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We study the dynamic response of a two-dimensional system of itinerant fermions in the vicinity
of a uniform (Q = 0) Ising nematic quantum critical point of d−wave symmetry. The nematic order
parameter is not a conserved quantity, and this permits a nonzero value of the fermionic polarization
in the d−wave channel even for vanishing momentum and finite frequency: Π(q = 0,Ωm) 6= 0. For
weak coupling between the fermions and the nematic order parameter (i.e. the coupling is small
compared to the Fermi energy), we perturbatively compute Π(q = 0,Ωm) 6= 0 over a parametrically
broad range of frequencies where the fermionic self-energy Σ(ω) is irrelevant, and use Eliashberg
theory to compute Π(q = 0,Ωm) in the non-Fermi liquid regime at smaller frequencies, where
Σ(ω) > ω. We find that Π(q = 0,Ω) is a constant, plus a frequency dependent correction that goes

as |Ω| at high frequencies, crossing over to |Ω|1/3 at lower frequencies. The |Ω|1/3 scaling holds also
in a non-Fermi liquid regime. The non-vanishing of Π(q = 0,Ω) gives rise to additional structure

in the imaginary part of the nematic susceptibility χ
′′

(q,Ω) at Ω > vF q, in marked contrast to the
behavior of the susceptibility for a conserved order parameter. This additional structure may be
detected in Raman scattering experiments in the d−wave geometry.

I. INTRODUCTION

The behavior of strongly-correlated fermions in the
vicinity of a quantum critical point (QCP) is one of the
most fascinating problems in many-body physics. A com-
plex interplay of dynamics, correlations, and geometry
lead to a wide array of phenomena, such as superconduc-
tivity beyond the Bardeen-Cooper-Schrieffer paradigm,
non Fermi-Liquid (NFL) behavior, competing and inter-
wined order parameters, among other effects. Today, it
is widely believed that many complex materials, most
prominently the cuprate and iron-based high Tc super-
conductors, are examples of such critical systems.

A traditional way to treat the physics near a QCP
is to study an effective low-energy model of itinerant
fermions coupled to near-critical order parameter fluctu-
ations. Within this model, one can study how soft bosons
affect fermionic properties, like the quasiparticle residue
and lifetime. At the same time one can also study how
gapless fermionic degrees of freedom affect the bosonic
properties of a system, such as critical temperatures and
scaling dimensions of order parameter fields.

The subject of this paper is the bosonic dynamics that
appears as a result of the coupling to fermions. Specifi-
cally, we study a system of fermions in two spatial dimen-
sions coupled to fluctuations of a d−wave nematic order
parameter φ near a critical point, at which φ orders. Our
goal is to understand fermion-induced dynamics of the φ
field near such a transition. This dynamics is encoded in
the d−wave fermionic polarization Π(q,Ω). In the bulk
of the paper we study Π(q,Ω) as a function of Matsubara
frequency Ωm = 2πmT . We also discuss the imaginary
part of the nematic susceptibility in real frequencies to-
wards the end of the manuscript.

At high temperatures, thermal fluctuations dominate,

and the largest term in Π(q,Ωm) is the one with Ωm = 0,
so that the dynamical properties are frozen. As the tem-
perature is lowered, quantum fluctuations become impor-
tant and eventually, at T = 0, Ωm becomes a continu-
ous variable. Then it is necessary to describe response
functions in their full momentum-frequency space. We
address the question of what is the magnitude and the
frequency dependence of Π(q = 0,Ωm) at low tempera-
ture, T → 0.

The limit of q = 0 and finite Ωm has attracted far
less attention than the opposite limit Ωm � vF q (see
e.g. Refs. 1). There are several reasons for this. First,
most theories of quantum critical phenomena in metals
predict a dynamical exponent z > 1, so that the scal-
ing regime is accessed for Ωm ∼ qz � vF q. Second, if
the order parameter is conjugate to a conserved quantity
(e.g., it couples to total fermionic density or spin), the
fermionic polarization Π(q = 0,Ωm) vanishes identically
by the conservation law and, by continuity, must be small
for Ωm � vF q.

However, recent years have seen an increasing interest
in anisotropic transitions, such as long wavelength ne-
matic QCPs with a d−wave order parameter, which we
study in this work. This order parameter couples to the
d−wave component of fermionic density, for which the
polarization is not constrained by the conservation law,
so nontrivial dynamics in the regime Ωm � vF q are in-
deed possible. The regime Ωm � vF q can be probed
in numerical simulations and is also accessible in Raman
scattering experiments. Nonzero dynamic response at
vanishing q have also been detected in neutron scattering
near ferromagnetic QCPs in several uranium compounds
2–4, although we do not explicitly discuss this case here.

In this paper we compute Π(q = 0,Ωm) at a nematic
QCP. We work at weak coupling and with a large num-
ber of fermionic flavors N . We present results appropri-
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FIG. 1. An illustration of the susceptibilities for a conserved
vs. non-conserved order parameter. The figure is a sketch
of the imaginary part of the susceptibility χ′′(q,Ω) of col-
lective excitations of a system of itinerant fermions near an
isotropic QCP (dashed line), such as a ferromagnetic QCP,
vs. a nematic QCP (solid line). In the low frequency regime
Ω � vF |q| both susceptibilities are roughly identical, with
a sharp peak at Ω ∼ vF |q| due to Landau damping of the
excitations. At higher frequencies Ω � vF |q|, the isotropic
response vanishes due to the conservation law (e.g. spin con-
servation). The nematic susceptibility flattens and then rises

as Ω1/3, then switches to Ω, before finally beginning to decay
at Ω ∼ εF (not shown). The dotted blue line is a reference

line for Ω1/3.

ate to several parametrically broad regimes of frequency.
There are two relevant frequency scales in the problem
(expressions for which will appear in the next section),
both much smaller than the Fermi energy εF . The first,
ω1, is the frequency below which the Landau damping of
the bosonic degrees of freedom by the fermions becomes
important. The second scale ω0 � ω1, is the one below
which the self-energy of the fermions becomes important
and the system develops NFL behavior. Schematically,
our results are

Π(q = 0,Ωm) ≈


const. + |Ωm|, ω1 � |Ωm| � εF
const. + |Ωm|1/3, ω0 � |Ωm| � ω1

const. + |Ωm|1/3, |Ωm| � ω0

We emphasize that the frequency dependence of Π(q =
0,Ωm) does not change around Ωm = ω0, i.e., it is not
modified when the system enters the NFL regime below
ω0.

In each of the three regimes, the frequency dependence
is a small correction to the constant part. However, this
frequency dependence determines the imaginary part of
the nematic susceptibility in real frequencies, χ′′(q,Ω),
which scales as |Ω|1/3 for |Ω| � ω1 and as |Ω| for εF �
|Ω| � ω1 (see Fig. 1). This frequency dependence can
be probed, for example, by Raman scattering5.

The rest of this manuscript is organized as follows. In
Sec. II we introduce our model for a nematic QCP, give

some motivation for the idea that Π(q = 0,Ωm) 6= 0
in this model, and derive the energy scales ω0 and ω1.
In Secs. III, IV, and V we present the calculations of
Π(q = 0,Ωm), appropriate to the three regimes described
above. We follow in Sec. VI with the analysis of nematic
susceptibility and qualitative predictions for Raman scat-
tering experiments, and present our conclusions in Sec.
VII. Technical details of the calculations are discussed in
the Appendices.

II. MODEL, GENERAL REASONING, AND
ENERGY SCALES

In this section we introduce the model, present general
reasoning why Π(q = 0,Ωm) should remain non-zero, and
introduce relevant energy scales.

A. The model

We consider a two dimensional system with a scalar
boson φ(q), which undergoes a continuous transition to-
wards d−wave charge nematic order. The bare suscepti-
bility of the φ field is regular and can be approximated
by

D0(q,Ωm) =
χ0

ξ−2
0 + |q|2 + Ω2

m/c
2

(1)

where ξ0 is the bare correlation length, which increases
as the system approaches the QCP. The dynamic Ω2

m/c
2

term is often neglected (though not always6), but we keep
it.

We assume that there is a Yukawa coupling between
φ(q) and d−wave fermionic density

HI = g

N∑
n=1

∑
k,q

f(k)φ(q)ψ†n(k + q/2)ψn(k− q/2). (2)

Here, g is a coupling constant, n sums over the fermion
flavors, and f(k) is a momentum dependent vertex with
d−wave symmetry e.g., f(k) = cos kx − cos ky. Because
our analysis is not too specific to d−wave symmetry of
the nematic order, throughout the text we will keep f(k)
as some function of momentum, without specifying its
form. We will use the d−wave form only at the end of
calculations.

We assume that the fermions have a (not necessarily
circular) Fermi surface (FS), dictated by band structure.
Below, we will only need f(k) for momenta near the FS,
so we approximate f(k) by an angular function

f(k) ≈ f(k = kF k̂) ≡ f(θ) (3)

where for a non-circular FS, kF by itself depends on θ.
The effective fermion-boson model near a nematic

QCP has been discussed before, but only in the regime
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where the characteristic frequencies Ωm are small or,
at most, comparable to vF q. We will be interested in
the properties of this model in the opposite limit, when
Ωm � vF q.

The full susceptibility of the φ field differs from D0 due
to the fermion-induced bosonic self-energy Π(q,Ωm):

D(q,Ωm) =
χ0

ξ−2
0 + |q|2 + Ω2

m/c
2 + ḡΠ(q,Ωm)

(4)

where ḡ = g2χ0. The quantity ḡ has dimensions of en-
ergy and can be viewed as the effective boson-fermion
coupling constant. We work at weak coupling, meaning
ḡ � εF . The Π(q,Ωm) in Eq. (4) is the fully renormal-
ized particle-hole polarization bubble. The static part
Π(q, 0) contains a constant piece, which renormalizes ξ0
into the true correlation length ξ−2 = ξ−2

0 + ḡΠ(q →
0,Ωm = 0), and a regular q2 term, which we just incor-
porate into the existing q2 term in (4). The dynamic
part of Π(q,Ωm) contains Landau damping of the form
|Ω|/(vF |q|) at |Ωm| � vF |q|, which is a relevant pertur-
bation near the QCP. Then, at Ω� vF |q|,

D(q,Ωm) =
χ0

ξ−2 + |q|2 + Ω2
m/c

2 + γ |Ωm|
vF |q|

(5)

where γ will be explicitly defined below (see Eq. (34)).
It has been demonstrated (see e.g.1,7,8) that the charac-
teristic Ωm and q, relevant for the computation of the
fermionic self-energy, do satisfy |Ωm| � vF |q|, i.e., in
self-energy calculations one should use D(q,Ωm) given
by (5).

Our goal is to obtain the fermionic polarization and the
nematic susceptibility in the opposite regime of vanish-
ing q and finite Ωm, at the low temperature limit T → 0.
We argue that Π(q = 0,Ωm) is non-zero because there is
no conservation law for d−wave fermionic polarization.
We directly compute Π(q = 0,Ωm) using a diagram-
matic technique, starting from a particle-hole bubble of
free fermions, and adding self-energy and vertex correc-
tions to the bubble. We show that characteristic inter-
nal bosonic momenta Ω′ and q′ still obey Ω′ � vF |q′|,
even when external q vanishes and external Ωm stays fi-
nite. This will allow us to use Eq. (4) for propagators of
bosons which dress particle-hole polarization bubble. By
the same reasoning, we will use self-energy for fermions
in the bubble, which is we obtain using the same Eq. (5).

B. The polarization bubble, general reasoning

For free fermions and at small momentum q, the po-
larization Π(0)(q,Ωm) is given by

Π(0)(q,Ωm) =
kF
πvF

∫
dθ

(2π)
f2(θ)Π̃(0)(q,Ωm, θ)

Π̃(0)(q,Ωm, θ) =
iΩm − vF q cos θ

vF q cos θ
, (6)

where vF is the Fermi velocity, which for a non-circular
FS also depends on θ. This form is non-analytic, i.e.,
the value of Π(0)(q,Ωm) at Ωm, vF q → 0 depends on
the order in which the two variables go to zero. At
Ωm � vF q, Π(0)(q,Ωm) ∼ (ḡkF /vF )|Ωm|/(vF q), up to
a constant. In real frequencies, this accounts for Lan-
dau damping. In the opposite limit, Π(0)(q = 0,Ωm)
vanishes no matter what f(θ) is. This vanishing can be
understood by noticing that at q = 0 and small but fi-
nite Ωm, Π̃(0)(0,Ωm, θ) coincides with the correlator of
the total number of fermions along a particular direction
in coordinate space, taken at different times. For free
fermions, the number of fermions along any direction in
space is separately conserved (because free particles do
not scatter), hence the integrand for Π(0)(0,Ωm) vanishes
even before integration over θ.

This vanishing, however, does not hold once we in-
clude interactions. To see why this is so, consider a
model of spinless fermions, define a quadrupolar density
nf (q) =

∑
k ψ
†(k+q/2)ψ(k−q/2)f(k), and take a local

interaction between these quadrupolar densities:

H =
∑
k

[ε(k)− µ]ψ†(k)ψ(k) +H1, (7)

H1 = g
∑
q

nf (q)nf (−q), (8)

Let us compute the Heisenberg equation of motion for
nf (0) =

∑
k ψ
†(k)ψ(k)f(k). For free fermions, g = 0,

and we trivially obtain,

d(ψ†(p)ψ(p)f(p))/dt = 0, (9)

i.e. the number density of each p−state is separately
conserved. Once we turn on the interaction term, sepa-
rate p−states will no longer be conserved. For a generic
f(p) we find,

iṅf (q = 0) = [nf (0), H1]

∝
∑
k,p,q

ψ†(k + q/2)ψ†(p− q/2)ψ(k− q/2)ψ(p + q/2)

× f(k)f(p)×
[f(k + q/2)− f(k− q/2)− f(p + q/2) + f(p− q/2)]

(10)

Thus, generically, only for f(q) = 1, f(q) = q is the
R.H.S. equal to zero, as expected for density and mo-
mentum conservation9. For any other form factor, we can
expect some time-dependent behavior. Because the full
Π(q = 0,Ωm) is related to the correlator of nf (q = 0),
the time dependence of nf (q = 0) will induce dynamics
of Π(q = 0,Ωm). These dynamics are precisely the topic
of our work.

C. Energy scales

As discussed in the introduction, the model has three
parametrically broad regimes of frequency at weak cou-
pling (see e.g.1,10,11. All three regimes can be identified
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right at a QCP where the dressed correlation length ξ
diverges.

The scale ω1, where Landau damping effects become
important, can be deduced by comparing the Landau
damping term in Π(0) with D0 taken near the mass shell,
i.e., at |q| ≈ Ωm/c. Using

D−1
0 =

q2 + Ω2
m/c

2

χ0
∼ Ω2

m

c2χ0

Π(0) ∼N kF
vF

|Ωm|
vF |q|

≈ N ckF
v2
F

(11)

and setting χ0D
−1
0 ∼ ḡΠ(0), we obtain

ω1 ∼
√
Nḡ

c3kF
v2
F

=

(
c

vF

)3/2√
2NḡεF (12)

where we defined εF = vF kF /2. For frequencies well
above ω1 we can approximate D(q,Ωm) by the bare sus-
ceptibility D0(q,Ωm). For frequencies below ω1, we must
incorporate Π(0) into the boson propagator, i.e., replace
D0 with

D(q,Ωm) =
χ0

q2 + Ω2
m/c

2 + ḡΠ(0)

≈ χ0

q2 + γ |Ωm|
vF |q|

, γ ∼ NḡkF
vF

(13)

For frequencies below ω1, it is appropriate to carry out
the diagrammatic calculation of polarization using D for
internal boson lines. The internal fermion lines can be
taken as free fermion propagators G0 down to a still
lower frequency ω0, at which the dressing of fermions
by bosonic fluctuations can no longer be neglected. To
estimate ω0, we compare the inverse of the bare fermion
propagator to the one loop fermion self energy

Σ1(k, ωm) =g2

∫
d2qdΩ

(2π)3
G0(k + q, ωm + Ωm)D(q,Ωm)

∼
(

ḡ2

NεF

)1/3

|ωm|2/3, (14)

where we have included only the most singular part of
the self energy. Since the bare inverse propagator goes

as ωm, setting G−1
0 ∼ Σ1 gives

ω0 ∼
ḡ2

NεF
(15)

For frequencies below ω0, the dressing of fermion prop-
agators must be accounted for. We will also show that
in this regime vertex corrections play an important role
in the calculation of Π(q = 0,Ωm), as will be discussed
in Sec. V.

For ḡ � εF , the hierarchy of energy scales is ω0 �
ω1 � εF . This condition sets three distinct low-energy
regimes for Π(q = 0,Ωm): ω1 < |Ωm| < εF (Regime
I), ω0 < |Ωm| < ω1 (Regime II), and |Ωm| < ω0

(Regime III). Below we present calculations for each en-
ergy regime in turn.
III. PERTURBATIVE EVALUATION OF THE
POLARIZATION Π(q→ 0,Ωm) IN REGIME I

To shorten formulas, in this and the following sections
we will use three-vector notations for momentum and
frequency: q = (q0,q), k = (k0,k).

We recall that for free fermions

Π(0)(q = 0, q0) = 0, (16)

even for f(k) 6= 1. As noted earlier, this is because
free fermions cannot exchange momentum, so the par-
tial density of fermions for each direction of momentum
is separately conserved. However, as we discussed in
the previous section, there is no reason to expect that
Π(q = 0, q0) = 0 will hold once we allow fermions to
interact. We begin by evaluating the first nonzero con-
tribution to Π(q = 0, q0) within perturbation theory in
the coupling ḡ, represented by the diagrams of Fig. 2.
(See Appendix A for details.)

Let us consider the diagrams of Fig. 2. Each di-
agram contains four propagators of free fermions and
one bosonic propagator. For a constant form-factor,
these three diagrams cancel exactly, and the cancella-
tion can be traced to the Ward identity for number
conservation12. We show that for a non-conserved order
parameter the three diagrams do not cancel. In explicit
form we have

Π(1)(q) = I+ + I− + Iv, (17)

where the diagrams with self energy insertions are

I± =
Nḡ

χ0 (2π)
6

∫
d3kd3p G2

0(k)G0(k + p)G0(k ± q)D0(p)f2(k± q/2)f2(k + p/2) (18)

(19)
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FIG. 2. The contributions to the polarization with one bosonic propagator inserted into a particle-hole bubble. The first two
diagrams are self energy corrections and the last is the vertex correction. For a constant form-factor these three diagrams
cancel exactly, as required by the Ward identity for number conservation.

q
k + q

k + p

p− q

k
p

k′ + q

k′

q
k′ + p

15

(a)

q
k + p

k

k + q k′

k′ − q

q
k′ − p

p− q

p

16

(b)

FIG. 3. The leading contributions to the polarization with two bosonic propagators inserted into a particle-hole bubble
(Aslamazov-Larkin diagrams). At frequencies Ωm � ω1 these diagrams contribute to Π at the same order as the diagrams of
Fig. 2. For a constant form-factor, the two diagrams cancel exactly. For a non-constant form factor, calculating them mirrors
the procedure for calculating the diagrams of Fig. 2 (see Appendix E for details).

while the diagram with a vertex correction is

Iv =
Nḡ

χ0 (2π)
6

∫
d3kd3p G0(k)G0(k + q)G0(k + p)G0(k + q + p)D0(p)×

× f(k + q/2)f(k + p + q/2)f(k + p/2)f(k + q + p/2) (20)

Here, and henceforth, we replace the frequency sum by an integral, i.e. we assume T → 0. We can recast these
expressions into a more illuminating form by repeated application of the following identity of free fermion Green
functions:

G0(k + p)G0(k) = K(k + p, k)[G0(k)−G0(k + p)], where (21)

K(k + p, k) = [ip0 − ε(k + p) + ε(k)]
−1

'
[
ip0 − vF k̂ · p

]−1

, (22)

Some straightforward algebra then yields:

Π(1)(q = 0, q0) =
Nḡ

χ0 (2π)
6

∫
d3kd3p G0(k)G0(k + q)G0(k + p)G0(k + q + p)D0(p)f(k)f2(k + p/2)×

× [f(k + p)− f(k)] (23)

We immediately see that for a constant f , Π(1)(q =
0, q0) = 0, as it should, while for a momentum-dependent
f(k), the two terms in the last bracket in (23) do not can-

cel each other.

To estimate the value of the integral, we note that
bosonic momentum p is naturally constrained by kF ,
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otherwise Eq. (13) would not be valid. Approximat-
ing f(k + p) − f(k) by |p|2 and restricting integrations
over k and p by kF , we obtain by power counting that
Π(1)(q = 0, q0) at q0 < εF is a constant plus a subleading
piece proportional to |q0|:

ḡΠ(1)(q = 0, q0) = N

(
ḡ

εF

)2

k2
F

(
A+B

|q0|
εF

)
, (24)

where A,B are dimensionless constants of order one,
computed in the Appendix. The constant term is non-
universal in the sense that it depends on the behavior of
the system at bosonic momenta comparable to kF . By
contrast, the |q0| term is universal in the sense that it
depends only on the form of the bosonic propagator at
small momentum and small frequency.

IV. EVALUATION OF Π(q = 0, q0) IN REGIME II

To evaluate the polarization at frequencies comparable
to or below ω1, the Landau damping of the boson must
be explicitly incorporated. We now treat the parametri-
cally broad regime ω0 � q0 � ω1, in which the damping
of fermions can be neglected, but Landau damping of
bosons plays a dominant role. In this regime, we can
neglect the bare q2

0/c
2 piece of the boson propagator in

comparison with the Landau damping term. We again
work perturbatively in the small parameter ḡ/εF , but use
D(q) given by (13) instead of D0 for the bosonic suscep-
tibility. In addition to the two-loop diagrams of Fig. 2,
the Aslamazov-Larkin diagrams of Fig. 3 now yield con-
tributions of the same order (the extra overall factor of ḡ
in these diagrams is compensated by a 1/ḡ coming from
the Landau damping). However, they do not alter the
qualitative result, and their treatment mirrors13,14 that
of the diagrams of Fig. 2. We defer their evaluation to
Appendix E.

The power counting analysis of the integrals in Eq. 23
is similar to that of the previous section, yielding the
same constant part coming from momenta comparable
to kF . The frequency dependence, however, is altered
by the new kinematics introduced by Landau damping,

changing the exponent to 1/3 instead of 1. Explicitly:

ḡΠ(1)(q = 0, q0) = N

(
ḡ

εF

)2

k2
F

(
A+ C

(
Nḡ|q0|
ε2F

)1/3
)
,

(25)
where C is a dimensionless constant of order one, com-
puted in Appendix A. Similar to the result at q0 � ω1,
the frequency dependent piece is universal in the sense
that it depends only on the form of the propagator at
small frequency and momentum.

One can check that terms with larger number of
bosonic propagators are progressively small in ḡ/εF and
hence irrelevant. As a result, the full Π(q = 0, q0) is well
approximated by Eq. (25).

The scaling forms in the Regimes I and II, Eqs. (24)
and (25), can be viewed as the limiting cases of a single
scaling function of q0/ω1. We present this function in Eq.
(A13) in Appendix A.

V. EVALUATION OF THE POLARIZATION IN
REGIME III: ELIASHBERG THEORY

We now move to frequencies q0 . ω0. Here we must
account for both Landau damping and the large fermionic
self-energy. Seemingly, we should proceed in this case
the same way that we did in the previous section, by
incorporating the self energy ∼ ω2/3 into the fermionic
propagator, G−1(k) = i (k0 + Σ1(k)) − ε(k). Such an
approach brings up the issue of potential double counting
in diagrams 2a+2b in Fig. 2, but let us ignore this for a
moment.

The calculation of Π(1)(q = 0, q0) with the full G(k)
proceeds in the same way as for free fermions, however
now K(k + p, k) in Eq. (21) takes the form

K(k + p, k) =
[
iΣ̃(k + p)− iΣ̃(k)− ε(k + p) + ε(k)

]−1

'
[
iΣ̃(k0 + p0)− iΣ̃(k0)− vF k̂ · p

]−1

(26)

where

Σ̃(k) = k0 + Σ(k). (27)

The expression for Π(1)(q = 0, q0) becomes

Π(1)(q = 0, q0) =
Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + q)G(k + p)G(k + q + p)D(p)f(k)f2(k + p/2)×

×
[
f(k + p)−K(k + q, k)K−1(k + q + p, k + p)f(k)

]
(28)

Analyzing this expression at q0 < ω0, we see that the self-
energy gives rise to two effects. First, the term, which

was a constant without self-energy, now becomes of order

q
2/3
0 . It still comes from bosonic momentum |p| of order
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kF , but now the integral over the two fermionic disper-

sions and the two frequencies yields (q0/Σ̃(q0))2 ∼ q
2/3
0 .

Second, the low-energy contribution remains of order

q
1/3
0 because the extra q

2/3
0 from fermions is compen-

sated by an additional 1/|p|2 ∼ 1/q
2/3
0 , since the term

f(k+p)−KK−1f(k) in (28) is now of order of one rather
than of order |p|2.

We will see below that the frequency dependence of

Π(q = 0, q0) remains of order q
1/3
0 both above and be-

low ω0. However, the statement that the constant term

gets replaced by q
2/3
0 will not survive once we include

vertex corrections. To see that vertex corrections must
be included along with dressing of fermionic lines by the
self-energy we note that Π(1)(q = 0, q0) in Eq. (28) is
non-zero even when the form-factor f(k) is a constant.
This is obviously incorrect because an isotropic charge or-
der parameter (the total density) is a conserved quantity.
A survey of the s−wave problem15 shows that at a QCP,
vertex corrections are of order one at any order of pertur-
bation theory, if one uses full propagators for fermions.
The extension to large N eliminates crossed vertex cor-
rection diagrams, but ladder vertex corrections still re-
main of order one16. To verify that the full Π(q = 0, q0)
vanishes for f = 1, one has to sum up an infinite ladder
series of vertex corrections, so that an account of ver-
tex corrections is crucial to yield sensible physics in the
regime q0 � ω0. Naturally, similar corrections must also
be accounted for in our case of non-constant f(k).

To analyze the vertex corrections, we adopt a
conserving approximation12, meaning a choice of dia-
grams such that Π(q = 0, q0) vanishes for f(k = 1).
This approximation entails keeping the ladder series of
vertex corrections pictured in Fig. 5, but neglecting ver-
tex corrections involving crossings. The kinematics of
Landau damping will be of central importance to the
calculations. The Landau damping term in the boson
propagator means that the effective “velocity” of a col-
lective boson is parametrically smaller than the Fermi ve-
locity vF . Thus, in any diagram which involves a fermion
and a boson, depending on the same running momentum,
one can factorize the momentum integration. One inte-
grates over the momentum component transverse to the
FS in a fermionic propagator, and over the momentum
component along the FS in the bosonic propagator, ne-
glecting there the momentum component along the FS.
This is essentially the same physics that is incorporated
in Eliashberg theories of quantum critical metals.1,8,15,17

We emphasize that the conserving approximation is
not a controlled approximation in the usual sense of the
word. Although leading order corrections to ladder se-
ries of vertex renormalizations are small in 1/N , large N
does not in fact fully control the theory because some
higher-order non-ladder vertex correction diagrams are
not suppressed by 1/N 18,19. Furthermore, the computa-
tion of certain four-loop diagrams for bosonic susceptibil-
ity20 has cast doubt on the validity of z = 3 scaling for the
bosonic propagator. Modifications of the problem21–23

to achieve mathematical control have been performed, as
well as extensive Monte Carlo simulations24,25, but no
clear consensus has emerged26,27.

With this caveat, we proceed with the conserving ap-
proximation. The perturbative series for the fully renor-
malized polarization bubble can be cast into the diagram
shown in Fig. 4, which expresses Π(q) in terms of two
dressed Green’s functions and one dressed vertex. Each
diagram in the perturbation series is counted only once,
i.e., there is no double counting. In explicit form we have

Π(q) = N

∫
d3k

(2π)
3 Γ(k; q)G(k)G(k+ q)f(k+q/2). (29)

The dressed fermion-boson vertex Γ(k, q) is normalized
such that for free fermions it reduces to f(k + q/2).
The ladder diagrams for the vertex Γ(k; q) are shown in
Fig. 5. We have verified that internal momenta and fre-
quencies, which mostly contribute to these diagrams at
q = (0, q0), are the same as in Eq. (40). Accordingly, we
will be using Eliashberg forms of bosonic and fermionic
propagators: Landau-overdamped D(q) from Eq. (13)
and dressed G(k) with the self-energy given by Eq. (37).
We first demonstrate that Π(q = 0, q0) indeed vanishes
for a constant form factor due to particular cancellations
between self-energy and vertex corrections, as specified
by a Ward identity. Then we show that such a cancel-
lation no longer holds for a non constant form factor,
and, as a result, find a nonzero Π(q = 0, q0). Finally, we
derive the same nonzero result in an alternative way, by
analyzing the contribution given by each rung of a ladder
diagram.

A. Eliashberg theory

Before delving into the full calculation involving ver-
tex corrections, we present some explicit results from the
Eliashberg theory for q0 � vF |q| (see Appendix B for
details). In this theory, the fermionic self-energy Σ(k)
depends on k0 and on the position on the Fermi sur-
face, but not on the momentum component transverse
to the Fermi surface. The theory is based on a set of
self-consistent equations for the polarization bubble (the
bosonic self-energy):

Π(q) = N

∫
d3k

(2π)
3G(k − q/2)G(k + q/2)f2(k), (30)

and the fermionic self-energy

iΣ(k) = g2

∫
d3p

(2π)
3G(k + p)D(p)f2(k +

p

2
). (31)

In these equations, G(k ± q/2) is the fermionic Green’s
function with self-energy included:

G(k) =
1

ik0 + iΣ(k)− ε(k) + µ
, (32)
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and D(q) is the bosonic susceptibility with the bosonic
self-energy included

D(q) =
χ0

ξ−2
0 + q2 + q2

0/c
2 + ḡΠ(q)

. (33)

Evaluating the momentum integrals in Eq. (30), we ob-
tain that Π(q) does not depend on the self-energy and
has the same form as for free fermions (Ref. 28):

ḡΠ(q) = γ

(
f2(q̂′)

|q0|
vF |q|

− 〈f2〉
)
, γ =

NḡkF
2πvF

,

(34)
where

〈f2(θ)〉 =

∫
dθ

2π
f2(k = kF k̂). (35)

and k̂ depends on the angle θ along the FS. Also, ẑ is
a unit vector in the direction perpendicular to the 2D
plane, and q̂′ = ẑ× q̂, i.e., q̂′ is orthogonal to q̂. The de-
pendence on q̂′ emerges because the momenta k in Eq.

(30), which mostly contribute to Landau damping term,
are orthogonal to q (Ref.29). The full bosonic suscepti-
bility at q0 � vF |q| then becomes

D(q) =
χ0

ξ−2 + q2 + γf2(q̂′) |q0|vF |q| + q2
0/c

2
. (36)

At frequencies well below ω1, the regular q2
0/c

2 term is
smaller than the Landau damping term and can be safely
neglected.

Substituting Eq. (36) into (31) and factorizing the
momentum integration, we obtain

iΣ(k) = iω
1/3
0 |f(k̂)|4/3k2/3

0 + ik0
ḡ

εF
λ(k̂, k0). (37)

Here,

ω0 =

(
ḡ

2π
√

3

)3
1

γv2
F

=
1

24π2
√

3

ḡ

NεF
, (38)

and

λ(k̂, k0) =
1

2π2

∫ 1

0

dx

∫
dφ

 f2(φk + φ
2 )|φ|

|φ|3 + 2f2(θ(φ,φk))γ|k0||x+1|
εF k2F

− f2(φk)|φ|
|φ|3 + 2f2(φk)|k0|γ|x+1|

εF k2F


= λ0(k̂) +

ḡ

εF

∣∣∣∣ k0

ω0

∣∣∣∣1/3 λ1(k̂). (39)

Here φ{cos θ(φk, φ), cos θ(φk, φ)} parameterizes the posi-

tion of k+p on the FS. λ0(k̂) and λ1(k̂) are some angle-
dependent parameters of order one. Note that, in accor-

dance with Eq. (34), we have θ̂ = ẑ× p̂ ' ẑ× ẑ× k̂ = −k̂.

The variation of θ+ k̂ just modifies the form of λ1 some-
what. In Eq. (39) we also assumed f2(k) = f2(−k).
Henceforth for simplicity we drop the variation of θ and

simply replace θ̂ → −k̂ → k̂. Finally note that when

f = 1, λ(k̂, k0) vanishes identically (at the level of the
integrand in Eq. (39) above).

The validity of the factorization of momentum integra-
tion in Eq (31) is verified a posteriori. Typical internal
momenta and frequencies in the integrals are

ω ∼ ω0, k − kF ∼ q⊥ ∼ Σ ∼ ω0/vF ,

q‖ ∼ (γω0/vF )1/3 ∼ q⊥
(
NεF
ḡ

)
(40)

We see that, as long as NεF /ḡ � 1, typical q‖ are much
larger than typical q⊥ and k−kF . This is the justification
for the factorization of the momentum integration. One
can also check that at these ω and q, vertex corrections
are small in ḡ/(NεF ) (Ref.30). [To be exact, the λ1 term
has a contribution of order one from momenta of order

q

k + q

k

q
Γ(k; q) f (k)

7

FIG. 4. The fully dressed polarization bubble. For a boson
coupled to a conserved quantity, the fully dressed polarization
at p = (p0,p = 0) must be exactly zero due to the Ward
identity. The bubble is dressed with the vertex depicted in
Fig. 5.

q‖ ∼ q⊥ ∼ Σ, which is formally beyond the justification of
the momentum factorization (see Appendix B). However,
because we are not interested in the exact form of λ1, we
can safely neglect this contribution.]



9

q

k

k + q

Γ(k; q)

4

= q

k − q/2

k + q/2

f (k)

1

+ q

k

k′ + q k + q

k′

k − k′
Γ(k′; q)

fk+k′
2

fk+k′
2

6

FIG. 5. The coupling vertex. The leftmost panel depicts the
fully renormalized vertex Γ(k; p), where k, p are 2+1 vectors.
The two righthand panels are respectively the bare vertex
in the fermion-boson model we define in sec. II, and the
vertex correction. The Green’s functions and susceptibilities
are full ones. In this work we adopt a ladder approximation
for the vertex: We neglect crossing diagrams, and include self-
consistent self energy corrections in internal propagators. See
Sec. V.

B. The vanishing of Π for a constant form factor

The ladder series of vertex renormalizations for f = 1
have been analyzed in Ref. 15. The full vertex Γ(k, q) ≈
Γ(k0, q0), evaluated at q = 0 and general k, obeys an
integral equation, whose solution is

iq0Γ(k0; q0) = G−1(k + q)−G−1(k)

= iΣ̃(k0 + q0)− iΣ̃(k0). (41)

This coincides with the Ward identity for the density
vertex31. Eq. (41) is equivalent to:

Γ(k; q)G(k)G(k + q) =

G(k)−G(k + q)

iq0
. (42)

Plugging this into Eq. (29) we find

Π(q = 0, q0) ∝ q−1
0

∫
d3k [G(k + q)−G(k)] . (43)

We recall that the integral
∫
d3k is

∫
d3k =

kF
vF

∫ ∞
−∞

dk0

2π

∫ Λ

dεk

∫ 2π

0

dθk
2π

(44)

where Λ is the upper energy cutoff of the low-energy
model. One can immediately check that

∫
d3kG(k) is

ultraviolet convergent.
The second term in (43) can be transformed into the

first term by shifting integration variable k by external q.
In general, such shift has to be taken with care because
one also has to shift the upper limit of integration over
εk. In our case, however, the momentum component of q
is zero, and the shift only involves the frequency compo-
nent, over which the integration holds in infinite limits.
As a result, ∫

d3kG(k + q) =

∫
d3kG(k) (45)

and, hence Π(q = 0, q0) = 0, as long as q0 is finite.
Another way to obtain the same result is to write G(k+

q)−G(k) = i(Σ̃(k0)− Σ̃(k0 + q0))G(k+ q)G(k) such that

Π(q = 0, q0) ∝ q−1
0

∫
dk0

∫
dεk

∫
dθk[(

Σ̃(k0)− Σ̃(k0 + q0)
)
G(k + q)G(k)

]
,

(46)

and integrate in (46) first over fermionic dispersion and
then over frequency. The integral has two contributions:
one comes from the range εk ∼ k0 ∼ q0, where the poles
in G(k+ q) and in G(k) are in different half-planes of εk,
once we extend

∫
dεk onto a complex plane. The second

contribution comes from high energies εk ∼ k0 ∼ Λ. At
such energies, Σ(k0) � k0, i.e., Σ̃(k0) ≈ k0. Evaluating
the two contributions, we find that they exactly cancel
each other:

Π(q = 0, q0)low = γḡ−1, Π(q = 0, q0)high = −γḡ−1.
(47)

Thus, the Π = 0 result comes from an exact cancellation
between low- and high- frequency terms. We may expect
that for f 6= 1 the high frequency piece will remain essen-
tially unchanged. However, the low frequency piece will
get additional contributions from the variation of f(k)
along the FS, leading to a nonzero Π.

C. Calculating Γ for f 6= 1

We now perform the same calculation for angle-
dependent f(k). We express the vertex function Γ(k, q)
at q = (0, q0) as

Γ(k; q) = f(k̂) [1 + δΓ(k; q)] . (48)

The ladder equation for δΓ(k; q) is

f(k̂)δΓ(k; q) =
ḡ

χ0 (2π)
3

∫
d3pf(p̂)[1 + δΓ(p; q)]G(p+ q)G(p)f2

(
k + p

2

)
D(p− k). (49)
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To get an insight how δΓ(k; q) should look like, consider first a simpler problem, namely the renormalization of the
density vertex Γ0(k, q) = 1 + δΓ0(k, q), still keeping angle-dependent f in the interaction vertices. The density vertex
correction δΓ0(k, q) obeys

δΓ0(k; q) =
ḡ

χ0 (2π)
3

∫
d3p[1 + δΓ0(p; q)]G(p+ q)G(p)f2

(
k + p

2

)
D(p− k). (50)

We factorize the momentum integral and again employ Eq. (21) to simplify the equation for δΓ0(k; q) ≡ δΓ0(k̂, k0;q =
0, q0) to

δΓ0(k̂, k0, q0) =
ḡ

(2π)
2
vF

∫ 0

−q0
dp0

1 + δΓ0(p̂, p0, q0)

Σ̃(q + p)− Σ̃(p)

∫
dp‖

f2
(

k+p
2

)
|p‖|

|p‖|3 + γf2(k̂)|p0 − k0|/vF
. (51)

To solve this equation, we note that the difference Σ̃(k+

q) − Σ̃(k) (which is a function of k̂ and k0) is expressed

via the same integral as in the r.h.s. of (51), namely

Σ̃(k + q)− Σ̃(k) = q0 +
ḡ

(2π)
2
χ0

∫
d3p[G(p+ q)−G(p)]f2

(
k + p

2

)
D(p− k)

= q0

1 +
ḡ

(2π)
2
vF

∫
dp‖

f2
(

k+p
2

)
|p‖|

|p‖|3 + γf2(k̂)|p0 − k0|/vF

 . (52)

We then argue that

δΓ0(k; q) =
Σ(k + q)− Σ(k)

q0
≡ Σ̃(k + q)− Σ̃(k)

q0
− 1

(53)
is a solution of Eq. (51). One can verify this by just
substituting Eq. (53) for δΓ0 into the r.h.s. of (51) and
relating the integral over p‖ in (51) to δΓ0(k; q) using Eq.
(52). The form of Eq. (53) is just that of a Ward identity
for the density vertex, similarly to what was obtained for
f = 1, Eq. (41). See Appendix C for details.

The Ward identity, Eq. (53), is the expected result: it
shows that the density-density polarization bubble van-
ishes at zero incoming momentum and finite frequency,
even for a system with fermion-fermion interaction in the
nematic channel. To see this explicitly, we plug (53) into
the formula for density-density polarization

Πρ(q) = Nḡ

∫
d3k

(2π)
3 Γ0(k; q)G(k)G(k + q), (54)

approximate
∫
d3k/ (2π)

3
by
∫
dk0

∫ Λ
dεk using Eq. (44)

and integrate first over εk and then over k0. As we
discussed earlier, the integral has high-energy and low-
energy contributions. For the high-energy contribution,
the self-energy and vertex correction can be neglected,
while for the low-energy contribution both are relevant.

Evaluating the integrals, we obtain

Πρ(q = 0, q0)low = γḡ−1〈f2〉,
Πρ(q = 0, q0)high = −γḡ−1〈f2〉. (55)

We recall that

〈f2(θ)〉 =

∫
dθ

2π
f2(θ).

The two contributions then cancel out for any f(k̂), i.e.,
the density-density polarization bubble Πρ(q = 0, q0)
vanishes, as it should, for arbitrary interaction between
fermions that conserves the total number of particles.

We now use this result to analyze the integral equation
(49) for the correction to the full vertex, δΓ(k, q). The
leading contribution to the renormalization of δΓ(k, q) at
each order comes from small momentum transfer k− p.
It is therefore tempting to just replace f(p̂) in the r.h.s.

of (49) with f(k̂). However, in that case we would ob-
tain the same equation as for δΓ0(k, p), i.e., within this
approximation, δΓ(k, q) would be equal to δΓ0(k, q), and
the effects of non-conservation of the order parameter
would not show up in the polarization operator. To de-
tect the effects due to non-conservation, we need to go

beyond approximating f(p̂) by f(k̂), i.e., we need to in-
clude subleading terms, which account for the fact that

f(p̂) is not identical to f(k̂). It is this difference that
makes Π(q = 0, q0) finite, as we will see.
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To single out the contribution which is sensitive to the
variation between f at internal and external momentum
in the vertex correction diagrams, we make an ansatz

1 + δΓ(k, q) =
Σ̃(k + q)− Σ̃(k)

q0(1 + µ)
≡ 1 + δΓ0(k, q)

1 + µ(k̂, k0, q0)
, (56)

where µ(k̂, k0, q0) is the term that accounts for the differ-

ence in f that we are interested in. Plugging the ansatz
into Eq. (48) we obtain

Γ(k̂, k0, q0) = f(k̂)
1 + δΓ0(k̂, k0, q0)

1 + µ(k̂, k0, q0)
(57)

We assume and then verify that µ is small and expand
in µ. By direct comparison with Eq. (49) we then find

µ(k̂, k0, q0)f(k̂) =
ḡ

χ0 (2π)
2
vF kF

∫ 0

−q0

dp0

q0

∫
kF dp‖[f(k̂)− f(p̂)]f2

(
k + p

2

)
D(p− k) +O(µ2) (58)

=
ḡ

εF

[
µ0(k̂) +

ḡ

εF

∣∣∣∣ q0

ω0

∣∣∣∣1/3 µ1

(
k̂,
k0

q0

)]
, (59)

where µ0(k̂) and µ1

(
k̂, k0q0

)
are dimensionless functions

with O(1) dependence on parameters. Substituting this

µ(k̂, k0, q0) into Eq. (57) for Γ(k̂, k0, q0), plugging the
vertex into the expression for Π(q = 0, q0), and evaluat-
ing the integral by integrating over dispersion first and
then over frequency, we obtain

ḡΠ(q = 0, q0) = γ

∫ q0

0

dk0

q0

∫
dφ

2π

f2(φ)

1 + µ(φ, q0, k0/q0)

− γ〈f2〉

= −γ
∫ q0

0

dk0

q0

〈
µf2

〉
+O(µ2)

' Nk2
F

(
ḡ

εF

)2
(
A+ C

(
N
ḡ|q0|
ε2F

)1/3
)
(60)

where

A = −〈µ0f
2〉, C = −〈µ̄1|f |8/3〉 (61)

and µ̄1(k̂) =
∫ 1

0
dxµ1(k̂, x). This Π(q = 0, q0) has the

same form as Eq. (25) that we obtained in the leading
order in the expansion in bosonic propagators. Moreover,
the prefactors A and C in (25) and in (60) are exactly
the same (see Appendices A+C for more detail).

We now see that the functional form of the full Π(q =
0, q0) does not change between q0 > ω0 and q0 < ω0. The
reason for this is that ω0 is the scale where NFL behavior
sets in, leading to nonanalytic self energy and singular
vertex corrections. However, these corrections are local
in space, and so for small momentum transfer vF |q| � εF
the leading-order dependence of Π on vertex corrections
is the same as for the density-density polarization. The
small nonzero polarization comes from virtual processes
with large momentum transfer that are subleading to the
nonanalytic part and do not depend on it.

D. Deriving Eq. (60) by analyzing ladder
contributions rung-by-rung

In the derivation of Eq. (60) we explored the fact
that the nematic vertex has momentum-dependent form-
factor f(k), which varies a bit between external and in-
ternal momenta once we include vertex renormalizations.
We now derive the same result in a different manner.
Namely, we write the full polarization bubble, consisting
of a sum of ladder contributions, as Π =

∑
n Πn, where

Πn ∝
∫
d3k1f(k1)G(k1 + q)G(k1)×

Ô(k2) · · · Ô(kn)f(kn), (62)

and

Ô(kj) =

∫
d3kjf

2

(
kj−1 + kj

2

)
×

D(kj − kj−1)G(kj + q)G(kj). (63)

Each Ô(kj) represents a “rung”, which consists of two
fermionic propagators, and the effective interaction

U(kj , kj−1) = f2 ((kj + kj−1)/2)D(kj − kj−1). (64)

The fermionic propagator also contains U(kj , kj−1) via
the self-energy, hence in each rung there are three
”sources” for the dependence on f(k). We assume and
then verify that the correction to the polarization, com-
ing from variation of the form factor, is small. In this
situation we may obtain Π by separately calculating the
contribution from each term (in each segment). Further-
more, within each rung we select one of its three U ’s,
where we allow f(k) to vary, and hold f(k) in all other
U ’s constant. We then repeat the procedure for the other
two U ’s in Ô(kj). Finally we sum up contributions from
all j in all Πn.
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FIG. 6. The contributions to the polarization with vertex corrections taken into account. In order to obtain the low energy
behavior, it is necessary to compute the full bubble (Fig. 4) within a ladder approximation. For a constant form factor, the
total polarization is zero. In order to compute the correction coming from the form factor, we insert bosonic propagators with
form factor vertices in each cross section of each bubble diagram (red wiggly lines). On all other cross sections we treat the
form factor as constant. The result is a set of diagrams with density vertices Γ0 on the sides. The expression for their sum is
given in Eq. (67).

To see how this works in practice, it is convenient to
switch to symmetrized variables,

k̄j =
kj + kj−1

2
, κj = kj − kj−1, (65)

so that by construction,

k0 = k̄1 −
κ1

2
, kj = k̄1 +

κ1

2
+ κ2 + · · ·+ κj (66)

For simplicity, let’s consider the situation where we may
expand the form-factors in the variables κj to second or-
der. Next, also for simplicity, let us consider the situation
where we hold all the U ’s from the fermionic propagators
constant and expand only in the U ’s which constitute
vertex corrections in some bubble diagram Πn. It is easy
to see that we will get a series of terms proportional to
κ2
a, κ

2
b and to κaκb, where a 6= b are two segments in Πn.

However, κa, κb are independent angular variables, and
so upon integration, all cross terms vanish, leaving only
those terms that depend on a single segment variable κa
or κb, expanded to second order. Thus, to obtain all con-
tributions dependent on the variable κj in Πn, we may

replace all form factor terms for i < j with f(k̄1), and all
those for i > j with f(k̄1 + κj). We repeat this process
for each segment, and add them all up. It is readily ver-
ified that when we also consider self-energy corrections,
the story does not change. In fact, it is possible to iden-
tify precisely which terms in the self-energy and vertex
corrections cancel out. (This can be done by properly
symmetrizing Eq. (68) which appears later in this sec-
tion.)

In practice, we can do all the summations at once by
calculating the three diagrams of Fig. 6. In each dia-
gram, the effective interaction marked in red is allowed
to vary, and all others are held constant. This is done

by replacing the side vertices with f(k̂)Γ0 and for the
fermionic self-energy using only the first term in Eq. (37).
(In the perscription we just gave it is not immediately
clear why we are getting a correction coming from the
form-factor variation. To see this it is enough to try and
calculate the three diagrams of Fig. 6 without letting the
form-factor vary within the red lines. It is readily verified
that in that case the three diagrams sum to zero.)

We carry out the procedure we just outlined, collect
contributions from the three diagrams, and obtain (see
Appendix D for details),

Π(q = 0, q0) = N
ḡ

χ0

1

(2π)
6

∫
d3kd3k′Γ0(k, q)G(k)G(k + q)D(k − k′)F(k;k′)G(k′)G(k′ + q)Γ0(k′, q). (67)

where

F(k;k + p) = f(k)f2(k + p/2)[f(k + p)− f(k)] = f2(k̂)

(
p× k̂
kF

)2

+ · · · , f2 = f2f ′2 +
1

2
f3f ′′. (68)

and in the four fermionic G the self-energy is given by
the first term in Eq. (37). Integrating over two fermionic
dispersions and one frequency, we obtain after some al-

gebra

ḡΠ(q = 0, q0) = Nk2
F

(
ḡ

εF

)2 ∫ q0

0

dk0

q0

∫ q0

0

dp0

q0∫
dφ

2π

∫
dθ

2π

F(φ, φ+ θ)|θ|
|θ|3 + f2(φ)γ|k0−p0|

vF k3F

(69)
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Evaluating the angular integrals and the integral over k0

we indeed reproduce Eq. (60).
The derivation we just gave illuminates the different

roles played by processes with small momentum trans-
fer and with large momentum transfer. The scattering
processes with small momentum transfer renormalize the
vertices and fermionic self-energies, but the renormaliza-
tion is the same as if the form-factor was equal to one.
The presence of the form-factor only gives rise to multi-
plication factors with f at the same momentum at which
we, e.g., compute the self-energy. These low-energy scat-
tering processes do not sample enough of the FS to be
aware of the form factor variation. The nonvanishing po-
larization comes from the processes in which a fermion
scatters all along the FS, i.e., a characteristic scattering
momentum is of order kF . Note, however, that this sep-
aration only explains the frequency independent piece in

Π(q = 0, q0). The frequency dependent q
1/3
0 term comes

from small momentum scattering, but indeed it also orig-
inates from the variation between f(k) at the beginning
and the end of the scattering process.

The consideration based on a selection of a segment,
where the contribution comes from a range of momentum
transfers, different from those in other segments, is simi-
lar to diagrammatic derivation of the FL formula for the
static susceptibility32,33. It is also similar to the deriva-
tion of a conductivity in a metallic system in terms of
transport lifetime, either due to impurity scattering34,
or due to electron-electron interaction, particularly near
a QCP35.

A comment is in order: in our analysis we ignored the
existence of “cold-spots” - the points on the Fermi surface
where the form-factor has nodes (these are along the di-
rections π/4+nπ/2 for a d-wave form factor). At the cold
spots the form factor vanishes, and hence the self-energy
and Landau damping vanish, but at different rates. It
can be shown that to get fermionic self-energy and the
Landau damping near the cold spots, one must go beyond
the Eliashberg approximation36. However, these effects
are not significant for the computation of the polariza-
tion bubble at zero momentum and finite frequency as
this polarization comes from processes around the entire
FS, and the cold spot contributions are negligible.

We can refine the estimate for Π a bit by expanding F
as in Eq. (68). Then, for f(x) = cos `x, we find

〈f `2〉 = − `
2

16
(70)

Applying this result to the d-wave case, when ` = 2, we
find

〈fnem2 〉 = −1

4
(71)

Because the constant term in Π(q = 0, q0) is proportional
to 〈fnem2 〉 and the constant and the |q0|1/3 terms have
opposite signs (this immediately follows from (69), in Eq.
(60) A < 0 and B > 0. This is an expected result because
with our sign conventions the nematic susceptibility in

real frequencies has an imaginary part D′′(q = 0,Ω) ∼
−Π′′(q = 0,Ω). Thus D

′′
(Ω) ∼ −B=(−iΩ)1/3 has the

same sign as Ω, as it should, by causality principle.
It is natural to ask what is the contribution from terms

in which the gradient of f(k) is kept in more than one seg-
ment. In the diagrammatic computation of the spin sus-
ceptibility in a Fermi liquid, the diagrams with one “spe-
cial” segment (where the integration is confined to in-
finitesimally small vicinity of the FS) gives m∗/m, while
diagrams with two, three, etc. such segments yield a
geometric series (−1)nFnl , in powers of the Landau pa-
rameter Fl. The sum of such terms gives the 1/(1 + Fl)
term in χl

32,33. In our case, we expect that a similar com-

putation will yield a series of q
1/3
0 terms, which likely do

not lead to any new physics.

VI. NEMATIC SUSCEPTIBILITY AND RAMAN
RESPONSE

The uniform dynamic susceptibility of the nematic φ
field at a QCP is related to Π(q = 0, q0) by

D(q = 0, q0) =
χ0

ξ−2
0 + q2

0/c
2 + ḡΠ(q = 0, q0)

(72)

where ξ−2
0 = γ〈f2〉 ∼ Nk2

F (ḡ/εF ) (because ξ−2 =

ξ−2
0 − γ〈f2〉 = 0). The functional form of D(q = 0,Ωm)

can be directly probed in Monte-Carlo studies. Recent
studies24,25 have used the same model as ours – a scalar
bosonic field undergoes an Ising-nematic transition, and
the susceptibility of φ field gets modified by the minimal
coupling to fermions.

Polarization-resolved Raman scattering experiments
directly measure the imaginary part of the nematic sus-
ceptibility in real frequencies5,37–39, and several recent
studies have examined the impact of a QCP on the Ra-
man response (see e.g.39–42). In a clean system (or at
frequencies above the transport scattering rate Ω > γtr)
and at low temperature in the normal state, the domi-
nant contribution to the signal will be that coming from
non-conservation of the order parameter. To obtain the
frequency dependence of D

′′
(q = 0,Ω) we note that the

constant term in ḡΠ(q = 0, q0) is of order Nk2
F (ḡ/εF )2,

i.e., is small relative to ξ−2
0 . The dynamic term is even

smaller, but it is non-analytic in frequency and hence
it has a non-zero imaginary component. Converting to
real frequencies (q0 → −iΩ) and expanding in small
ḡΠ(q = 0,Ω)/ξ−2

0 , we obtain

D
′′
(q = 0,Ω) ≈ −ḡΠ

′′
(q = 0,Ω)ξ4

0

χ0

(1− (Ωξ0/c)2)2

(73)
The frequency dependence in the denominator becomes
relevant at Ω ≈ c/ξ0 ∼ ω1(vF /c)

1/2 ∼ ω1. At much
smaller frequencies,

D
′′
(q = 0,Ω) ≈ −χ0ḡΠ

′′
(q = 0,Ω)ξ4

0 ∝
χ0

Nk2
F

(
NḡΩ

ε2
F

)1/3

(74)
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(a) (b)

FIG. 7. Plots of the nonzero dynamic response for a nematic order parameter(with N = 1). (a) Dynamical response D′′(q =
0,Ω) for independent bosons (such as phonons near a structural transition) coupled to itinerant fermions, . (b) Dynamical
response χ′′(q = 0,Ω) for a system of interacting fermions only, such as a d−wave Pomeranchuk transition. In both cases

the low frequency response is ∼ Ω1/3 (dotted reference line), in the region Ω � ω1. The behavior does not change across the
onset frequency for NFL behavior ω0. At higher frequencies Ω > ω1, the response becomes linear. For a transition involving
independent bosons, the linear behavior is masked by a peak near Ω = ω1.

At much larger frequencies,

D
′′
(q = 0,Ω) ∝ N χ0

k2
F

ḡε2
F

Ω3

(
c

vF

)4

. (75)

In between, there is a resonance at Ω ≈ c/ξ0 ∼ ω1, as
seen in the peak in the first panel of Fig. 7. We note
that the Raman signal will also include a response from
the fermions themselves. However, at q = 0, this signal
will scale as ΠD−1 ∼ (ḡ/εF )2, so it will be small.

One potential class of materials to which our results
can be applied, are Fe-based systems, in particular FeSe
doped by S, for which a nematic QCP separate from
a magnetic QCP has been detected, and this QCP is
only slightly masked by superconductivity43. However,
for applications to Fe-based systems our analysis likely
has to be modified. One obvious reason is the multi-
band structure of Fe-based systems and the rather small
value of εF . But there is also another, more fundamen-
tal reason, related to the mechanism for nematicity. In
our approach we assumed that a scalar field φ acquires
a nematic order independent on fermions. For Fe-based
systems, this would imply that nematicity develops via a
structural transition, i.e., that the order parameter field
φ is a phonon field. In this case, fermions do modify the
susceptibility of the φ field, but the transition itself hap-
pens even if the coupling ḡ vanishes. In Fe-based systems,
nematicity is most likely of electronic origin and is either
a transition to a composite spin order, or a Pomeranchuk
instability of the Fermi surface. The order parameter for
a Pomeranchuk instability couples in a minimal way to d-
wave fermionic density, like in our model. The difference
is that in a Pomeranchuk case the primary nematic field
φ is by itself bilinear in fermions and describes d-wave
collective charge fluctuations in a fermionic system. As

a consequence, the bosonic susceptibility is actually the
d-wave charge susceptibility of interacting fermions.

The model of interacting fermions near a d-wave
Pomeranchuk instability is similar, but not identical to
the model of a critical φ field coupled to fermions, and the
distinction becomes pronounced at q = 0 and finite Ωm.
Indeed, the d-wave susceptibility of interacting fermions
can, at least qualitatively, be described within RPA. We
label this susceptibility as χ(q,Ωm) to distinguish it from
D(q,Ωm). We have

χ(q,Ωm) = − Π(q,Ωm)

1− UdΠ(q,Ωm)
(76)

where Ud < 0 is an attractive fermion-fermion interaction
in a d-wave channel. At low frequencies, when Ωm �
vF |q|, Π(q,Ωm) = −a + γΩ/(vF q) + q2 + Ω2

m/c
2 + ...,

where a > 0, γ, and c are microscopic parameters. Be-
cause the constant a term is the largest, Π(q,Ωm) in the
numerator in (76) can be approximated by a constant. In
the denominator, 1− UdΠ(0, 0) is set to be proportional
to ξ−2. Introducing χ0 to get χ(q, 0) = χ0/|q|2 at large
enough momentum, we obtain at Ωm � vF |q|,

χ(q,Ωm) =
χ0

ξ−2 + q2 + Ω2
m/c

2 + γ|Ωm|/(vF |q|)
(77)

This susceptibility has the same form as D(q,Ωm) in Eq.
(13).44 However, in the opposite limit Ωm � vF |q| that
we are interested in, Π(q,Ωm) is small, and, to a good
accuracy, we just have χ(q,Ωm) = −Π(q,Ωm). Then

χ
′′
(q = 0,Ω) = −Π

′′
(q = 0,Ω). Using our results for Π,

we then obtain

χ
′′ ∝N

(
ḡ

εF

)2
B

Ω
εF
, ω1 � Ω� εF

1
2C
(
NḡΩ
ε2F

)1/3

, Ω� ω1

(78)
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where B,C are the dimensionless constants of order one,
previously discussed in the text. Fig. 1 depicts the sus-
ceptibility over a range of frequencies, and Fig. 7 shows
a comparison between the susceptibilities of independent
vs. fully fermionic nematic orders.

Strong, near-critical nematic fluctuations have been
found to be ubiquitous among Fe-based superconductors
near optimal doping5,39,45,46, and many of these materi-
als have a substantially two-dimensional electronic struc-
ture. However, the multi-band electronic structure of
these systems, as well as the blurring of the Fermi sur-
face due to thermal and disorder effects, have been found
to play an important role in the Raman response of these
materials39–42. We have not taken such effects into ac-
count in this work, so our predictions must come with
additional conditions for their validity. Also, our scal-
ing forms apply to frequencies well above both T , but
still low enough that contributions from optical phonons,
among other excitations, can be neglected. For a review
of recent experiments and theories regarding nematicity
in the Fe- based superconductors, we refer to Refs.39,45.
For a further discussion of the relevance of our theory to
these systems, most especially S doped FeSe, we refer to
Ref. 47. In this work we also considered the form of the
polarization operator at a finite distance to a transition,
when the correlation length ξ is finite. We found that
Π′′(Ω) ∝ Ωξ2 at the smallest frequencies, i.e., the slope
Π′′(Ω)/Ω remains finite. At the critical point ξ = ∞
the slope diverges and Π′′(Ω) ∝ Ω1/3, as we found above.
The real part of Π(Ω) remains finite at the transition, but
strongly increases as the system approaches the struc-
tural transition (see the insert for Fig. 2 in Ref.47).

VII. CONCLUSIONS

In this work we computed the polarization bubble at
zero momentum and finite frequency, Π(q = 0,Ωm) for
fermions at a QCP towards dx2−y2 nematic order. The
corresponding order parameter is not a conserved quan-
tity, hence there is no conservation law that would require
Π(q = 0,Ωm) to vanish. We indeed found that Π(q =
0,Ωm) is non-zero, with a constant as the leading term.
The dynamic part Π(q = 0,Ωm) − Π(q = 0,Ωm → 0) is
proportional to |Ωm| at high frequencies, crossing over to
|Ωm|1/3 at lower frequencies.

Though our analysis relied on weak coupling to con-
trol the calculations, we consider it plausible that similar
phenomenology may prevail in real materials, where the
coupling is of order one. In any case, proximity to a QCP
with a nonconserved order parameter must on general
grounds lead to nontrivial dynamics at zero momentum
transfer. This regime is readily detectable in experiments
such as Raman scattering, but has not been thoroughly
explored in the theoretical literature. We hope our work
provides motivation for its further study.
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Phys. Rev. B 95, 125122 (2017).
10 D. Forster, in Reading, Mass., W. A. Benjamin, Inc.

(Frontiers in Physics. Volume 47), 1975. 343 p., Vol. 47
(1975) pp. –.

11 S. Sachdev, Quantum phase transitions, second ed. ed.

(Cambridge University Press, Cambridge, 2011).
12 G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
13 A. V. Chubukov and D. L. Maslov, Phys. Rev. Lett. 103,

216401 (2009).
14 D. L. Maslov and A. V. Chubukov, Phys. Rev. B 81,

045110 (2010).
15 A. V. Chubukov, Phys. Rev. B 72, 085113 (2005).
16 The extension to large N also does not eliminate other

planar non-ladder diagrams18–20, that are of leading order
in 1/N . We comment on this later in this section.

17 A. Abanov, A. V. Chubukov, and J. Schmalian, Advances
in Physics 52, 119 (2003).

18 S.-S. Lee, Phys. Rev. B 80, 165102 (2009).
19 M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127

(2010).
20 T. Holder and W. Metzner, Phys. Rev. B 92, 245128

(2015).
21 D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys.

Rev. B 82, 045121 (2010).
22 D. Dalidovich and S.-S. Lee, Phys. Rev. B 88, 245106

(2013).
23 A. L. Fitzpatrick, S. Kachru, J. Kaplan, and S. Raghu,

Phys. Rev. B 89, 165114 (2014).
24 Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg,



16

Phys. Rev. X 6, 031028 (2016).
25 S. Lederer, Y. Schattner, E. Berg, and

S. A. Kivelson, Proceedings of the Na-
tional Academy of Sciences 114, 4905 (2017),
http://www.pnas.org/content/114/19/4905.full.pdf.

26 M. Punk, Phys. Rev. B 94, 195113 (2016).
27 A. Klein and A. Chubukov, Phys. Rev. B 96, 041125

(2017).
28 V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev.

B 64, 195109 (2001).
29 A. V. Chubukov and D. L. Maslov, Phys. Rev. B 68,

155113 (2003).
30 Y. B. Kim, A. Furusaki, X.-G. Wen, and P. A. Lee, Phys.

Rev. B 50, 17917 (1994).
31 M. Peskin and D. Schroeder, An Introduction To Quan-

tum Field Theory , Frontiers in Physics (Avalon Publishing,
1995).
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Yang, M.-A. Méasson, M. Cazayous, A. Sacuto, D. Colson,
and A. Forget, Phys. Rev. Lett. 111, 267001 (2013).

39 Y. Gallais and I. Paul, Comptes Rendus Physique 17,
113 (2016), iron-based superconductors / Supraconduc-
teurs base de fer.

40 S. Caprara, C. Di Castro, M. Grilli, and D. Suppa, Phys.
Rev. Lett. 95, 117004 (2005).

41 H. Yamase and R. Zeyher, Phys. Rev. B 83, 115116 (2011).
42 U. Karahasanovic, F. Kretzschmar, T. Böhm, R. Hackl,
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Appendix A: Computational details of the perturbative evaluation of Π(1)(q)

In this appendix we derive the results of sec. III and the first part of section V. Namely, we calculate the diagrams
of Fig. 2, and show that incorporating the ω2/3 self-energy in the fermionic propagator gives a response even for a
constant form factor. Our starting point is Eq. (17) for the three contributions from the diagrams of Fig. 2. The
calculation has three steps: first we identify contributions that contribute to the static part Π(q, q0 = 0) and the
dynamic part Π(q = 0, q0). Next we evaluate these contributions, including the Landau damping term in the bosonic
propagator, but take the free propagator for fermions. We obtain Eq. (25). Then, we reevaluate the dynamic part,
taking into account the self energy ω2/3 term, and show that the polarization is nonzero even for f = 1.

1. Perturbative evaluation of Π for q0 � ω0

We start by splitting the two self energy contributions using the identity Eq. (21),

I± =
Nḡ

χ0 (2π)
6

∫
d3kd3p G2(k)G(k + p)G(k ± q)D(p)f2(k± q/2)f2(k + p/2)

=
Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + p)K(k ± q, k)[G(k)−G(k ± q)]D(p)f2(k± q/2)f2(k + p/2) (A1)

The double Green’s function G(k) has no counterpart in the vertex correction and should be unrelated to the Ward
identity, since it can’t be canceled out by the vertex part. It provides a static term ∝ |q|2,

Is =
Nḡ

χ0 (2π)
6

∫
d3kd3p G2(k)G(k + p)D(p)f2(k + p/2)×

×
[
K(k + q, k)f2(k + q/2) +K(k − q, k)f2(k− q/2)

]
. (A2)

Evaluating for free fermions using Eq. (22) for K we get,

Is =
Nḡ

χ0 (2π)
6

∫
d3kd3p G2(k)G(k + p)D(p)f2(k + p/2)

f2(k + q/2)− f2(k− q/2)

iq0 − vF k̂ · q

=
ḡkF

(2π)
5
vF

∫
dθ

ip0dp0

(ip0 − vF p cosφ)2

p2dpdφ

p3 + γf2(φ)|p0|/vF
f2(θ + p sinφ/2)

f2(θ + q sin θ/2)− f2(θ − q sin θ/2)

iq0 − vF q cos θ
(A3)

where cos θ = q̂ · k̂, cosφ = k̂ · p̂, and we neglect the p2
0/c

2 term in D out of anticipation that its contribution can be
neglected. The contribution from the region cosφ ∼ 0 is zero because of the double pole. Thus, the static part comes
from processes beyond the Eliashberg regime, i.e. by taking q0 → 0 in the first denominator of Eq. (A3). Taking the
q0 → 0 limit we get

Is ∼
ḡ

ε2
F (2π)

3

ω
4/3
0

(γv2
F )2/3

〈f3〉q2 (A4)

where 〈f3〉 = 〈f2(f2)′′′〉. This correction is small in 1/γ and can be safely neglected.
The leftovers from Eq. (A1) along with the vertex correction yield the dynamic part. Adding up the SE contributions

we find

ISEd = − Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + p)D(p)f2(k + p/2)×

×
[
K(k + q, k)G(k + q)f2(k + q/2) +K(k − q, k)G(k − q)f2(k− q/2)

]
= − Nḡ

χ0 (2π)
6

∫
d3kd3p D(p)×

[
G(k)G(k + p)D(p)f2(k + p/2)K(k + q, k)G(k + q)f2(k + q/2)+

G(k + q)G(k + p+ q)D(p)f2(k + p/2 + q)K(k, k + q)G(k)f2(k + q/2)
]

= − Nḡ

χ0 (2π)
6

∫
d3kd3pD(p)G(k)G(k + q)K(k + q)f2(k + q/2)×

×
[
G(k + p)f2(k + p/2)−G(k + p+ q)f2(k + p/2 + q)

]
(A5)
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For q→ 0 we get

ISEd = − Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + q)G(k + p)G(k + p+ q)K(k + q; k)K−1(k + p+ q; k + p)D(p)f2(k)f2(k + p/2).

(A6)

Summing up the two terms gives Eq. (28), which does not assume anything about K, i.e. is correct also for fermions
with self-energy included.

When using the dispersion for free fermions we have,

K(k + q; k)K−1(k + p+ q, k + p) = [iq0 − ε(k + q) + ε(k)][iq0 − ε(k + p + q) + ε(k + p)]−1 = 1. (A7)

The last equality is exact for any fermionic dispersion at q = 0. When using the bare theory, the KK−1 term disappears

and we can just expand the remaining angular function to second order in q/kF sinφ, where cosφ = k̂ · q̂. Within
Eliashberg theory, after shifting p + k → k′, the momentum integrations split into three sectors, two “fermionic”
(transverse to the FS) and one “bosonic” (parallel to the FS). Each fermionic sector is of the form,

If =

∫
dk0d

2kG(k)G(k + q) =
kF
vF

∫
dk0dεkdφ

1

ik0 − ε(k)

1

i(k0 + q0)− ε(k)

' (2π)2ikF /vF

∫
dk0

Θ(k0 + q0)−Θ(k0)

iq0
= (2π)2kF /vF

∫ 0

−q0

dk0

q0
. (A8)

Note that since q = 0, the residue of the integration over the momentum transverse to the FS has no dependence on
the momentum parallel to the FS. Finally we are left with,

Id ∝
∫ 0

−q0

dk0

q0

∫ 0

−q0

dk′0
q0

∫
dφ

p(φ)F(φk;φk + φ)

p(φ)3 + f2 (θ(φk, φ)) γ|k0 − k′0|/vF + c−2(k0 − k′0)2p(φ)
(A9)

Here, as in Eq. (39) and Eq. (B8), p, θ trace out the length and position of the bosonic momentum on the FS. F was
defined in Eq. (68). As usual, we split the integral into a static and dynamic part. In anticipation of the end result,
we write down these parts as µ0, µ1 from Eq. (58), with the appropriate prefactors. The static part gives,

µ0f
2 =

∫
dφ
f(φk)f2(φk + φ/2) [f(φk)− f(φk + φ)]

p(φ)2
. (A10)

For a circular FS we get

µ0f
2 ' 2.15π cos2(2φk)(2 cos2 4φk − 1), 〈µ0f

2〉 ' 1.69. (A11)

Next, we add and subtract the static part from Eq. (A9) to get the dynamic contribution,

ḡ

εF
µ̃1 = f2(φk)

∫ ∞
−∞

dφ
f2 (θ(φk, φ)) (vF k

3
F )−1γ|p′0|+ (kF c)

−2p′20 φ

|φ|3 + f2 (θ(φk, φ)) (vF k3
F )−1γ|p′0|+ (kF c)−2p′20 φ

, (A12)

where p′0 = k0 − k′0. Here, we used the convergence of the momentum integration to expand F to second order and
approximate p(φ) ' kF |φ|. Eq. (A12) can be rescaled to give,

ḡ

εF
µ̃1 = f2(φk)

∣∣∣∣ γp′0vF k3
F

∣∣∣∣1/3 ∫ ∞
−∞

dφ
f2(θ) + |p′0/ω1|4/3φ

|φ|3 + f2(θ) + |p′0/ω1|4/3φ

=

∣∣∣∣ γq0

vF k3
F

∣∣∣∣1/3 f2(φk)fk(|p′0|/ω1)

∣∣∣∣p′0q0

∣∣∣∣1/3 . (A13)

Here, ω2
1 = γc3/vF and fk is an interpolating function with the following limits,

fk(x) =

{ ∫
dφ f2(θ)
|φ|3+f2(θ) ' 2×22/3π

3
√

3
|x| � 1

π
2 |x|2/3 |x| � 1

. (A14)

See Fig. 8 for a depiction of fk in the low frequency limit p′0 � ω1. µ0 and µ1 =
∫ 0

−q0 µ̃1dk
′
0/q0 are just the µ0, µ1

given in Eqs. (A10)+(A12). These in turn give the constants B,C in Eqs. (24)+(25), see Eq. (61).
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FIG. 8. fk for a circular FS. The thick line is fk/(2× 22/3π/3
√

3), calculated numerically for f(φk) = cos 2φk. The dashed line

is |f(φk)|2/3, included for comparison

2. Perturbative evaluation of Π(1) for q0 � ω0 with self-energy insertion and f = 1

Supposing we introduce Σ into the Green’s functions, so now KK−1 is no longer unity. Consider the case f = 1.
Evaluating again in the Eliashberg approximation we find

Id ∝
∫ 0

−q0
dk0K−1(k0 + q0, k0)

∫ 0

−q0
dk′0K−1(k′0 + q0, k

′
0)
K(k′0 + q0, k

′
0)−K(k0 + q0, k0)

K(k0 + q0, k0)
× |k0 − k′0|−1/3. (A15)

Here, the K−1 factors have replaced the q−1
0 factors in Eq. (A8). Since the indices are arbitrary, we can symmetrize

this expression and obtain

Id ∝
∫ q0

0

dk0

∫ q0

0

dk′0
(K′ −K)

2

(KK′)2
× |k0 − k′0|−1/3. (A16)

Thus, Id is by necessity non-zero. For Σ ∼ ω2/3 we find that Id scales as q
1/3
0 .

Appendix B: Derivation of bosonic and fermionic self-energies within the Eliashberg framework

In this section we detail how to obtain the angular dependent behavior for Π(q) and Σ(k), in the region q0 �
vF |q|, k0 � vF |k|, Eqs. (34)+(37). Similar expressions, except for the functions λ0, λ1 in Eq. (39), have been found
before (see e.g.28). The expression for Π is given in Eq. (30). Shifting momentum and integrating over momentum
transverse to the FS we find,

Π(q) = N
kF

(2π)
2
vF

∫ 0

−q0
dk0

∫
dφ

i f2(φk)

iΣ̃(k + q/2)− iΣ̃(k − q/2)− vF q cos(φ− φk)
' N kF

2πvF

q0

vF |q|
f2(φk + π/2) (B1)

Next, we compute Eq. (37). Starting from the definition of Eq. (31), we have

Σ(k) =
ḡ

(2π)
3

∫
dp0

∫
d2p

f2(k + p/2)

iΣ̃(k + p)− ε(k + p)

|p|
|p|3 + f2(p̂′)γ|p0|/vF

(B2)

where p̂′ = ẑ × p̂. It is convenient to split Σ into a part that does not have f terms varying in the integrand and a
part where the variation of f is taken explicitly into account. Adding and subtracting this part we find

Σ = Σ0 + δΣ, (B3)
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where

Σ0(k) =
ḡ

(2π)
3

∫
dp0

∫
d2p

f2(k̂)

iΣ̃(k + p)− ε(k + p)

|p|
|p|3 + f2(k̂)γ|p0|/vF

' ḡ

(2π)
3

∫
dp0

∫
dp⊥dp‖

f2(k̂)

iΣ̃(k + p)− vF (p⊥ + k⊥)

√
p2
⊥ + p2

‖

(p2
⊥ + p2

‖)
3/2 + f2(k̂)γ|p0|/vF

=
ḡ

(2π)
3

∫
dp0

∫
dp⊥

f2(k̂)

iΣ̃(k + p)− vF (p⊥ + k⊥)

∫
dp‖

|p‖|
|p‖|3 + f2(k̂)γ|p0|/vF

(
1 +O(k

2/3
0 )

)
= iω

1/3
0 |f(k̂)|4/3k2/3

0 +O(k
4/3
0 ). (B4)

The line before the last is the essential step of the Eliashberg approximation. In the regime where k⊥ ∼ p⊥ ∼ Σ̃, we

may neglect p⊥ in the bosonic propagator, up to order p2
⊥/p

2
‖ ∼ k

2/3
0 , leading to the final line of Eq. (B4).

Next we compute δΣ, which in explicit form is,

δΣ(k) =
ḡ

(2π)
3

∫
dp0

∫
d2p

1

iΣ̃(k + p)− ε(k + p)
×Θ(k,p, p0), (B5)

where

Θ(k,p, p0) = |p|
[

f2(k + p/2)

|p|3 + f2(p̂′)γ|p0|/vF
− f2(k̂)

|p|3 + f2(k̂)γ|p0|/vF

]
. (B6)

The frequency integration is dominated by the region |p|3 ∼ p0 � vF |p|, so we again evaluate it in the Eliashberg
approximation, integrating out the fermionic sector first.. Again, it is convenient to split δΣ/k0 into a static and
dynamic part. The static part is just,

δΣ(k̂)0 =
ḡ

(2π)
3

∫
dp0

∫
d2p

1

iΣ̃(k + p)− ε(k + p)
× |p|

[
f2(k + p/2)− f2(k̂)

|p|3

]
. (B7)

Evaluating the fermionic part first we get,

iδΣ(k)0 =
ḡNF

(2π)
2 k0

∫
dφ
f2(φk + φ/2)− f2(φk)

p(φ)2
. (B8)

Here, p(φ) traces out the length of the bosonic momentum, stretching from the FS at φk to the FS at φk +φ, where φ
goes around the unit circle. Eq. (B7) yields the λ0 term of Eq. (39). Thus, e.g. for a circular FS, p(φ) = 2kf | sin(φ/2)|,
and the result of the integral is

λ0 ' −2.15π cos(4φk) (B9)

Finally we compute the part of δΣ that depends on k0 in a nonlinear way. After some manipulations of Eq. (B5) we
find,

δΣ(k)2 =
ḡ

(2π)
3

∫
dp0

∫
d2p

1

iΣ̃(k + p)− ε(k + p)
×

× |p|


(
f2(k + p/2)− f2(k̂)

) [
1−

(
1 + f2(p̂)γ|p0|

|p|3

)(
1 + f2(k̂)γ|p0|

|p|3

)]
|p|3

(
1 + f2(k̂)γ|p0|

|p|3

)(
1 + f2(p̂)γ|p0|

|p|3

) +

f2(k̂)γ|p0|
(
f2(p̂)− f2(k + p/2)

)
|p|6

(
1 + f2(k̂)γ|p0|

|p|3

)(
1 + f2(p̂)γ|p0|

|p|3

)
 (B10)

Eq. (B10) yields λ1 in Eq. (39). The second term in the bracket has a form factor part that is O(1) even for |p| ∼ 0.

As a result it contributes even in the regime |p| ∼ p
2/3
0 , which is formally not within the Eliashberg approximation

that assumes |p| ∼ p1/3
0 . However the only effect of this is some modification of the functional form of λ1.
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Appendix C: The Eliashberg density vertex and the results of sec. VC

In this section we evaluate the density vertex function for an incoming boson of small momentum within Eliashberg
theory:

Γ0(k; q) = Γ0(k0,k; q0,q). (C1)

Here as usual k; q respectively denote the fermionic and bosonic degrees of freedom. We used these results in secs. V
and F. Our derivation generalizes the approach of Ref. 15.

In calculations done within the Eliashberg regime, one may generally take |k| − kF , to be zero. This is because
internal fermionic degrees of freedom are within a distance qf ∼ ω2/3/N1/3 of the FS, whereas bosonic internal degrees

of freedom are at at a larger distance qb ∼ (Nω)1/3. By dimensional analysis we expect the vertex to depend on
qb, qf/qb ∼ 0. When we go beyond the Eliashberg regime we expect qf/qb ∼ 1 and should be more careful. In this
section we will provide general expressions for the vertex, and specialize them to the relevant regions we used in the
manuscript.

From Fig. 5, the integral equation for the full vertex Γ is given by Eqs. (48)+(49). Explicitly it is:

δΓ(k; q) =
ḡ

(2π)
3

∫
d3p

Γ(p; q)

(iΣ̃(p0 + q0)− ε(p)− vF p̂ · q)(iΣ̃(p+ q)− ε(p)− vF p̂ · q)

f(k̂)−1f2
(

k+p
2

)
|p− k|

|p− k|3 + γf2(p̂′)|p0 − k0|/vF
(C2)

From this point on we choose choose q = qx̂, and assume implicitly that k̂ ' x̂. This choice allows us to avoid issues

related with FS curvature when k̂ · q ∼ q
2/3
0 . Next, we specialize to the density vertex Γ0. This is equivalent to

dropping the internal angular dependence of Γ with the integral. We integrate over dεp = dpxkF /vF in the fermionic
sector and find

δΓ0(k; q) =
ḡ

(2π)
2

∫ 0

−q0
dp0

Γ0(p0, 0; q0, q)

Σ̃(p+ q)− Σ̃(p) + ivF q

∫
dp

(p2 + k2
x)1/2

(p2 + k2
x)3/2 + γf2(k̂)|p0 − k0|/vF

=
ḡ

(2π)
2

∫ 0

−q0
dp0

Γ0(p0, 0; q0, q)

Σ̃(p+ q)− Σ̃(p) + ivF q
×

( vF f
4(k̂)

γ|p0 − k0|

)1/3 ∫ ∞
0

dφ
(φ2 + κ2)1/2

(φ2 + κ2)3/2 + 1
+
dµ̃

dp0

 (C3)

where we defined κ3 = vF k
3
x/γf

2(k̂)|p0 − k0|, and

dµ̃

dp0
= kF

∫
dφ Θ(k,p, p0 − k0). (C4)

Here, φ is an integration along the FS, and Θ was defined in Eq. (B5). The dφ integral in Eq. (C3) defines a function
with the following asymptotics,

g(y) =

∫ ∞
0

dx
(x2 + y2)1/2

(x2 + y2)3/2 + 1
=

{
π
2y y � 1
2π

3
√

3
y � 1

(C5)

Within our treatment, and neglecting µ, the vertex correction depends only on the momentum transfer perpendicular
to the FS and on frequency. Note that in Eq. (C3) the internal Γ0 no longer depends on q or k. The reason for this
can be seen by looking at Fig. 9. Just by placing internal integration variables on the “rungs” of the ladder, it is

easy to see that even for k� k
2/3
0 , p

2/3
0 the internal rungs still contribute from regions close to the FS. Only the last

rung depends strongly on the external legs. Physically, the interpretation is that even for excitations perpendicular
to the FS, it is possible to excite a large cloud of virtual particle-hole pairs by making a single virtual transfer to the

vicinity of the FS. In any case, we see that for any 0 < κ < 1 the bosonic sector scales as [γf2(k̂)|q0 − k0|/vF ]−1/3,
up to corrections of order 1. So, for all calculations performed henceforth (and used in the body of the manuscript)
we take g(κ) = g(0). Combining factors together we end up with

δΓ0 =
2

3

∫ 0

−q0
dp0

Γ0(p0, 0; q0, q)

Σ̃(p+ q)− Σ̃(p) + ivF q
×
∣∣∣∣∣ω0f

4(k̂)

p0 − k0

∣∣∣∣∣
1/3

+
ḡf(k̂)

(2π)
2

∫ 0

−q0
dp0

Γ0(p0, 0; q0, q)

Σ̃(p+ q)− Σ̃(p) + ivF q

dµ̃

dp0
(C6)
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p

k

k′ + p k + p

k − k′

k′

7

p

k

k + p

8

FIG. 9. Ladder form of the vertex. (left panel) a sample diagram in the ladder expansion for the vertex Γ0(k0,k; p0,p). The
momentum k only appears on the outside legs and does not penetrate into the internal ladder rungs. This as opposed to p
which shows up on every rung. The red bosonic lines depicts internal lines belonging to segments that can be evaluated with
momenta on the FS itself. Only the last rung of the ladder is forced, by the external legs, to have weight at a distance q⊥−kF
from the FS. (right panel) the effective vertex correction. The red vertex is evaluated for k on the FS itself.

This is just a more generic form of Eq. (51). Eq. (C6) can be solved generically via the ansatz,

(iq0 − vF k̂ · q)Γ0(k; q) =
[
iΣ̃(k + q)− iΣ̃(k)]− vF k̂ · q

]
= G−1(k + q)−G−1(k). (C7)

which is just a Ward identity. However, recall that that Eq. (C7) assumes implicitly that k̂ ·q̂ ' 1. Another implication
of the Ward identity, is that far away from the FS, the fermionic ω2/3 self energy is cut off by the same scale that
cuts of the vertex correction, i.e.,

Σ(k, k0) ∼ Σ(k0)g

(
k

(γf2(k̂)|k0|/vF )1/3

)
, (C8)

so it vanishes as k−1 in the large k limit.

The leading ordere form of the full vertex was already derived in the manuscript itself, except for an explicit form
of µ0, µ1. Expressions for these appear in the previous section, Eqs. (A10)+(A12).

Appendix D: Derivation of Eq. (67) in the rung-by-rung analysis of sec. VD

In this section we derive Eq. (67), the expression for the polarization using fully renormalized side density vertices
and self-energies. To do so we evaluate the diagrams of Fig. 6, but now with fully dressed vertices and Green’s
functions. The expressions for the diagrams are,

I± =
Nḡ

χ0 (2π)
6

∫
d3kd3p G2(k)G(k + p)G(k ± q)D(p)Γ2

0(k;±q)f2(k)f2(k + p/2) (D1)

Iv =
Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + q)G(k + p)G(k + p+ q)D(p)×

× Γ0(k; q)f(k)Γ0(k + p; q)f(k + p)f2(k + p/2) (D2)

Here, we used the identity

Γ0(k − q; q) = Γ0(k;−q) (D3)

which is a result of the Ward identity Eq. (C7), and the fact that vertex corrections on the internal vertices are small.
We also use full Green’s functions, with the self-energy taken as the first term in Eq. (37). The identity in Eq. (21)
can now be written in the form,

Γ0(k; q)G(k + q)G(k) =
Γ0(k; q)

Σ̃(k + q)− Σ̃(k)
[G(k)−G(k + q)] =

1

iq0 − vF k̂ · q
[G(k)−G(k + q)] (D4)
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The static part of the polarization is computed by taking q0 → 0. In this limit vertex corrections are negligible, and
thus the static part is still described by Eq. (A2). The dynamical part of the self energy for q = 0 is now

ISEd =
Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + p)D(p)f2(k + p/2)

Γ0(k − q; q)f(k)G(k − q)− Γ0(k; q)f(k)G(k + q)

iq0

=
Nḡ

χ0 (2π)
6

∫
d3kd3p G(k)G(k + q)D(p)f2(k + p/2)Γ0(k; q)(−1)Γ0(k0 + p0,k + p; q0,q = 0)G(k + p+ q)G(k + p)

(D5)

Here, in the first line, we shifted the k integral of the first term k → k+ q, and then used Eq. (D4). By symmetrizing
via dp→ dk′ = d(k+ p) we end up with Eq. (67). Then, as in sec. A 1, the integral splits into three: an integral over
k⊥, and integral over k′⊥ and an integral over k‖, k

′
‖. Each transverse integral limits the frequency regime to (−q0, 0),

∫
d3kΓ0(k; q)G(k)G(k + q) =

∫
d3k

G(k + q)−G(k)

iq0
' πv−1

F

∫ 0

−q0

dk0

q0

∫
dk‖ (D6)

The remaining integrals yield Eq. (69).

One last task is to check whether the dynamic part of Π is ever negative, i.e. whether 〈f2〉 is ever positive. To
check this, note that we can define

gn(x) = f2(φ)

[
f ′2(φ) +

1

n− 1
f(φ)f ′′(φ)

]
=

1

n(n− 1)
f4−n(φ)

d2

dφ2
fn(φ), (D7)

for n = 2, 3, 4. We then have

g3(x) = f2(x). (D8)

We will use g2, g4 which are simple to evaluate, so as to get an expression for 〈g3〉. It is clear that

〈g4〉 = 0, (D9)

since g4 is a full derivative. In addition,

〈g2〉 < 0. (D10)

To see this, note that f(φ) is periodic, and hence so is f2(φ), so we may expand it in a Fourier series,

f2(φ) =
∑
n

(f2)ne
2πinφ. (D11)

Then averaging g2 yields∫
dφ

2π

1

2
f2(f2)′′ =

∑
n,m

1

2
(f2)n[−(2πm)2](f2)mδm,−n = −2π2

∑
n

n2|(f2)n|2 < 0. (D12)

Finally,

〈f3(φ)f ′′(φ)〉 =
3

2
〈g2(φ)− g4(φ)〉 =

3

2
〈g2〉 (D13)

Here we subtracted the expressions in Eq. (D7) from one another. Adding all this together we find

〈f2(φ)〉 = 〈g3〉 = 〈g2 −
1

2
f3f ′′〉 = 〈g2 −

3

4
g2〉 =

1

4
〈g2〉 < 0. (D14)

Therefore, 〈f2〉 < 0 is always negative, so the nonconstant part of the polarization is always positive for q = 0, q0 6= 0.
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15 16

FIG. 10. Higher order Aslamazov-Larkin diagrams contributing to the dynamic polarization. For coupling in the charge channel
these cancel out, and for coupling in the spin channel they contribute in the same order as the vertex and self-energy diagrams
of Fig. 6. The red lines are the ones where form-factor variation is taken into account.

Appendix E: Aslamazov-Larkin (AL) diagrams for Π(q = 0, q0)

In the body of the manuscript, we pointed out that the contribution from the Aslamazov-Larkin diagrams, shown
in Fig. 3 in the regime q0 � ω1, are of the same order in ḡ and N as the self-energy and vertex corrections of Fig.
2 (see Ref. 4). In this appendix we review how this result comes about, evaluate the diagrams, and show that they
only serve to modify µ0, µ1 that we found in Eqs. (A10) + (A12).

We treat the AL contributions within the Eliashberg theory for q0 � ω0, as all results for frequencies above ω0

follow directly from the Eliashberg treatment. In the same manner as for the two-loop diagrams, the side vertices of
the AL diagrams are dressed with density vertices Γ0, as depicted in Fig. 10.

The contribution from the AL diagrams is:

ΠAL(q) = − N2ḡ2

χ2
0 (2π)

9

∫
d3kd3pd3k′f(k)f2(k + p/2)Γ0(k; q)G(k)G(k + q)G(k + p)D(p− q)D(p)×

×
[
G(k′)G(k′ + q)G(k′ + p)f2(k′ + p/2) +G(k′ + q)G(k′)G(k′ + q − p)f2(k′ − p/2)

]
Γ0(k′; q)f(k′).

(E1)

Here, we shifted k′ → k′+ q in the right-hand AL diagram. The key to simplify Eq. (E1) is to note that χ0D
−1(p) =

|p|2 + ḡΠ(p), so that the two bosonic propagators can actually be factorized:

D(p)D(p− q) = χ0[ḡΠ(p)− ḡΠ(p− q)]−1[D(p− q)−D(p)]. (E2)

Next, we use the Ward identity, Eq. (53), to obtain,∫
d3k

(2π)
3 Γ0(k; q)G(k)G(k + q)G(k + p)f(k)f2(k + p/2) =

1

(2π)
3
iq0

∫
[G(k)−G(k + q)]G(k + p)f(k)f2(k + p/2).

(E3)

In what follows, we should properly symmetrize Eq. (E1) by inserting appropriate shifts of p/2, q/2. This is because
it is necessary to track various angular expressions more accurately than for the 2-loop diagrams. To conserve space
we do not do so explicitly, and just point out where it is necessary. Now, p is an internal integration variable so we
can neglect vertex corrections involving p. Therefore,

N
ḡ

(2π)
3

∫
d3kG(k)G(k + p)f(k)f2(k + p/2)

→ N
ḡkF

(2π)
2
vF

∫
dk0dφf(kF k̂ − p/2)f2(kF k̂)

iΘ(k′0 + p0/2)− iΘ(k′0 − p0/2)

iΣ̃(k + p/2)− iΣ̃(k − p/2)− vF |p| cos(φp − φk)

' γ |p0|
vF |p|

f2(p̂′)[f(kF ẑ × p̂− p/2) + f(kF p̂× ẑ − p/2]/2

= ḡΠ(p)f̃(p). (E4)

where in the second line we performed the symmetrization shift. The two terms in f̃(p) arise from the fact that the
angular integration in Eq. (E4) has two peaks on opposite sides of the FS. Thus, the integration over the d3k variables
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gives a factor of f̃(p)[ḡΠ(p)− ḡΠ(p− q)]. Then we are left with,

ΠAL(q) = −N ḡ

χ0 (2π)
6

∫
d3k′d3pf̃(p) [D(p− q)−D(p)]×

G(k′)G(k′ + q)
[
G(k′ + p)f2(k′ + p/2) +G(k′ + q − p)f2(k′ − p/2)

]
Γ0(k′; q)f(k′).

= −N ḡ

χ0 (2π)
6

∫
d3k′d3pf̃(p)D(p)G(k′)G(k′ + q)Γ0(k′; q)f(k′)×[

(G(k′ + p+ q)−G(k′ + p)) f2(k′ + p/2) + (G(k′ − p)−G(k′ − p+ q)) f2(k′ − p/2)
]

(E5)

Eq. (E5) shows that indeed the AL contribution is of the same order as the 2-loop contributions in both ḡ and N .
Finally we obtain:

ΠAL(q) = −N ḡ

χ0 (2π)
6

∫
d3k′d3pD(p)G(k′)G(k′ + q)Γ0(k′; q)

G(k′ + p+ q)−G(k′ + p)

iq0
f(k′)f2(k′ + p/2)δf̃(p)

= +N
ḡ

χ0 (2π)
6

∫
d3k′d3pD(p)G(k′)G(k′ + q)Γ0(k′; q)G(k′ + p+ q)G(k′ + p)F ′(k′;k′ + p) (E6)

where

F ′(k′;k′ + p) = f(k′)f2(k′ + p/2)δf̃(p), (E7)

and

δf̃(p) = f̃ ′(k′,p)− f̃ ′(−k′,−p) (E8)

with

f̃ ′(p) =
1

2

[
f(k′ + p/2) + f(−k′ − 3p/2)

]
(E9)

To derive Eq. (E8) used the relationship φp = φk + π/2 + φ/2, and reversed the symmetrizing shift. We see that
Eq. (E6) is an analogue of Eq. (67), with a somewhat different angular component. For a purely even form factor, as
for the nematic one, the contribution is zero within our approximations.

Appendix F: Polarization operator Π(q− 0, q0) beyond Eliashberg theory

In this final appendix we compute the leading contribution to Π(q = 0, q0) beyond Eliashberg theory. Within the
Eliashberg treatment we factorized the momentum integration, namely we integrated transverse to the FS in fermionic
propagators and neglected the transverse momentum component in the bosonic susceptibility, i.e., approximated D(k)
by its value between the points on the FS. This approximation definitely works for the leading, frequency-independent

term in Eq. (60) because it comes from parallel momenta of order kF and transverse momenta of order q
2/3
0 (this

is the only option to avoid q0 to a positive power in the overall factor). However, it is not a’priori guaranteed that
within this approximation one gets the leading frequency dependence of Π(q = 0, q0).

To verify whether the factorization of momentum integration is justified for the frequency-dependent part of Π(q =
0, q0), we again repeat the procedure used in Sec. V D. Namely, we select one segment from which we pick up the
contribution with the gradient of the form factor. In all other segments we neglect the variation of the form-factor
between incoming and outgoing momenta of the interaction terms. However, as opposed to the Eliashberg treatment,
we do not factorize the momentum integration in the segment with the gradient of f(k).

One may readily verify that beginning with Eq. (67), instead of Eq. (69) we end up with

Π(q = 0, q0) ' γ

(2π)
3

∫
dθ

2π
f2(θ)

∫
q0<|k0|

dk0

q0

∫
d2k

Σ̃(k0 + q0)− Σ̃(k0)

(iΣ̃(k0 + q0)− vF k cosφ)(iΣ̃(k0)− vF k cosφ)
×

k(k2 sin2 φ)/k2
F

k3 + f2(θ + φ)γ|k0 + q0|/vF k3
F

.

(F1)
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If we factorize the momentum integration into integration over k⊥ = k cosφ in the fermionic propagators and over
k‖ = k sinφ in the bosonic propagator, we reproduce Eq. (60). If, instead, we subtract from the r.h.s. of (F1) the
constant term and in the remaining part do not factorize but rather assume that k‖ and k⊥ are of the same order,

i.e., that typical φ are of order one, we find that typical k in the integrand are of order k1/3, typical k0 are of order

q0, and the frequency dependence of Π(q = 0, q0) is in the form q
2/3
0 . In explicit form the q

2/3
0 term, which we label

a Π̃, is

ḡΠ̃(q = 0, q0) ∼ ḡγω0

ε2
F

〈f2〉
∣∣∣∣ q0

ω0

∣∣∣∣2/3
∼
(q0

D

)1/3

× (Π(q = 0, q0)−Π(q, 0)) (F2)

where D ∼ ε2
FN

2/ḡ � Λ. Hence, within low-energy theory (energies are smaller than Λ), the frequency dependence
coming from the integration range where internal momenta along and transverse to the FS are of the same order, is
much weaker than the one coming from the range where momenta transverse to the FS are much smaller than the
ones along the Fermi surface.


