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We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced
superconductivity under an external magnetic field. An applied magnetic field creates two Majo-
rana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana
state localized along a circle centered at the vortex core. We calculate the spin-resolved local den-
sity of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana
state, predicted in Ref. [R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016)], under a strong
magnetic field can be seen in LDOS without smeared out by non-zero-energy states. The spin-
resolved LDOS further reveals that the spin of the exterior Majorana state is strongly polarized.
Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well.
In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the
Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional
topological-superconducting system where a two-dimensional electron gas with the spin-orbit cou-
pling is sandwiched between an s-wave superconductor and a ferromagnetic insulator. We show
that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However,
on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced
odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin-polarization of the
Majorana state is attributed to the spin-polarized Landau level which is characteristic for systems
with the Dirac-like dispersion.

I. INTRODUCTION

The existence of edge states is one of the most char-
acteristic properties of topological phases. The edge
states stem from the topology of bulk wavefunctions, and
have been actively studied in this decade1–4. In partic-
ular, exploring Majorana bound states (MBSs) in topo-
logical superconductors (TSCs) is of great worth3,5–18,
since topologically protected quantum computation can
be implemented by braiding MBSs19,20. The pres-
ence of MBSs in condensed matters has first been pro-
posed in spinless p-wave superconductors (SCs)5,21. Ma-
jorana bound states have been considered to be ob-
served by means of current fluctuations7 and tunneling
spectroscopy9,15,16. Recently, more accessible experimen-
tal setups have been proposed in various hybrid systems
where a spin-singlet s-wave SC is proximity-coupled to a
low-dimensional semiconductor with a strong spin-orbit
coupling22–29. Several experimental studies found the ev-
idences of MBSs30–44.

Among these hybrid systems, SCs on a three-
dimensional topological insulator (TI) are promising sys-
tems to observe and manipulate MBSs45–52. In such
systems, a MBS appears as a localized state at a vor-
tex core53–56. Simultaneously, another MBS should ap-
pear somewhere in the system because MBSs can ap-
pear only in pairs11. Recently, R. S. Akzyanov et al.

have shown the existence of exterior MBSs which are not
always pinned by an interface nor a sample edge57,58.
Focusing only on the zero-energy solutions, they have
concluded that the position of the exterior MBS can be
controlled by an applied magnetic field58. From exper-
imental side, on the other hand, the local conductance

measurements by STS has become accessible in this hy-
brid system59. Therefore, the study on the quasiparticle
energy spectrum, including the exterior MBS, non-zero-
energy Andreev bound states, and the continuum lev-
els, is indispensable to observing MBSs and realizing the
braiding MBSs. Motivated by these works, in this pa-
per, we investigate how one can identify the existence
of the exterior MBS and its position shift dependent on
an applied magnetic field from the local density of state
(LDOS) experiment.

Another aspect of physics of MBSs is the appearance
of odd-frequency Cooper pairs. In general, Cooper pairs
are classified into several symmetry classes by focusing
on the symmetry of the anomalous Green’s function.
Most theoretical papers have focused only on the equal-

FIG. 1. Schematic of superconductor (SC)/topological in-
sulator (TI) hybrid system. A superconducting island with
a single vortex is fabricated on the top of a TI. The SC is
surrounded by a ferromagnetic insulator (FI) to bound the
quasiparticles. Therefore, the magnetization of the FI is per-
pendicular to the TI surface and its magnitude is much larger
than the chemical potential and the pair potential.
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time pairing, of which the anomalous Green’s functions
are even-function of the relative time of two fermions.
However, the anomalous Green’s function depends gen-
erally on the relative time (i.e., frequency), and can be
an odd function of the frequency. Such odd-frequency
Cooper pairs are known to be locally induced by spatial
inhomogeneity as subdominant components60–75 . Ma-
jorana bound states are equivalent to zero-energy An-
dreev bound states2, which always always accompany
subdominant odd-frequency Cooper pairs. So far, the
relation among odd-frequency pairing, MBSs, and TSCs
have been studied in a number of works69,76–85. The
features of MBSs can be elucidated by focusing on the
induced odd-frequency pairings. Therefore, it is worth
investigating which type of Cooper pairs is induced by
the novel exterior MBS.

In this paper, we study quasiparticle states on a TI
surface where s-wave superconductivity is proximity-
induced, which we refer to as the SC/TI hybrid system,
and investigate how the LDOS is changed under an ex-
ternal magnetic field normal to the TI surface. Here,
we put a vortex state of an even-frequency spin-singlet
s-wave SC on the TI so that the vortex MBS and the
exterior MBS arise. From the calculated LDOS, we nu-
merically confirm that the wavefunction of the exterior
MBS is localized on a circle around the vortex and the
radius shrinks as the external magnetic field increases. In
order to detect the exterior MBS from the LDOS, how-
ever, the Fermi energy should be set close to the Dirac
point to avoid contributions from continuum levels. We
also calculate the spin-resolved LDOS, and show that the
exterior MBS is strongly spin-polarized. The direction of
the spin polarization is determined by the direction of
the external field. This property is related to the lowest
“relativistic” Landau level86–88, which is specific to sys-
tems with the Dirac-like dispersion such as TI surfaces.
Accordingly, we find that odd-frequency spin-polarized s-
wave Cooper pairs are accompanied by the exterior MBS.

We also study a different two-dimensional TSC known
as the Rashba SC: a two-dimensional electron gas
(2DEG) with a Rashba spin-orbit coupling (SOC) sand-
wiched between an s-wave SC and a ferromagnetic in-
sulator (FI). We show that the position of the exterior
MBS is tunable by an applied magnetic field as seen in
SC/TI hybrid systems. However, contrary to the results
in SC/TI hybrid systems, the exterior MBS is not spin
polarized. This difference can be well interpreted by com-
paring the spin structure of the n = 0 Landau level. Re-
flecting that the n = 0 Landau level is not spin-polarized
in a system with a conventional parabolic dispersion, the
exterior MBS is not spin polarized in the Rashba SC.

The organization of this paper is as follows. In Sec. II,
we present the Bogoliubov-de Gennes (BdG) Hamilto-
nian for the SC/TI hybrid system (Sec. II A) and the
Rashba SC (Sec. II B) and the formulation to obtain the
energy spectrum, LDOS, and pair amplitudes (Sec. II C).
In Sec. III, we numerically calculate the energy spectrum,
LDOS, and odd-frequency pairing both for SC/TI hybrid

systems and Rashba SCs. Section IV summarizes our re-
sults.

II. BOGOLIUBOV-DE GENNES FORMALISM

A. Superconductor/topological insulator hybrid
system

We consider a surface of a three-dimensional TI on
which a superconducting island is fabricated as shown in
Fig. 1, where we use a type-II SC and a vortex is as-
sumed to be located at the center of the SC. The SC
is surrounded by an FI to bound quasiparticles at the
SC/TI interface: The magnetization of the FI is directed
perpendicular to the TI surface and its amplitude is much
larger than the chemical potential and the pair potential
so that a large energy gap opens at the FI/TI interface.
The radii of the SC and the system are denoted by Rs and
Rc, respectively. The existence of the FI is not essential
when an exterior MBS is localized inside the supercon-
ducting region under a strong magnetic field. The FI is
needed to localize an exterior MBS at the SC/FI bound-
ary under a small magnetic field. Because a TI surface is
already an interface between a 3DTI and a vacuum, we
cannot terminate the metallic TI surface by a vacuum
but need to introduce another type of insulating state
by putting an FI on it. From the point of view of nu-
merical calculations, the existence of the FI makes the
boundary condition simple so that quasi-particle wave-
functions vanish at the boundary of the system.
When the superconductivity is induced by attaching a

SC on the top of the TI, the system can be described by
the Hamiltonian as

H =
1

2

∫∫

Ψ†(r)ȞB(r, r
′)Ψ(r′) drdr′, (1)

Ψ(r) = [ψ↑(r) ψ↓(r) ψ
†
↑(r) ψ

†
↓(r)]

T, (2)

with the Bogoliubov-de Gennes (BdG) Hamiltonian

ȞB(r, r
′) =

[

δ(r − r′)ĥ(r) ∆̂(r, r′)

−∆̂∗(r, r′) −δ(r − r′)ĥ∗(r)

]

, (3)

where r = (x, y) and the symbol ·̂ (̌·) represents a 2 ×
2 (4 × 4) matrix in the spin (spin-Nambu) space. The

single-particle Hamiltonian ĥ and the pair potential ∆̂
can be written as

ĥ(r) = vF σ̂ ·
[

p− e

c
A(r)

]

+M(r)σ̂3 − µF σ̂0, (4)

∆̂(r, r′) = δ(r − r′)∆(r)iσ̂2, (5)

where vF , e < 0, c, p = −i~∇, σ̂i (i = 0-3), A(r), and
µF are the Fermi velocity, the charge of an electron, the
speed of light, the momentum operator, the Pauli matri-
ces in the spin space, the vector potential, and the chemi-
cal potential, respectively. We here assume that the pair
potential ∆̂ has the even-frequency spin-singlet s-wave
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symmetry. The magnetization of the FI and the ampli-
tude of the proximity-induced pair potential are denoted
by M(r) and ∆(r), respectively.

When the system is cylindrically symmetric, the
Hamiltonian can further be reduced by introducing the
cylindrical coordinate; r = (ρ, φ). We assume that the
φ dependence of the pair potential is written as ∆(r) =
∆(ρ)e−iℓφ with ℓ being the vorticity and that the magne-
tizationM(r) does not depend on φ. Then, by expanding
the field operators as Ψ(φ, ρ) =

∑

µ Ψµ(ρ)e
iµφ/(2π)1/2

with the basis

Ψµ(ρ) =















ψ↑,µ(ρ)e
−i(ℓ+1)φ/2

ψ↓,µ(ρ)e
−i(ℓ−1)φ/2

ψ†
↑,µ(ρ)e

+i(ℓ+1)φ/2

ψ†
↓,µ(ρ)e

+i(ℓ−1)φ/2















, (6)

where µ is an integer (a half integer) for an odd (even)
vorticity to make Ψ a single-valued function, the Hamil-
tonian is rewritten as

H =
1

2

∑

µ

∫ Rc

0

Ψ†
µ(ρ)ȞB,µ(ρ)Ψµ(ρ) ρdρ, (7)

ȞB,µ(ρ) =

[

ĥµ(ρ) ∆(ρ)iσ̂2

−∆∗(ρ)iσ̂2 −ĥ∗−µ(ρ)

]

. (8)

The 4 × 4 Hamiltonian ȞB,µ preserves the particle-hole
symmetry

ȞB,µ = −τ̌1Ȟ∗
B,−µτ̌1, (9)

where τ̌i (i = 1-3) are the Pauli matrices in the Nambu

space. The single-particle Hamiltonian ĥµ(ρ) is given by

ĥµ(ρ) =









M(ρ)− µF

~vF

i

(

∂ρ +
2µ− ℓ+ 1

2ρ
+ Ãφ(ρ)

)

~vF

i

(

∂ρ −
2µ− ℓ− 1

2ρ
− Ãφ(ρ)

)

−M(ρ)− µF









. (10)

Here, we chose the gauge A(r) = Aφ(ρ)eφ with eφ being
a unit vector along the azimuthal direction and defined
Ãφ = |e|Aφ/~c. The vector potential is due to an exter-
nal magnetic field in addition to the magnetic flux of a
vortex. Throughout this paper, we assume that the thick-
ness of the SC along the z direction is much thinner than
its magnetic penetration depth so that the magnetic field
is spatially homogeneous on the TI surface. The magni-
tude of an external magnetic field is expressed in terms of
the magnetic length ℓB = (~c/|eHext

z |)1/2, which should
be larger than the coherence length ξSC = ~vF /∆SC of
the bulk SC with pair potential ∆SC: otherwise, the mag-
netic field destroys the superconductivity. On the other
hand, ξSC is much smaller than the coherence length
ξ0 = ~vF /∆0 of the proximity-induced pair potential ∆0

on the TI surface (i.e., ∆0 ≪ ∆SC). In the following
calculations, we consider the case for ξSC ≪ ξ0 < ℓB.
To describe the ρ dependence around the vortex core,

we assume

∆(ρ) = Θ(Rs − ρ)∆0 tanh (ρ/ξ0) , (11)

where Rs is the radius of the SC, ∆0 is the amplitude

of the proximity-induced pair potential in the absence of
a vortex, and Θ(ρ) is the Heaviside step function. The
radial profile of the magnetization is given by M(ρ) =
M0Θ(ρ − Rs)Θ(Rc − ρ) with Rc being the outer radius
of the FI.

B. Rashba superconductor

We also consider a 2DEG with a Rashba SOC. The
2DEG is sandwiched between an even-frequency spin-
singlet s-wave SC and an FI, where a superconducting
vortex is located at the center of the SC and the mag-
netization of the FI is normal to the 2DEG as shown
in Fig. 2. In this paper, we refer to this system as the
Rashba SC. Both of the two systems (Figs. 1 and 2) are
two-dimensional islands of a topological superconductor
surrounded by an insulating state even though the ge-
ometries look different. The appearances are different
from each other because FIs play different roles; an FI
is introduced to make an insulating region in the SC/TI
hybrid system, whereas it is introduced to make a super-
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conductivity topological in the Rashba SC.
The single-particle Hamiltonian for the Rashba SC can

be described22,24–28 as

ĥ =

[

p̃2

2m0
− µF

]

σ̂0 + λez · [σ̂ × p̃] +M · σ̂, (12)

where λ is the strength of the SOC, p̃ = p− (e/c)A, ez
is the unit vector in the z-direction, m0 is the mass of an

electron. In the Cartesian coordinate, ĥ can be written
as

ĥ(x, y) =





ξk +M0 λ
(

∂̃x − i∂̃y

)

λ
(

− ∂̃x − i∂̃y

)

ξk −M0



 , (13)

where we have used M = M0ez with M0 being a con-
stant, ξk = (−~

2/2m0)(∂̃
2
x + ∂̃2y) − µF and ∂̃x(y) =

∂x(y) + i|e|Ax(y)/~c. The system becomes topologically
non-trivial (i.e., the 2DEG becomes a TSC) when the
relation M2

0 > µ2
F +∆2

0 is satisfied22–25,28.

Similarly to the previous section, the Hamiltonian
can be simplified when the system has the rota-
tional symmetry. Assuming ∆(ρ, φ) = ∆(ρ)e−iℓφ =
∆0 tanh(ρ/ξ0)e

−iℓφ and expanding the field operators as
Eq. (6), the Hamiltonian can be written as

H =
1

2

∑

µ

∫ Rc

0

Ψ†
µ(ρ)ȞB,µ(ρ)Ψµ(ρ) ρdρ, (14)

ȞB,µ(ρ) =

[

ĥµ(ρ) ∆(ρ)iσ̂2

−∆∗(ρ)iσ̂2 −ĥ∗−µ(ρ)

]

, (15)

where the diagonal part is given by

ĥµ(ρ) =









ξµ +M0 λ

(

∂ρ +
2µ− ℓ+ 1

2ρ
+ Ãφ

)

λ

(

−∂ρ +
2µ− ℓ− 1

2ρ
+ Ãφ

)

ξµ+1 −M0









, (16)

with

ξµ = − ~
2

2m0

[

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

− (2µ− ℓ− 1)2

4ρ2
+
Ãφ(2µ− ℓ− 1)

2ρ
− |Ãφ|2

]

− µF , (17)

FIG. 2. Schematic of Rashba SC system. The two-
dimensional electron gas (2DEG) is sandwiched between an
FI and an s-wave SC with a vortex. The magnetization of the
FI is normal to the 2DEG.

being the kinetic energy in the cylindrical coordinate.
The definition of Ãφ is the same as that in Sec. II A.

ȞB,µ in Eq. (15) also preserves the particle-hole symme-
try described in Eq. (9).

C. Local density of states and pair amplitudes

The local density of states (LDOS) and the pair am-
plitudes can be calculated from the quasiparticle eigen-
functions. We numerically solve the BdG equation

HB,µΦµ,ν = Eµ,νΦµ,ν , (18)

for each µ, and obtain the eigenfunctions Φµ,ν =

[ u↑,µ,ν u↓,µ,ν v↑,µ,ν v↓,µ,ν ]
T

where us,µ,ν and vs,µ,ν
are the wavefunctions of quasiparticles in spin s = ↑ and
↓ states and µ and ν are the indices that specify the φ
dependence of the wavefunction and the eigenvalue, re-
spectively. In the numerical simulations, we expand the
eigenfunction in terms of the Bessel functions and numer-
ically diagonalize the BdG Hamiltonian. The details are
described in Appendices A (SC/TI hybrid system) and
B (Rashba SC).
Using the eigenfunctions, the LDOS is expressed as

N(ρ,E) =
∑

s=↑,↓

Ns(ρ,E), (19)

Ns(ρ,E) =
∑

µ

∑

Eµ,ν>0

[

|us,µ,ν(ρ)|2 η(E − Eµ,ν)

+|vs,µ,ν(ρ)|2 η(E + Eµ,ν)
]

. (20)
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In this paper, we employ the thermal-smearing function
η(E) = −(∂/∂E)f(E, T ), where f(E, T ) is the Fermi-
Dirac distribution function. The temperature is set to
T = 0.1Tc for the SC/TI hybrid systems and T = 0.01Tc
for the Rashba SCs, where the critical temperature Tc
is obtained from the relation between Tc and ∆0 in an
s-wave singlet superconductor: Tc = ∆0e

γ/π, where γ is
Euler’s gamma.

We can obtain the anomalous Green’s function from
the eigenfunctions as well. Throughout this paper, we
refer to the anomalous Green’s function as a pair am-
plitude. In general, for a given set of eigenfunctions
[ u↑,ν u↓,ν v↑,ν v↓,ν ]T and associated eigenvalues Eν ,
the anomalous Green’s function is given by

Fσ1σ2
(iωn; r1, r2)

=
∑

Eν>0

[

uσ1,ν(r1) v
∗
σ2,ν(r2)

iωn − Eν

+
v∗σ1,ν(r1)uσ2,ν(r2)

iωn + Eν

]

, (21)

where ωn = (2n+1)πT is the Matsubara frequency with
n being an integer. In the present case, by recovering the
φ dependence of the quasiparticle wavefunctions using
Eq. (6), the anomalous Green’s function can be expressed
as

Fs1s2(iωn; r1, r2) =
∑

µ

Fµ,s1s2(iωn; r1, r2), (22)

Fµ,s1s2(iωn; r1, r2)

=
∑

Eν>0

[us1,µ,ν(ρ1) v
∗
s2,µ,ν(ρ2)

iωn − Eµ,ν
e+iµφr

+
v∗s1,µ,ν(ρ1)us2,µ,ν(ρ2)

iωn + Eµ,ν
e−iµφr

]

× e−iℓφce−i(Xs1
φ1+Xs2

φ2)/2, (23)

with φc = (φ1 + φ2)/2, φr = φ1 − φ2, and Xs = 1(−1)
for s = ↑ (↓). In this paper we focus on the s-wave
component (i.e., on-site correlation function). We can
obtain the even- and odd-frequency components from the
following relation:

FEven(Odd)
µ,s1s2 (iωn; ρ1, φ1)

=
1

2

[

Fµ,s1s2(iωn; ρ1, φ1, ρ1, φ1)

+ (−)Fµ,s1s2(−iωn; ρ1, φ1, ρ1, φ1)

]

. (24)

FIG. 3. Local density of states (LDOS) in the SC/TI hybrid
system. The vortex is located at the center of the supercon-
ducting island ρ = 0. The peaks at ρ = E = 0 are from
the vortex Majorana bound states (MBS). The exterior MBS
changes its position depending on an external magnetic field
(indicated with the arrows). The V-shape peaks near the ar-
rows in (c) and (d) are the characteristic structure for the
exterior and chiral MBSs. The LDOS are normalized by
the value at ρ = 0 and E = 1.5∆0 in the absence of the
proximity-induced pair potential (i.e., ∆0 = 0). The param-
eters are set as µF = 0.2∆0, Rc = 30ξ0, Rs = 0.9Rc, ℓ = 1,
and M0 = 10∆0.
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III. RESULTS

A. Superconductor/topological insulator hybrid
system

1. Local density of states

We first show the LDOS with several choices of the
magnetic length in Fig. 3, where the chemical potential
is set to µF = 0.2∆0. The LDOS N(ρ,E) in this system
is normalized by N0 = N̄(ρ = 0, E = 1.5∆0) for each
chemical potential, where N̄(ρ,E) is the LDOS of the
pristine surface of the TI in the absence of a proximity-
induced pair potential nor an external magnetic field. In
the absence of an external magnetic field (i.e., ℓB → ∞),
the proximity-induced pair potential opens a spatially-
homogeneous energy gap almost everywhere in the su-
perconducting region [Fig. 3(a)]. A vortex MBS appears
at the center of the vortex core at E = 0. The peaks
at ρ = 0 and E = ±0.95∆0 are also the localized states
at the vortex core. The exterior of the superconducting
region (i.e., ρ > Rs) is insulating because of the magne-
tization of the FI. As a result, another MBS89 appears
at the SC/FI boundary (i.e., ρ = Rs).
With decreasing the magnetic length, the magnitude

of the superconducting gap near the SC/FI boundary de-
creases as shown in Fig. 3(b). When the magnetic length
becomes shorter than a certain value, the MBS at the
SC/FI boundary moves inside the superconducting re-
gion. In Figs. 3(c) and 3(d), for example, the zero-energy
peaks are located at ρ ≈ 0.7Rc and 0.4Rc, respectively.
The radius of the exterior MBS r∗ becomes smaller for
larger magnetic field and is consistent with the relation
r∗ = 2ℓ2B/ξ0 derived in Ref. 58.
In addition to the zero-energy states, there are also

subgap “edge” states with non-zero eigenenergies. These
states, known as chiral Majorana states, stem from the
solutions for µ 6= 0 and exhibits linear dispersion with
respect to µ for small µ (see Fig. 6). They are local-
ized at the SC/FI boundary when Hext

z = 0. When
Hext

z becomes stronger than a certain value, they move
inside the superconducting region as the exterior Majo-
rana zero-energy state does. The radii of these states
depend on their eigenenergies: the higher-energy state,
or equivalently the larger-angular-momentum state, has
the larger radius. As a result, the LDOS exhibits a char-
acteristic V-shaped peak in the ρ -E space as shown in
Figs. 3(c) and 3(d). The chiral Majorana states exist even
in the absence of a superconducting vortex, although the
exactly-zero-energy state arises only in the presence of a
vortex9,12. We observe numerically that the chiral Ma-
jorana states without a vortex also move inside the su-
perconducting region under a strong external magnetic
field.
We next show the LDOS for a larger chemical potential

µF = 0.4∆0 (i.e., with a larger Fermi surface). In the
absence of an external magnetic field, the magnitude of
the energy gap is equivalent to ∆0 except for the vortex

FIG. 4. LDOS in the SC/TI hybrid system at µF = 0.4∆0.
The other parameters are set as the same values as those used
in Fig. 3. The arrows indicate the position of the exterior Ma-
jorana bound states. The characteristic V-shape is no longer
clear.

core and the boundary as shown in Fig. 4(a). When the
magnetic field is applied, the energy gap becomes smaller
around the SC/FI boundary as shown in Fig. 4(b). At
the magnetic length ℓB = 0.1Rc and 0.08Rc, N(E =
0, ρ) has a peak at ρ ≈ 0.7Rc and 0.4Rc, respectively.
However, these points are saddle points in the ρ-E plane
(i.e., these points are local minima along the E direction).
Accordingly, the characteristic V-shape structure in the
ρ -E space, which can be seen in Fig.3(d), is segmented
at E = 0 in Fig. 4(d).

To understand the details of the LDOS for each chem-
ical potential, we plot the cross section of N(ρ,E) for
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FIG. 5. LDOS in the SC/TI hybrid system. The same data
as (a) Fig. 3(d) and (b) Fig. 4(d), which are respectively cal-
culated for µF = 0.2∆0 and 0.4∆0, are shown as a function of
E/∆0 at ρ/Rc = 0.35, 0.40, 0.45, and 0.50. When the chem-
ical potential µF is close to the Dirac point (a), the exterior
Majorana state can be observed as a zero-energy conductance
peak. On the other hand, LDOS for a fixed ρ has a minimum
at E = 0 when µF is not sufficiently small (b).

µF = 0.2∆0 and 0.4∆0 in Figs. 5(a) and 5(b), re-
spectively. The radial coordinate is fixed at ρ/Rc =
0.35, 0.40, 0.45, and 0.50 (i.e., around the zero-energy
peak of the exterior MBSs). When the chemical potential
is sufficiently small, the LDOS has a clear peak at E = 0
as shown in Fig. 5(a). However, when µF = 0.4∆0, there
is no zero-energy peak for every ρ even though there is
an exterior MBS.

Figure 6 shows the angular-momentum dependences of
the energy eigenvalues at ℓB = 0.08Rc and (a) µF /∆0 =
0.2, (b) 0.4, and (c) 2.0. In Fig. 6(a), one can clearly
identify the chiral Majorana mode, which goes across the
figure from the bottom left to the top right. In the ab-
sence of an external field, the chiral Majorana mode has
a linear dispersion in the wide range of µ (not shown)
and its dispersion is given by ECM ∼ µ sgn[M0]. Namely,
the direction of the magnetization in the FI determines
the direction of the edge current47.

An external magnetic field modifies the energy
spectrum through the emergence of the Landau
quantizations86–88. In the energy spectrum, almost-flat
plateaus corresponding to the Landau levels of the nor-
mal state emerge (indicated with arrows in Fig. 6). These

Landau levels are given by E = ER
±,n ≡ ±~vF

√
2n/ℓB −

µF and E = −ER
±,n for particle and hole branches, re-

spectively, where the particle (hole) branches arise for
µ < 0 (µ > 0) when Hext

z > 0. We note that the
±ER

n=0 plateaus emerge in a chiral Majorana mode (see
Appendix C for details). However, the linear dispersion
with respect to µ remains at around µ = 0. The sign of
the slope around µ = 0 is determined by the direction of
an applied magnetic field Hext

z . These dispersive states
make the characteristic V-shape peak in the ρ -E space.

FIG. 6. Angular momentum dependences of the energy spec-
trum for the chemical potential (a) µF = 0.2∆0, (b) 0.4∆0,
and (c) 2.0∆0. The magnetic length is set to ℓB = 0.08Rc.
The plateaus emerge in the presence of an external field. In
particular, the chiral Majorana bound state includes the n = 0
Landau level, which is indicated with arrows in the panels (a)
and (b).

0.0 0.3 0.6 0.9

-1
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1

0.0
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1.6

0.0 0.3 0.6 0.9

-1

0

1

0.0

0.8

1.6

2.4

FIG. 7. LDOS in the SC/TI hybrid system at µF = 2.0∆0.
The other parameters are set as the same values as those used
in Fig. 3. When the chemical potential µF is not sufficiently
small, the exterior Majorana state is clearly seen only in the
absence of an external magnetic field is shown in (a). Under
an external field, the contributions from the continuum states
smear out the peak from the exterior Majorana state as shown
in (b).

The position where the exterior MBS appears is an
effective boundary between a TSC and a topologically
trivial material. Applying a strong magnetic field (i.e.,
ℓB < Rs), a TI becomes gapped even in the normal
state due to the Landau quantization. Introducing an
s-wave pair potential, Landau levels in the energy range
|ER

±,n| ≤ ∆0 open a superconducting energy gap, and
contributes a topological superconductivity. The radius
of the topological superconducting region, in this case,
depends on ℓB because ℓB determines the radius the Lan-
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TABLE I. Dependence of the majority spins of the vortex and
exterior Majorana states on the external-field direction and
the vorticity.

Hext
z ℓ Vortex MBS Exterior MBS

+ +1 Down Down

− +1 Down Up

+ −1 Up Down

− −1 Up Up

dau orbit and the energy of the Landau level. As a re-
sults, the region with ρ < r∗ becomes a TSC, whereas
that with ρ > r∗ does not become a TSC but remains
to be a normal (non-topological) insulator. Although
there is no actual boundary such as interfaces, there is a
“boundary” on the radius r∗ at which an exterior MBS
appears.

The Landau quantization also modifies the continuum
levels. For the same magnetic field, the shift of the con-
tinuum states becomes more significant for a larger chem-
ical potential [Fig. 6(c)]. As the chemical potential in-
creases, the plateaus corresponding to the n = 1 states
approach to the Fermi level. At large enough chemical
potential (e.g., µF = 2.0∆0), the energy gap between
the continuum states completely disappears as shown in
Fig. 6(c). The contributions from the continuum states
smear out the peak from the exterior MBS in LDOS. The
LDOS for µF = 2.0∆0 are shown in Fig. 7. The two zero-
energy states at the vortex core and the SC/FI boundary
can be clearly seen when ℓB → ∞ [Fig. 7(a)], whereas the
exterior mode cannot be identified when ℓB = 0.08Rc be-
cause the energy gap is closed in the region of ρ > 0.4Rc

[Fig. 7(b)]. We have confirmed that the exterior MBS
is located at ρ = 0.85Rc in this magnetic field. Namely,
when the chemical potential is too large, it is difficult
to observe the exterior MBS through a zero-energy peak
even though its position can be controlled by an applied
field. Hence, we need to set the chemical potential close
to the Dirac point in order to avoid contribution from
non-zero-energy states90. We also carry out the same
simulations for larger systems such as Rc = 150ξ0, and
confirm that the above conclusion does not change qual-
itatively.

Next, we discuss the spin structure of the MBSs. The
spin-resolved LDOS for the up-spin N↑ and for down-spin
N↓ are shown in Fig. 8, where we set µF = 0.2∆0 and
ℓB = 0.08Rc. As shown in Fig. 8, the exterior MBS is
strongly polarized. The LDOS for the down spin N↓ has
a zero-energy peak around ρ = 0.4Rc and exhibits the
characteristic V-shaped peak structure in the ρ -E space.
On the other hand, the amplitude of N↑ at the same
place is totally small. In the case of a TI surface, the
wavefunctions for the n = 0 Landau level are fully spin
polarized (see Appendix C for details). Correspondingly,

0.0 0.3 0.6 0.9

-0.2

0.0

0.2

0.0

0.2

0.4

0.0 0.3 0.6 0.9

-0.2

0.0

0.2

0.00

0.04

0.08

(a) Up

(b) Down

FIG. 8. Spin-resolved LDOS (a) N↑ and (b) N↓ in the SC/TI
hybrid system at µF = 0.2∆0 and ℓB = 0.08Rc. The other
parameters are set as the same values as those used in Fig. 3.
The amplitude of N↓ is much larger than that of N↑ at the
place where the exterior and vortex Majorana states appear,
meaning that these Majorana bound states are spin-polarized.

the chiral Majorana mode which is constituted from the
n = 0 Landau levels are spin polarized as well91.
The majority spin of the exterior MBS is determined

by sgn[Hext
z ] because the direction of the spin polar-

ization for the n = 0 Landau level is determined by
sgn[Hext

z ]. Additionally, the vortex MBS is also strongly
spin polarized. As shown in Fig. 8, the height of the peak
around ρ ≃ 0.05Rc in N↑ is much smaller than the peak
at ρ = 0 in N↓. The majority spin of the vortex MBS
is determined by the vorticity ℓ. This behavior is con-
sistent with the previous discussions54,55,58. The relation
among the spin polarization of MBSs, the external mag-
netic field, and the vorticity is summarized in Table I.

2. Odd-frequency Cooper pairs

We discuss the correspondence between the MBSs and
odd-frequency Cooper pairs. Superconducting phenom-
ena near the Fermi level can be interpreted by two differ-
ent physical descriptions: quasiparticle description and
Cooper-pair description. Connecting these two descrip-
tions, one can see that, when a MBS appears, odd-
frequency Cooper pairs must appear behind it (see, for
example, Ref. [69]). So far, phenomena related to odd-
frequency Cooper pairs accompanied by vortex MBSs
have been discussed65,66,68. For example, the frequency
symmetry of Cooper pairs can be clarify by means of the
local Josephson coupling65,74. Such results hold also for
exterior MBSs.
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FIG. 9. Pair amplitudes in the SC/TI hybrid system with (a)
ℓB → ∞ and (b) ℓB = 0.08Rc. We show the magnified fig-
ures in the insets. Here only the contributions from µ = 0 are
shown because the Majorana states are the eigenfunctions for
µ = 0. The chemical potential and the Matsubara frequency
are set to µF = 0.2∆0 and ωn = 0.1∆0, respectively. The
other parameters are the same as those used in Fig. 3. When
Hext = 0, the odd-frequency Cooper pairs are localized at the
SC/FI boundary but not spin-polarized. When Hext 6= 0, the
odd-frequency pairs move into the superconducting region as
the exterior Majorana state does. Simultaneously, the ampli-
tude of FOdd

↓↓ is much larger than those of FOdd
↑↑ and FOdd

↓↑+↑↓

there. Namely, the odd-frequency pairs are spin-polarized,
reflecting that the exterior Majorana state is spin-polarized.

We show the ρ-dependences of the anomalous Green’s
functions in Fig. 9, where we fix the center of the az-
imuthal angle φc = 0 and µF = 0.2∆0, and the region
attached to the FI is shaded. The magnetic length is set
to (a) ℓB → ∞ and (b) 0.08Rc. The imaginary (real)
part of the even-frequency (odd-frequency) components
are not shown because they are negligibly small in this
scale of the plot. We show the magnified figures in the
insets.

The results for ℓB → ∞ are shown in Fig. 9(a). The

MBS appears at the SC/FI boundary as shown in Fig. 3.
Correspondingly, the odd-frequency spin-triplet Cooper
pairs appear there. Here, all of the triplet components
(i.e., FOdd

↑↑ , FOdd
↓↑+↑↓, and F

Odd
↓↓ ) have almost the same am-

plitudes at the SC/FI boundary, meaning that the syn-
thetic spins of the odd-frequency Cooper pairs are not
aligned. At the vortex core, there are peaks of the odd-
frequency components65,66,68 corresponding to the vor-
tex MBSs. In particular, FOdd

↓↓ becomes nonzero even at
ρ = 0. The conventional even-frequency pair amplitude
is known to be suppressed at the place where Andreev
bound states appear. 65,66,68,70–72. We have confirmed
that the spatial profile of FEven

↓↑−↑↓ for ℓB → ∞ becomes

similar to ∆(ρ) given in Eq. (11) (i.e., ∆(ρ) is suppressed
at around ρ = 0 and Rs, by summing up with respect to
µ).
In the presence of an external magnetic field, the odd-

frequency pairs at the SC/FI boundary move inside the
superconducting region. At ℓB = 0.08Rc, only the FOdd

↓↓

component has a peak around ρ ≈ 0.4Rc. This radius
is exactly where the spin-polarized exterior MBS has an
large amplitude. The direction of spin polarization of the
odd-frequency pairs is determined by the spin polariza-
tion of the n = 0 “relativistic” Landau level88 (i.e., deter-
mined by sgn[Hext

z ]). The place where the odd-frequency
pair amplitude emerges is actually a boundary between
a superconducting region and an insulating region due
to the Landau quantization: Even though the supercon-
ducting pairing is proximity induced at ρ < Rs from an
external SC, the even-frequency pair amplitude is highly
suppressed outside the region surrounded by the peak of
the odd-frequency pair amplitude as shown in Fig. 9(b).

B. Rashba superconductor

The Rashba SCs can also host the MBSs at the vortex
core and at the edge as in the case of the SC/TI hybrid
system. We discuss the numerical results for the Rashba
SC satisfying the topological criterion22–25,28 M2

0 > µ2
F +

∆2
0. We show the LDOS for ℓB → ∞ and ℓB = 0.048Rc in

Figs. 10(a) and 10(b), respectively, where the parameters
are set to µF = 0.2∆0, Rc = 180ξ0, m0λ

2 = ∆0, and
M0 = 1.2∆0.
In the absence of an external field, the MBSs are lo-

cated at the center of the core and at the edge of a sys-
tem. These Majorana states appear as zero-energy peaks
in LDOS at ρ = 0 and ρ = Rc. Here, the magnitude of
the energy gap is smaller than ∆0 because this energy gap
is caused by the effective triplet pairings25,28. The result
in the presence of a magnetic field is shown in Fig. 10(b).
The subgap states do not appear at the edge of the sys-
tem but at ρ ≈ 0.85Rc. Namely, by applying an external
field, the exterior MBS for the Rashba SC moves inside a
superconducting region as seen in an SC/TI hybrid sys-
tem. We therefore conclude that the controllability of
the exterior MBS is not restricted to materials with lin-
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FIG. 10. LDOS in the Rashba SC at (a) ℓB → ∞ and (b)
ℓB = 0.048Rc. The edge of the SC is located at ρ = Rc.
The results are normalized by N ′, which is the LDOS at E =
0.4∆0 and ρ = 0.2Rc in the superconducting state without
an external field. The parameters are set to µF = 0.2µF ,
Rc = 180ξ0, ℓ = 1, M0 = 1.2∆0, and m0λ

2 = ∆0. The
exterior Majorana state is located at the edge of the system
in (a), whereas it moves to ρ ≈ 0.85Rc in (b). The arrows
indicate the position of the exterior Majorana state.

0.0
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0.3

0.6

0.0 0.5 1.0
-0.1
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0.1

0

0.3

0.6

(a) Up spin

(b) Down spin

FIG. 11. Spin-resolved LDOS (a) N↑ and (b) N↓ in the
Rashba SC at ℓB = 0.048Rc. The edge of the SC is located at
ρ = Rc. The results are normalized by N ′ defined in Fig. 10.
The other parameters are the same as those used in Fig. 10.
Contrary to the case in Fig. 8, the exterior Majorana state at
ρ = 0.85Rc consists of the up- and down-spin quasiparticles.

ear dispersion but a general property of two-dimensional
TSCs.
However, there are two qualitative differences between

exterior MBS in a Rashba SC and that in a SC/TI hy-
brid system. First, the exterior MBS is not spin-polarized
as shown in Fig. 11, where the spin-resolved LDOS in a

FIG. 12. Pair amplitudes in the Rashba SC at µ = 0 with (a)
ℓB → ∞ and (b) ℓB = 0.048Rc. Here the results are shown
with limited vertical axes to focus on the exterior Majorana
state. The pair amplitudes near the vortex are shown in the
insets. The Matsubara frequency are set to ωn = 0.01∆0

which is smaller than the effective gap. The other parameters
are the same as those used in Fig. 10. Reflecting that the
exterior Majorana state is not spin-polarized in a Rashba SC,
the odd-frequency Cooper pairs are not spin-polarized (i.e.,
FOdd
↑↑ and FOdd

↓↓ have almost the same amplitude).

Rashba SC are plotted. Reflecting the quadratic disper-
sion, the wavefunction of the n = 0 Landau level is not
spin-polarized in a Rashba SC (see Appendix C). As a
result, the exterior MBS and the corresponding triplet
odd-frequency Cooper pairs are not spin-polarized. The
pair amplitudes are shown in Fig. 12. In the absence
of an external magnetic field, the pair amplitudes have
peaks at the edge of the system. When ℓB = 0.048Rc,
on the other hand, the peaks move inside the system as
seen in the case of SC/TI hybrid systems. However, FOdd

↑↑

and FOdd
↓↓ have similar spatial profiles though their signs

are opposite. In other words, the odd-frequency Cooper
pairs are not spin polarized in a Rashba SC.
Second, the characteristic V-shape peak in the LDOS

cannot be identified in Fig. 10(b). In a Rashba SC, a
energy gap is smaller compared with that in an SC/TI
hybrid system. As a result, there is only a few subgap
“edge” states. Although one can increase the number of
subgap states by increasing a system size, in that case,
the continuum states approach to the Fermi level in the
presence of an external magnetic field, and smear out the
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exterior MBS. Accordingly in a Rashba SC, fine tunings
of many parameters (e.g., radius of a Rahba SC and an
external magnetic field) are required to observe the exte-
rior MBS.

IV. CONCLUSION

We have theoretically studied the quasiparticle spec-
trum of two-dimensional topological superconductors
hosting a vortex under an external magnetic field. We
have mainly considered the surface of a topological insu-
lator to which a superconductor with a superconducting
vortex is proximity-coupled. We have obtained the spin-
resolved local density of states by solving the Bogoliubov-
de Gennes equation, and shown that the exterior Majo-
rana state can be observed as a peak in the local density
of states, which form a characteristic V-shaped peak in
radius-energy space. Carrying out the same simulations
for a Rashba superconductor, we have concluded that
the shift in the real space of the exterior Majorana state
by applying a magnetic field is general property of two-
dimensional topological superconductors.
Moreover, we have elucidated that there are qualita-

tive difference between the exterior Majorana state in a
topological-insulator surface and that in a Rashba super-
conductor. In the former case, an exterior Majorana state
is fully spin polarized reflecting the spin-polarization of
the n = 0 relativistic Landau level. On the other hand,
in a Rashba superconductor, an exterior Majorana state
is not spin polarized because of a conventional quadratic
dispersion relation.
This difference affects on the spin structure of in-

duced spin-triplet odd-frequency s-wave Cooper pairs.
On a topological-insulator surface, corresponding to the
spin polarization of exterior Majorana state, the odd-
frequency Cooper pairs are fully spin polarized as well.
For a Rashba superconductor, on the other hand, the
spin of odd-frequency pairs is not polarized.
We have also shown that energy dependence of the lo-

cal density of states around the exterior Majorana state
strongly depends on the chemical potential. When the
chemical potential is not sufficiently small, continuum
states come close to the Fermi level because of the en-
ergy shift due to an external magnetic field. As a result,
fine-tuning of the chemical potential is necessary to ex-
perimentally observe the position shift of exterior Majo-
rana states.
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Appendix A: Hamiltonian for a
superconductor/topological insulator hybrid system

in terms of the Bessel functions

In rotational-symmetric systems, the solutions can be
well described in terms of the Bessel functions54,56. We
thus introduce the Bessel functions as the basis for the
real space as

Ψµ(ρ) =

jmax
∑

j=1













ψ↑,µ,jφµ−−,j

(

αµ−−,jρ/Rc

)

ψ↓,µ,jφµ−+,j

(

αµ−+,jρ/Rc

)

ψ†
↑,µ,jφµ+−,j

(

αµ+−,jρ/Rc

)

ψ†
↓,µ,jφµ++,j

(

αµ++,jρ/Rc

)













, (A1)

where we define µs3s4 = (2µ+ s3ℓ+ s41)/2, (s3, s4 = ±)
and

φµ,j =

√
2

RcJµ+1 (αµ,j)
Jµ

(

αµ,j

ρ

Rc

)

, (A2)

with Jµ(ρ) being the Bessel functions with the order µ,
and αµ,j is the j-th zero of Jµ. These functions φµ,j
satisfy

∫ Rc

0

φµj

(

αµ,j

ρ

Rc

)

φµj′

(

αµ,j′
ρ

Rc

)

ρdρ = δjj′ , (A3)

where we have used
∫ Rc

0
[Jµ (αµ,jρ/Rc)]

2 ρdρ =

[RcJµ+1 (αµ,j)]
2 /2.

In the numerical calculations, we introduce the cut-
off in the summation of j. The maximum value is de-
noted by jmax, and it is set to jmax = 200 for the TI
surface. We assume the magnetic field is spatially homo-
geneous Hz(ρ) = (∇ ×A)z = Hext

z . This magnetic field
can be described by the vector potential Aφ = Hext

z ρ/2
(Hz = [∂ρ(ρAφ)]/ρ). We adopt the vector potential

Ãφ = Sρ/(2ℓ2B) where ℓB = (~c/|eHext
z |)1/2 is the mag-

netic length and S = sgn[Hext
z ]. With this basis, the

Hamiltonian becomes
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H =
∑

µ

∑

i,j

(

ψ†
↑,µ,i ψ†

↓,µ,i ψ↑,µ,i ψ↓,µ,i

)

Ǔ †
1

×





















M
(µ−−)
ij − µF δi,j ~vF

(

K
(−)
µ−+,i,j +A

(−)
µ−+,i,j

)

0 ∆µ−−,µ+−,i,j

~vF

(

K
(+)
µ−−,i,j +A

(+)
µ−−,i,j

)

−M (µ−+)
ij − µF δi,j −∆µ−+,µ++,i,j 0

0 −∆µ++,µ−+,i,j −M (µ++)
ij + µF δi,j ~vF

(

K
(+)
µ+−,i,j −A

(+)
µ+−,i,j

)

∆µ+−,µ−−,i,j 0 ~vF

(

K
(−)
µ++,i,j −A

(−)
µ++,i,j

)

M
(µ+−)
ij + µF δi,j





















× Ǔ1

(

ψ↑,µ,j ψ↓,µ,j ψ†
↑,µ,j ψ†

↓,µ,j

)T

, (A4)

where Ǔ1 = diag
[

eiπ/4 e−iπ/4 e−iπ/4 eiπ/4
]

. The each term is described as

K
(+)
µ,i,j =

∫ Rc

0

αµ,j

Rc

2

R2
c

Jµ+1 (αµ+1,iρ/Rc)

Jµ+2 (αµ+1,i)

Jµ+1 (αµ,jρ/Rc)

Jµ+1 (αµ,j)
ρdρ, (A5)

K
(−)
µ,i,j =

∫ Rc

0

αµ,j

Rc

2

R2
c

Jµ−1 (αµ−1,iρ/Rc)

Jµ (αµ−1,i)

Jµ−1 (αµρ/Rc)

Jµ+1 (αµ)
ρdρ, (A6)

A
(+)
µ,i,j =

∫ Rc

0

S
2ℓ2B

φµ+1 (αµ+1,iρ/Rc)φµ (αµ,jρ/Rc)ρ
2dρ, (A7)

A
(−)
µ,i,j =

∫ Rc

0

S
2ℓ2B

φµ−1 (αµ−1,iρ/Rc)φµ (αµ,jρ/Rc)ρ
2dρ, (A8)

∆u,v,i,j =

∫ Rc

0

∆(ρ)φu (αu,i ρ/Rc)φv (αv,j ρ/Rc)ρdρ, (A9)

M
(µ)
ij =

∫ Rc

0

M(ρ)φµ (αµ,i ρ/Rc)φµ (αµ,j ρ/Rc)ρdρ. (A10)

We diagonalize numerically this 4jmax × 4jmax Hamiltonian for each µ, and obtain the eigenfunction Φµ,ν and the
energy eigenvalue Eµ,ν .

Appendix B: Hamiltonian for a Rashba SC in terms of the Bessel functions

Introducing the Bessel functions, the Hamiltonian for the Rashba SC becomes

H =
∑

µ

∑

i,j

[

ψ†
↑,µ,i ψ

†
↓,µ,i ψ↑,µ,i ψ↓,µ,i

]

×





















C
(−+)
µ−−,i,j +Dµ−−,i,j λ

(

K
(−)
µ−+,i,j +A

(−)
µ−+,i,j

)

0 ∆µ−−,µ+−,i,j

λ
(

K
(+)
µ−−,i,j +A

(+)
µ−−,i,j

)

C
(−−)
µ−+,i,j +Dµ−+,i,j −∆µ−+,µ++,i,j 0

0 −∆µ++,µ−+,i,j −C(++)
µ++,i,j −Dµ++,i,j λ

(

K
(+)
µ+−,i,j −A

(+)
µ+−,i,j

)

∆µ+−,µ−−,i,j 0 λ
(

K
(−)
µ++,i,j −A

(−)
µ++,i,j

)

−C(+−)
µ+−,i,j −Dµ+−,i,j





















×
[

ψ↑,µ,j ψ↓,µ,j ψ
†
↑,µ,j ψ

†
↓,µ,j

]T

, (B1)
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where

C
(±±)
µ,i,j = ε±µ,i,j ±M0δi,j , (B2)

ε±µ,i,j =

[

~
2

2m

(α2
µ,i

R2
c

± µ

2ℓ2B

)

− µF

]

δij , (B3)

Dµ,i,j =

∫ Rc

0

~
2

2m

ρ3

4ℓ4B
φµ (αµ,iρ/Rc)φµ (αµ,jρ/Rc)dρ. (B4)

The first sign in the superscript of C
(±±)
µ,i,j corresponds to

the sign in the superscript of ε, and the second one does
to the sign in front of M0.
In the numerical calculation for the Rashba SC, jmax

is set to jmax = 200. Diagonalizing the Hamiltonian for
each µ, we obtain the eigenfunction Φµ,ν and the energy
eigenvalue Eµ,ν .

Appendix C: Landau levels

1. Non-relativistic particle

A non-relativistic particle has a quadratic dispersion
relation. The Hamiltonian is given by

ĥNR =

[

1

2m0

(

p̃2x + p̃2y
)

− µF

]

σ̂0, (C1)

where p̃ = p − eA/c and the basis is taken as ψ(r) =
[ ψ↑(r) ψ↓(r) ]

T. It is convenient to introduce the ladder
operators a and a† given by

a =
ℓB√
2~

(p̃x − iSp̃y), a† =
ℓB√
2~

(p̃x + iSp̃y), (C2)

where S = sgn[Hext
z ] and the ladder operators satisfy

[a, a†]− = 1. With these operators, the Hamiltonian re-
duces to

ĥNR =

[

~ωc

(

a†a+
1

2

)

− µF

]

σ̂0, (C3)

where ωc = |eHext
z |/mc, and the energy eigenvalue are

given by

ENR
n = ~ωc

(

n+
1

2

)

− µF , (C4)

with n ≥ 0 being an integer. The corresponding eigen-
states are doubly degenerate and given by

[

|n〉
0

]

,

[

0
|n〉

]

, (C5)

where |n〉 is a number eigenstate satisfying the relations
a†a|n〉 = n|n〉, 〈n|n′〉 = δnn′ , a†|n〉 =

√
n+ 1|n + 1〉,

a|n〉 = √
n|n− 1〉, and a|0〉 = 0.

2. Relativistic particle

A relativistic particle has a linear dispersion relation
with the Hamiltonian given by

ĥR = vF σ̂ · p̃− µF = ĥ′R − µF , (C6)

where ĥ′R = vF σ̂ · p̃. The 2 × 2 matrix form of ĥ′R for
S = +1 is given by

ĥ′R = vF

[

0 p̃x − ip̃y

p̃x + ip̃y 0

]

=

√
2~vF
ℓB

[

0 a

a† 0

]

,

(C7)

where a and a† are defined in Eq. (C2). Using the fact

that (ĥ′R)
2 is diagonal:

[ĥ′R]
2 = 2

(

~vF
ℓB

)2 [
a†a+ 1 0

0 a†a

]

, (C8)

the eigenvalues of ĥR are given by

ER
±,n = ±~vF

ℓB

√
2n− µF , (C9)

where n is a non-negative integer.
The eigenfunctions associated with ER

±,n6=0 are given
by

[

B↑,±,n

B↓,±,n

]

=
1√
2

[ |n− 1〉
±|n〉

]

, (C10)

and that with ER
n=0 is
[

B↑,n=0

B↓,n=0

]

=

[

0

|0〉

]

. (C11)

Note that the n = 0 state is fully spin-polarized.
Having done the same calculation for S = −1, we can

obtain the eigenfunction with ER
±,n6=0 are given by

[

C↑,±,n

C↓,±,n

]

=
1√
2

[ ±|n〉
|n− 1〉

]

, (C12)

and that with ER
n=0 is
[

C↑,n=0

C↓,n=0

]

=

[ |0〉
0

]

. (C13)

Therefore, we can see that the direction of the polarized
spin for n = 0 state is determined by S.
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FIG. 13. Schematics of Landau levels for relativistic parti-
cles. (a) Landau levels in the normal state (∆0 = 0) for
S = sgn[Hext

z ] = +1, where the particle (hole) branches
E = ER

±,n(−ER
±,n) arise in the negative (positive) angular

momentum µ region. (b) In the presence of superconducting
pairing (∆0 6= 0), the Landau levels in (a) are smoothly con-
nected. The effect of the finite system size is also taken into
account in (b).

3. Angular momentum

In general, the Landau levels are degenerate with re-
spect to the center coordinate of the cyclotron motion.
The center of the orbit (X,Y ) is given by

X = x− S ℓ
2
B

~
p̃y, Y = y + S ℓ

2
B

~
p̃x, (C14)

By using X and Y , we can introduce another ladder op-
erators as

b =
1√
2ℓB

(X + iSY ), b† =
1√
2ℓB

(X − iSY ), (C15)

which satisfy [ b, b† ]− = 1. The quantum states in the
same Landau level are specified in terms of the eigenvalue
of b†b as

b†b|n,m〉 = m|n,m〉, (C16)

where m is a non-negative integer. The angular momen-
tum operator is expressed by using b and b† as

Lz = (r × p)z , (C17)

= S
[

ℓ2B
2~

(p̃2x + p̃2y)−
~

2ℓ2B
(X2 + Y 2)

]

, (C18)

= S~( a†a− b†b ). (C19)

That means a quantum state |n,m〉 has the angular mo-
mentum Lz = S~(n−m). Since n andm are non-negative
integer, the angular momentum of the |n = 0,m〉 states is
restricted in Lz < 0 for S = +1 and Lz > 0 for S = −1.

4. Bogoliubov-de Gennes formalism

In the BdG formalism, the single-hole Hamiltonian

−ĥ∗R(r) is derived by “copying” the single-particle Hamil-

tonian ĥR(r). The BdG Hamiltonian can be described
as

ȞB =

[

ĥR ∆0iσ̂2

−∆0iσ̂2 −ĥ∗R

]

. (C20)

In the normal state (i.e., ∆0 = 0), the energy eigenval-
ues of ȞB are given by ±ER

±,n as shown schematically
in Fig. 13(a). In the superconducting state, the energy
spectrum is modified by the pair potential ∆0 as shown
in Fig. 13(b), which is drawn for S = +1. For the case
of S = −1, the particle (hole) branches arises in µ > 0
(µ < 0), and hence, the sign of the slope of the chiral
Majorana mode at µ = 0 becomes opposite.
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