy

with the system size allows us to access some universal information about the phase

and its low-energy excitations, from just the groundstate wavefunction. We note that

the emergence of Lorentz symmetry, much less conformal symmetry, is unlikely in our

disordered system, so the measured behavior of the entanglement entropy is a proxy

for the number of low-energy degrees of freedom.

Considering fixed J , we know the behaviour of the half-chain EE at both small g

and very large g. At zero g, the SYK clusters are decoupled from the free fermion

chain. The latter is responsible for all of the spatial entanglement, and has c = 1 for

spinless fermions. That is what we observe from the slope of the half chain EE. At

large g, the hybridization term dominates and we expect the itinerant fermions to bind

into a local singlet. This phase has a finite correlation length which becomes very small

at large g. Hence the EE satisfies an area law and c = 0. We observe this behaviour

8For simplicity, we assume a non-chiral spectrum.
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in our simulations.

As g increases from zero, there are two possibilities, as we discussed in §3. Although

finite size effects are hard to overcome in our particular model, measuring the slope of

the half chain EE at different values of g provides some evidence for either scenario 1

or 3 above.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

g
0.550
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S(
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Chi = 32.0000, J = 1.00

Figure 9: The half-chain entanglement S(L/2)− S(2) at fixed L = 52, as a function of g, averaged

over up to 600 samples.

Half-chain entropies. In Fig. 9 we plot S(L/2) − S(2) at fixed L for various

g, and observe smooth growth to a maximum value, suggestive of scenario 3 with

an intermediate-coupling fixed point. S(2) is subtracted to remove a g-dependent

constant shift. Beyond the maximum, all the entanglement is destroyed; this is the

reverse Kondo phase.

The right panel of Fig. 10 illustrates the fact that the coupling to bath field g̃ψχ̃ is

irrelevant – it is identical to the free fermion answer for all g̃.

The left panel of Fig. 10 shows the half-chain entanglement entropy as a function

of log(L) for J = 2, t = 1, and various values of g, computed using the truncation

scheme. We expect these choices of J and g are in the regime of validity of the

truncation especially for the smaller values of g <∼ D/10. For comparison, the results

obtained using the standard DMRG are shown in Appendix B.

There is a regime at small g where the entanglement grows faster with L than the

free-fermion answer at small system sizes At larger L, the curve levels off to approx-

imately the same slope as the free-fermion curve. One possibility is that this is due
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Figure 10: Left: half-chain entanglement entropy versus log of system size for J = 2, t = 1, and

various values of g, the coupling to the fermion field, computed in the truncated scheme. c< and

c> are six times the slope calculated at log2 L < 5 and log2 L ≥ 5 respectively. Right: half-chain

entanglement entropy versus log of system size, for various values of g̃, the coupling to bath field. In

the latter case, the curves all lie on top of the free fermion curve. The inset gives fits to the slope

(times 6).

to some extra finite-range correlation between the cluster degrees of freedom on top of

the extended contribution from the itinerant degree of freedom, and that the true area

law violating term has the same coefficient as a decoupled spinless fermion.

Another possiblity is that the apparent rejoining with the free fermion value is

related to a previously-observed difficulty in the use of DMRG algorithms for disordered

critical systems [58]. If we parametrize the EE as

S1/2(L) =
1

6
log2 L+

δcdis
6

g(L) + const,

where g(x) = log2(x) at x < lcrossover ∼ 25 and saturates to a constant at x >∼ lcrossover,

this reproduces our observed results. A more conservative explanation is that c ∼ 1

throughout the extended phase.

In addition to the scaling of the EE with the system size, we can also look at

the dependence on the size of the bipartition at fixed system size. Fitting our data

to known expressions for the finite size entanglement in critical systems [59, 60, 61]

provides another method to extract the ‘central charge’. The quality of the fit is

also a useful diagnostic of whether the system is approximately critical or has a finite

correlation length. Our results are shown in Figure 11; at small g we observe a small

rise in the entanglement but cannot draw a strong conclusion. At larger values of g we

observe the onset of a finite correlation length.
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Figure 11: The finite size entanglement as a function of the position of the entanglement cut at a

fixed system size L = 52. We plot only the even sites in order to remove even-odd oscillations. At

small values of g, the data is well fit by the expression S(x) = c
6 log2

(
2L
π sin(πx/L)

)
+ a. At larger

values of g the fit fails. Data are averaged over 200− 400 disorder realizations.

Correlation functions. Fig. 12 shows the fermion equal-time correlation functions

in the DMRG approximation to the groundstate. The absolute value is averaged over

50 instances.

The result fits well to ∣∣〈ψ†xψL/2〉∣∣ ∼ | sin 2kF (x− L/2)|
|x− L/2|α

(5.1)

with α < 1. The free fermion answer is of the form (5.1) with α = 1. For g > 0,

the exponent is larger than the free fermion value. It would be interesting to try to

reproduce this change in the exponent using the q − 2 expansion. The right column

of Fig. 12 shows that at the same values of g, the so-called localized fermions χ are

indeed still localized. The bottom row of Fig. 12 shows that at large g, everybody is

localized – this is the reverse Kondo phase.

Lesion studies. To what extent is the use of the SYK model as the cluster

Hamiltonian crucial? We can attempt to address this question by perturbing the

cluster Hamiltonian by (relevant) quadratic terms. In the case of purely quadratic

clusters, the entire Hamiltonian is quadratic, and we can study larger system sizes,

calculating the entropy by the Peschel formula [62]. The result is shown in Fig. 13.

Another reason to study the case of quadratic clusters is to identify the length scale

at which localization sets in. In one dimension, to which our numerical work is sadly

limited, localization is likely the inevitable long-distance fate. We see in Fig. 13 that

at g <∼ 0.3 localization sets in at system sizes which are too large for us to accurately

study using DMRG. Therefore we cannot rule out the possibility that the quartic model
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Figure 12: Left: The absolute value of correlation functions of the itinerant ψ fermions between

the middle site and the site x, for various g. Right: The absolute value of correlation functions of the

localized χ fermions between the middle site and the site x, for various g.

would show a finite correlation length as well at larger system sizes. However, whereas

localization is guaranteed for the disordered quadratic system in one dimension [63], it

is possible that the interacting system remains extended.

6 Conclusions

In this paper we have studied what happens when we couple a Fermi surface to a

lattice of locally critical clusters. We have provided evidence from various approaches

for the existence of a novel strange metal fixed point at intermediate values of the

root-mean-square hybridization coupling g. This fixed point is stable to perturbations

of g. Intra-cluster quadratic terms are likely to be relevant. We note that the proposed

new strange metal fixed point is not Lorentz invariant.

A comment about the role of large N is in order. The power-law in the SYK fermion

Green’s function is a crucial ingredient in the construction. Such critical behavior in a

(0+1)-dimensional system requires a large number of degrees of freedom: if one takes

ω → 0 before N →∞, the low-lying level spacing of the clusters will be discrete. The

effects of this phenomenon are visible in the top left of Fig. 3: if the level spacing of

the SYK clusters is large compared to t and g, the hybridization coupling has no effect.
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Figure 13: Half-chain entropy as a function of chain length for a free-fermion chain (uniform hopping

t = 1) hybridized with local quadratic clusters, with random quadratic intra-cluster interactions of

mean 1. Different curves are different values of the root-mean-square hybridization coupling g, which

varies from 0 to 2.0. The solid line is the asymptotic behavior in the clean limit, S(L) = 1
6 log(L) + a.

At leading order in large-N , the power-law in the cluster-fermion Green’s function is

directly carried over into the itinerant fermion self-energy, as in the holographic calcula-

tion. In contrast, at finite N , only power-laws corresponding to relevant perturbations

(in the sense of §3) affect the low-energy behavior of the itinerant fermions. The bath

field χ̃, for example, is irrelevant for all q. This restricts the resulting states to have

self-energy exponent 2ν < 0.

We should emphasize that the stability of the putative strange metal fixed point is

predicated on not adding other (quadratic) operators to the SYK cluster hamiltonian.

(Such relevant deformations are also visible in the semi-holographic description [9].)

So inevitably, the physics we have discussed should only be realized at intermediate

temperatures.

The title of the paper merits a comment. Its maximal chaos is a signature property

of the SYK model, and this justifies our use of the term ‘local quantum chaos’ for the

behavior of the clusters. This maximal quantum chaos is a property of the states in

the middle of the spectrum. In contrast, the essential ingredient for our construction is

the power-law behavior in frequency of the groundstate and low-temperature Green’s

functions. The absence of quasiparticles certainly requires breaking of integrability,

as borne out by the data show in Fig. 13. But whether there is indeed an intimate

connection between these different facets of the physics of SYK is an interesting open

question.
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We conclude with a suggestion for a direction for progress towards corroborating

the existence of this fixed point and studying its properties. The matrix product ansatz

used in the DMRG study of §5 does not take advantage of all of the structure of the

problem. In particular, the fact that the clusters do not couple directly to each other

represents a kind of ‘entanglement bottleneck’ – any long-ranged entanglement along

the chain necessarily passes through the itinerant fermion sites. To take advantage

of this, it would be useful to construct a variational tensor product state with the

structure of our interaction graph shown in Fig. 1. It would also be interesting to

try to apply an adaptation of the dMera of [58] to answer the question regarding the

scaling of the EE in our disordered system.

A 1/N corrections to the cluster-fermion propaga-

tor

As promised in §2, here we analyze the 1/N correction to the propagator of the localized

fermions. Starting from the conformal SYK propagator as G0, and denoting convolution

over the intermediate variable by ∗, we have

G(ω, x− y)− G0(ω)δxy =
g2

N
G0(ω)2G0

xyδxy +
g4

N
G0(ω)3δxyG

0
xz ∗G0

zy + . . .

Fourier transforming and using results from §2, we find

δG(kω) = N−1

(
g2G2

0(ω)

∫
d̄k G0(kω) + g4G3

0

∫
d̄k G0(kω)2 + . . .

)

=
g2

N

∫
d̄kG2

0

1

G0(k)−1 − g2G0

=
g2

N
G2

0

∫
d̄kG(k).

=
g2

N
G2

0(ω)

∫
d̄dk

1

iω − ξ(k) + ig2(π/J2)1/4|ω|−1/2sgn ω

Analysis of the integral. Thus the 1/N correction to the localized fermion

propagator is proportional to

D(ω) ≡
∫

d̄dkG(k, ω) = G(ω;xx), (A.1)

the local density of states of the itinerant fermions, the quantity which determines the

dI/dV curve measured by scanning-tunneling microscopy.
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Some difficulty arises from the UV-sensitivity of this integral: the answer is not a

property of only the physics at the Fermi surface, but depends also on short-distance

details. Here we will show that, given the form of the SYK propagator G0(ω), the

resulting D(ω) vanishes at small frequency, independent of those short-distance de-

tails. Therefore, this 1/N correction does not modify the leading low-frequency scaling

behavior of G, even at frequencies very small compared to N .

Let us parametrize G as follows:

G(k, ω) =
1

ω − ξ(k)− Σ(ω)
. (A.2)

(Note that we assume k-independent self-energy.) To learn something about integrals

of the form (A.1), consider free fermions with bandstructure ξ(k), in which case we

have the Schwinger-Dyson equation

(−i∂t + ξ(i∂x))Gx,0(t) = δd(x)δ(t)

and hence by Fourier transform

G(k, ω) =

∫
dtddxe−i(kx−ωt)Gx,0(t),

(A.2) obtains with Σ(ω) = 0. On the other hand, we also have

Gx,0(t) ≡ 〈gs| c†x(t)c0(0) |gs〉 =

∫
d̄dk

∫
d̄dq 〈gs| e−iωkt+ikxc†kcq |gs〉 =

∫
q∈FS

d̄dqe−iωqt+iqx.

Therefore

D(ω) =

∫
d̄dk

∫
dtddxe−i(kx−ωt)

1

V

∑
q∈FS

e−iωqt+iqx (A.3)

=

∫
dteiωt

∫
q∈FS

d̄dqe−iωqt (A.4)

=

∫
q∈FS

d̄dqδ(ω − ωq) (A.5)

=

∫
q∈FS

d̄dq
δ(q − q(ω))

∂qω
= θ(µ− ω)ρ(ω) (A.6)

which is the density of filled levels. Notice that (A.6) correctly reproduces∫
dωD(ω) =

∫
d̄dqGq(t = 0) =

∫
d̄dq 〈gs| c†qcq |gs〉 =

∫
q∈FS

Nq = N

the total number of fermions.
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For example, consider the case when the Fermi level is near the edge of a 1d band,

so that ρ(ω) = 1√
ω−2t

θ(2t−ω). Let us reproduce this answer using (A.6) starting from

the Green’s function (A.2). Linearizing about the Fermi surface k⊥ = k − kF ,

ξ(k) = −µ+ vFk⊥ +O(k⊥)2 (A.7)

would give

D(ω)
?
= Ωdk

d−1
F

∫ Λ

−Λ

dk⊥
1

f(ω)− vFk⊥
= Ωdk

d−1
F log

(
f(ω)− vFΛ

f(ω) + vFΛ

)
which depends on Λ at large Λ – this is the UV sensitivity we advertised above. The

answer will be different if we include the next term in the expansion (A.7) about the

Fermi surface:

ξ(k) = −µ+ vFk⊥ + tk2
⊥ + ...

since then the integral ∼
∫ Λ dk⊥

k2
⊥

would be finite as Λ → ∞. For definiteness, focus

on the 1d band edge example: that is, suppose d = 1 and µ is near the bottom of the

band so vF = 0. Then

D(ω) =

∫ ∞
−∞

d̄k
1

ω − tk2
=

1√
ωt

(the contour can be closed in either half-plane). The imaginary part is only nonzero

for ω < 0, and reproduces the divergence at the 1d band edge.

Armed with this intuition, we return to the case of interest, where at low frequency

the singular self-energy dominates, and f(ω) ∼ ω−1/2. In that case (still in d = 1 for

now),

D(ω) =

∫
d̄k

1

Cω−1/2 − µ− ξ(k)
=

∫
d̄k

ω1/2

C − (µ− ξ(k))ω1/2
.

Assume that ξ is a polynomial of degree D in k, ξ = a0k
D +a1k

D−1 + · · · ; then letting

u ≡ ω
1

2D k, this integral at small ω is

D(ω) = ω
1
2
− 1
D

∫
d̄k

1

C − a0uD + a1uD−1ω
1

2D + · · ·
ω→0∼ ω

1
2
− 1
D

Alternatively, suppose the we are working in a lattice model, so that the momentum

integral
∫

d̄dk is over a finite Brillouin zone; in that case, D(ω)
ω→0∼ ω1/2. In either case,

we find D(ω)
ω→0→ 0.

In general d, the same analysis gives

D(ω) = ω1/2

∫
d̄dk

ω
1
2kD + ...

= ω
1
2
− d

2DKd

∫
ud−1du

uD + · · ·
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where Kd = Ωd−1

(2π)d
. The integral converges when D > d, in which case the power of

omega is 1
2
− d

2D
> 0, and the integral vanishes as ω → 0. Alternatively, we can

appeal to the lattice regulator: compactness of the Brillouin zone guarantees that

D(ω)
ω→0→ ω

1
2

∫
d̄dk 1

C
is ω

1
2 times a finite integral.

B Other numerical results
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Figure 14: S1/2 vs Log(L) calculating using standard DMRG at small g.

The standard vMPS algorithm with only six cluster fermions is an especially poor

representative of the large N model at very small g; if g is smaller than the finite size

energy gap between the SYK ground state and the excited states then the hybridization

interaction is essentially frozen out. The truncated version of the algorithm starting

with a larger Hilbert space does a better job in representing the large N model.

A benchmark of the truncation method. The truncation method outlined

above is an uncontrolled approximation for the sizes of local Hilbert spaces available

to us. As a test of the method, in Fig. 15 we show the spectrum of an SYK impurity

coupled to a single extra fermionic mode (one site of the chain). The bottom part of

the truncated spectrum matches quite well with the correct spectrum. The top of the

truncated spectrum is wrong: the level repulsion from the levels above is missing. We

used this method in studying the growth of the half-chain entanglement entropy in
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Figure 15: A check on the validity of the truncation method. Top Left: first 128 levels of an SYK

cluster with Nsyk = 12 hybridized with a single extra fermion mode. Top Right: the spectrum of

the truncated SYK hamiltonian (truncated to 64 levels) coupled to an extra fermion mode. Bottom:

Fractional error in the energy eigenvalues of the lowest fifteen states.

addition to the standard MPS algorithm.

Acknowledgements

We thank Sid Parameswaran for collaboration at the initial stage of this work,

and Dan Arovas, Tarun Grover, Aavishkar Patel and Shenglong Xu for helpful input.

This work was supported in part by funds provided by the U.S. Department of Energy

(D.O.E.) under cooperative research agreement DE-SC0009919. This research was done

27



using resources provided by the Open Science Grid [64, 65], which is supported by the

National Science Foundation award 1148698, and the U.S. Department of Energy’s

Office of Science.

28



References

[1] S.-S. Lee, “Recent Developments in Non-Fermi Liquid Theory,” arXiv preprint

(2017) 1703.08172. 1

[2] S.-S. Lee, “A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi

Ball,” Phys. Rev. D79 (2009) 086006, 0809.3402. 1

[3] H. Liu, J. McGreevy, and D. Vegh, “Non-Fermi liquids from holography,”

Phys.Rev. D83 (2011) 065029, 0903.2477. 1

[4] M. Cubrovic, J. Zaanen, and K. Schalm, “String Theory, Quantum Phase

Transitions and the Emergent Fermi-Liquid,” Science 325 (2009) 439–444,

0904.1993. 1

[5] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, “Emergent quantum criticality,

Fermi surfaces, and AdS(2),” Phys.Rev. D83 (2011) 125002, 0907.2694. 1, 2, 4

[6] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, “Strange metal

transport realized by gauge/gravity duality,” Science 329 (2010) 1043–1047,

1003.1728. 1, 4

[7] J. McGreevy, “TASI lectures on quantum matter (with a view toward

holographic duality),” 1606.08953. 1

[8] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E.

Ruckenstein, “Phenomenology of the normal state of Cu-O high-temperature

superconductors,” Phys. Rev. Lett. 63 (Oct, 1989) 1996–1999. 2

[9] T. Faulkner and J. Polchinski, “Semi-Holographic Fermi Liquids,” 1001.5049. 2,

22

[10] N. Iqbal, H. Liu, and M. Mezei, “Semi-local quantum liquids,” JHEP 04 (2012)

086, 1105.4621. 2

[11] A. Allais, J. McGreevy, and S. J. Suh, “A quantum electron star,” Phys. Rev.

Lett. 108 (2012) 231602, 1202.5308. 2

[12] A. Allais and J. McGreevy, “How to construct a gravitating quantum electron

star,” Phys. Rev. D88 (2013), no. 6 066006, 1306.6075. 2

[13] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical

mean-field theory of strongly correlated fermion systems and the limit of infinite

dimensions,” Rev. Mod. Phys. 68 (1996) 13–125. 2

29

http://xxx.lanl.gov/abs/1703.08172
http://xxx.lanl.gov/abs/0809.3402
http://xxx.lanl.gov/abs/0903.2477
http://xxx.lanl.gov/abs/0904.1993
http://xxx.lanl.gov/abs/0907.2694
http://xxx.lanl.gov/abs/1003.1728
http://xxx.lanl.gov/abs/1606.08953
http://xxx.lanl.gov/abs/1001.5049
http://xxx.lanl.gov/abs/1105.4621
http://xxx.lanl.gov/abs/1202.5308
http://xxx.lanl.gov/abs/1306.6075


[14] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A.

Marianetti, “Electronic structure calculations with dynamical mean-field

theory,” Rev. Mod. Phys. 78 (2006) 865–951. 2

[15] K. Jensen, S. Kachru, A. Karch, J. Polchinski, and E. Silverstein, “Towards a

holographic marginal Fermi liquid,” Phys. Rev. D84 (2011) 126002, 1105.1772.

2

[16] K. Jensen, “Chaos and hydrodynamics near AdS2,” 1605.06098. 2

[17] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking

in two dimensional Nearly Anti-de-Sitter space,” 1606.01857. 2

[18] A. Almheiri and B. Kang, “Conformal Symmetry Breaking and

Thermodynamics of Near-Extremal Black Holes,” 1606.04108. 2

[19] S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum

Heisenberg magnet,” Physical Review Letters 70 (May, 1993) 3339–3342,

cond-mat/9212030. 3

[20] A. Georges, O. Parcollet, and S. Sachdev, “Mean Field Theory of a Quantum

Heisenberg Spin Glass,” Physical Review Letters 85 (July, 2000) 840–843,

cond-mat/9909239. 3

[21] A. Kitaev, “A simple model of quantum holography,” unpublished (2015)

http://online.kitp.ucsb.edu/online/entangled15/. 3

[22] S. Sachdev, “Bekenstein-Hawking Entropy and Strange Metals,” Phys. Rev. X5

(2015), no. 4 041025, 1506.05111. 3, 5, 6, 10, 14, 15

[23] S. Sachdev, “Strange metals and the AdS/CFT correspondence,” Journal of

Statistical Mechanics: Theory and Experiment 11 (Nov., 2010) 22, 1010.0682. 3,

4

[24] S. Sachdev, “Holographic metals and the fractionalized Fermi liquid,”

Phys.Rev.Lett. 105 (2010) 151602, 1006.3794. 3, 4

[25] E. Miranda, V. Dobrosavljevic, and G. Kotliar, “Kondo disorder: a possible

route towards non-Fermi-liquid behaviour,” Journal of Physics: Condensed

Matter 8 (1996), no. 48 9871. 4

[26] Y. Gu, X.-L. Qi, and D. Stanford, “Local criticality, diffusion and chaos in

generalized Sachdev-Ye-Kitaev models,” Journal of High Energy Physics 2017

(2017), no. 5 125. 4

30

http://xxx.lanl.gov/abs/1105.1772
http://xxx.lanl.gov/abs/1605.06098
http://xxx.lanl.gov/abs/1606.01857
http://xxx.lanl.gov/abs/1606.04108
http://xxx.lanl.gov/abs/cond-mat/9212030
http://xxx.lanl.gov/abs/cond-mat/9909239
http://online.kitp.ucsb.edu/online/entangled15/
http://xxx.lanl.gov/abs/1506.05111
http://xxx.lanl.gov/abs/1010.0682
http://xxx.lanl.gov/abs/1006.3794


[27] S. Banerjee and E. Altman, “Solvable model for a dynamical quantum phase

transition from fast to slow scrambling,” Physical Review B 95 (2017), no. 13

134302. 4

[28] A. Haldar and V. B. Shenoy, “Strange Half Metals and Mott Insulators in SYK

Models,” ArXiv e-prints (Mar., 2017) 1703.05111. 4

[29] X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, “Competition between

Chaotic and Non-Chaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev

Model,” 1705.03406. 4

[30] X.-Y. Song, C.-M. Jian, and L. Balents, “A strongly correlated metal built from

Sachdev-Ye-Kitaev models,” arXiv preprint (2017) 1705.00117. 4

[31] P. Zhang, “Dispersive SYK model: band structure and quantum chaos,”

1707.09589. 4

[32] A. Haldar, S. Banerjee, and V. B. Shenoy, “Higher-dimensional SYK Non-Fermi

Liquids at Lifshitz transitions,” ArXiv e-prints (Oct., 2017) 1710.00842. 4

[33] M. Berkooz, P. Narayan, M. Rozali, and J. Simn, “Higher Dimensional

Generalizations of the SYK Model,” JHEP 01 (2017) 138, 1610.02422. 4

[34] G. Turiaci and H. Verlinde, “Towards a 2d QFT Analog of the SYK Model,”

JHEP 10 (2017) 167, 1701.00528. 4

[35] M. Berkooz, P. Narayan, M. Rozali, and J. Simn, “Comments on the Random

Thirring Model,” JHEP 09 (2017) 057, 1702.05105. 4

[36] C.-M. Jian, Z. Bi, and C. Xu, “A model for continuous thermal Metal to

Insulator Transition,” Phys. Rev. B96 (2017), no. 11 115122, 1703.07793. 4

[37] Y. Gu, A. Lucas, and X.-L. Qi, “Energy diffusion and the butterfly effect in

inhomogeneous Sachdev-Ye-Kitaev chains,” SciPost Phys. 2 (2017), no. 3 018,

1702.08462. 4

[38] D. V. Khveshchenko, “Thickening and sickening the SYK model,” 1705.03956. 4

[39] J. Murugan, D. Stanford, and E. Witten, “More on Supersymmetric and 2d

Analogs of the SYK Model,” JHEP 08 (2017) 146, 1706.05362. 4

[40] S.-K. Jian, Z.-Y. Xian, and H. Yao, “Quantum criticality and duality in the

SYK/AdS2 chain,” 1709.02810. 4

31

http://xxx.lanl.gov/abs/1703.05111
http://xxx.lanl.gov/abs/1705.03406
http://xxx.lanl.gov/abs/1705.00117
http://xxx.lanl.gov/abs/1707.09589
http://xxx.lanl.gov/abs/1710.00842
http://xxx.lanl.gov/abs/1610.02422
http://xxx.lanl.gov/abs/1701.00528
http://xxx.lanl.gov/abs/1702.05105
http://xxx.lanl.gov/abs/1703.07793
http://xxx.lanl.gov/abs/1702.08462
http://xxx.lanl.gov/abs/1705.03956
http://xxx.lanl.gov/abs/1706.05362
http://xxx.lanl.gov/abs/1709.02810


[41] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, “From black holes to

strange metals,” 1003.1728. 8

[42] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy, and D. Vegh, “Charge transport by

holographic Fermi surfaces,” Phys. Rev. D88 (2013) 045016, 1306.6396. 8

[43] A. Mukhopadhyay and G. Policastro, “Phenomenological Characterization of

Semiholographic Non-Fermi Liquids,” Phys. Rev. Lett. 111 (2013), no. 22

221602, 1306.3941. 8

[44] B. Doucot, C. Ecker, A. Mukhopadhyay, and G. Policastro, “Density response

and collective modes of semi-holographic non-Fermi liquids,” 1706.04975. 8

[45] I. Affleck, “Quantum impurity problems in condensed matter physics,” Les

Houches 2008 proceedings (2008) 0809.3474. 9, 11

[46] A. Bray and M. Moore, “Replica theory of quantum spin glasses,” Journal of

Physics C: Solid State Physics 13 (1980), no. 24 L655. 10

[47] G. Refael and J. E. Moore, “Entanglement entropy of random quantum critical

points in one dimension,” Physical review letters 93 (2004), no. 26 260602,

cond-mat/0406737. 13

[48] G. Refael and J. E. Moore, “Criticality and entanglement in random quantum

systems,” Journal of physics a: mathematical and theoretical 42 (2009), no. 50

504010, 0908.1986. 13

[49] A. B. Zamolodchikov, “Irreversibility of the Flux of the Renormalization Group

in a 2D Field Theory,” JETP lett 43 (1986), no. 12 730–732. 13

[50] R. Santachiara, “Increasing of entanglement entropy from pure to random

quantum critical chains,” Journal of Statistical Mechanics: Theory and

Experiment 2006 (2006), no. 06 L06002, cond-mat/0602527. 13

[51] B. Swingle, “Entanglement does not generally decrease under renormalization,”

Journal of Statistical Mechanics: Theory and Experiment 2014 (2014), no. 10

P10041. 13

[52] T. Grover, “Certain General Constraints on the Many-Body Localization

Transition,” ArXiv e-prints (May, 2014) 1405.1471. 14

[53] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev,

“Thermoelectric transport in disordered metals without quasiparticles: The

Sachdev-Ye-Kitaev models and holography,” Phys. Rev. B95 (2017), no. 15

155131, 1612.00849. 14, 15

32

http://xxx.lanl.gov/abs/1003.1728
http://xxx.lanl.gov/abs/1306.6396
http://xxx.lanl.gov/abs/1306.3941
http://xxx.lanl.gov/abs/1706.04975
http://xxx.lanl.gov/abs/0809.3474
http://xxx.lanl.gov/abs/cond-mat/0406737
http://xxx.lanl.gov/abs/0908.1986
http://xxx.lanl.gov/abs/cond-mat/0602527
http://xxx.lanl.gov/abs/1405.1471
http://xxx.lanl.gov/abs/1612.00849


[54] J. Cardy, Scaling and renormalization in statistical physics, vol. 5. Cambridge

university press, 1996. 14

[55] S. R. White, “Density matrix formulation for quantum renormalization groups,”

Physical review letters 69 (1992), no. 19 2863. 16
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