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We investigate the effects of strain on superconductivity with particular reference to SrTiO3.
Assuming that a ferroelectric mode that softens under tensile strain is responsible for the coupling, an
increase in the critical temperature and range of carrier densities for superconductivity is predicted,
while the peak of the superconducting dome shifts towards lower carrier densities. Using a Ginzburg-
Landau approach in 2D, we find a linear dependence of the critical temperature on strain: if the
couplings between the order parameter and strains in different directions differ while their sum is
fixed, different behaviours under uniaxial and biaxial strain can be understood.

I. INTRODUCTION

Strain is one of several mechanisms by which the incip-
ient ferroelectric1–5 strontium titanate - SrTiO3 (STO)
- can be made ferroelectric.3,6–8 The interplay between
ferroelectricity and superconductivity in STO has been
investigated in the context of strontium9 and oxygen
isotope10,11 substituted STO, finding an increase in the
superconducting critical temperature (Tc) in samples
moved closer to the ferroelectric quantum critical point.
Early experimental data showed that compression gener-
ally significantly reduces Tc in STO, with the exception
of uniaxial stress at low carrier concentrations where the
critical temperature was seen to increase.12 The possible
ferroelectric origin of the superconducting coupling was
not considered at the time.

Working within the framework of ferroelectric induced
superconductivity in STO,10 we consider the effects of
strain on the superconducting dome of STO. Based on
this model we predict 1) an increase in Tc under tensile
strain, accompanied by an increase of the range of car-
rier densities with accessible critical temperatures - i.e. a
broadening of the superconducting dome, 2) a shift in the
location of the peak of the superconducting dome, and
3) a sharp peak in Tc signalling the limit of our model
which moves to higher carrier concentrations on increas-
ing tensile strain. Although at the breakdown point of
the model, we still expect this second peak to be present
and have observable consequences. Most prominently we
find that the effect of strain is substantial, the Tc more
than doubling under experimentally achievable values.

We also find that, under biaxial strain, the different
ferroelectric modes behave differently and the changes
in Tc may indicate which ferroelectric mode is most im-
portant for superconductivity. Using a simple Ginzburg-
Landau model of a uniform superconducting order pa-
rameter coupled directly to applied strain, we find a lin-
ear dependence of the superconducting critical temper-
ature on strain and go some way towards quantifying
the very strong dependence of Tc on strain in STO com-

pared to elemental superconductors.12,13 We find that the
increase in Tc observed in some samples under uniaxial
compression12 can be understood qualitatively if the cou-
plings between the superconducting order parameter and
strains in different directions have different strengths.

II. SUPERCONDUCTING DOME UNDER
STRAIN

One of the key features of superconductivity in STO
is the presence of a superconducting dome where Tc
varies with carrier density n with a maximum at ‘op-
timum’ doping.14,15 The generic functional dependence
of the critical temperature on strain, u = (a − a0)/a0
for lattice constant a and unstrained value a0, and car-
rier concentration n can be written as Tc = T0f(n(u), u)
where T0 is the overall scale and f a dimensionless func-
tion assumed to bounded from above at unity. Since
the carrier density n will be affected by changes in the
volume of the unit cell, n = n(u). We expect that
∂uTc/T0 = f ′(n(u), u) = ∂nf∂un+ ∂uf , but the changes
in n due to changes in the volume of the unit cell are
small at small strains so ∂un ≈ 0 (see appendix §V A ).

To be specific, we use the model of Ref. 10 (also ap-
pendix §V B) where ferroelectric phonons are assumed
to be responsible for the superconducting pairing. This
model provides a good description of the superconduct-
ing dome within a strong coupling framework10 despite
the fact that STO is not within the Migdal limit.16 In the
Eliashberg strong coupling formalism, the BCS coupling
constant is:10,17

λ =

∫ ∞
0

dωq
α2(ωq)

ωq
F (ωq) (1)

where ωq is any phonon dispersion and α(ωq) is the
electron-phonon coupling. The main features of soft
mode superconductivity are captured by considering a
van Hove singularity at q = 0, for which F (ωq) ∼
δ(ωq − ω0) so λ → λ0 = α2/ω0. The critical temper-
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FIG. 1. (Colour online) Superconducting domes for several
values of isotropic strain, (−0.75% ≤ u ≤ 1.00%) in 3D us-
ing the model of Ref. 10 and the strain dependence of the
ferroelectric mode frequencies from Density Functional The-
ory (DFT) calculations. The dome broadens and Tc increases
under dilation, with the appearance of a peak at low carrier
concentrations that is a signature of ωq(u) = 0 in Eq. (1).
The scale of maximum Tc is set by T0 = 7K used here. Ex-
perimental data from Ref. 14.

ature is then10

Tc = εe−ω0/α
2

. (2)

With constant electron-phonon coupling, this means that
ω0 → ω0(u). Differentiating Eq. (2) with respect to
strain gives:

∂uTc(u)

Tc(u)
= −∂uω0(u)

α2
. (3)

Experiments on compressed bulk STO found a linear
dependence of ω2 on applied pressure for both the struc-
tural and ferroelectric phonon modes.3,18 We therefore
consider soft modes at q = 0 with a general form under
applied strain: ω2

0(u) = ω2
0(0)+bu.3 Calculating ∂uω0(u)

gives:

∂uTc(u)

Tc(u)
=

−b
α2ω0(u)

. (4)

The immediate consequence is a sharp rise in the deriva-
tive of Tc with respect to u near criticality where ω0 → 0.
The divergence in the derivative is a consequence of the
simple model we use and is not physical, yet the peak in
Tc as a result of the quantum critical point is physical
and its signature should be observable experimentally.

In Fig. 1, superconducting domes, constructed using
the model of Ref. 10, and including the dependence of
both the phonon spectra and Fermi energy on strain (de-
tail in appendix V B), are plotted for several values of

isotropic strain in 3D. The key features of Fig. 1 are
a strong increase in the critical temperature under ten-
sile strains, accompanied by a shift of the maximum Tc
towards lower carrier densities, a broadening of the su-
perconducting dome and the appearance of a sharp sec-
ondary peak in Tc(n) at low carrier concentrations, the
value of which is limited by the range of temperatures
considered and the tuning over the carrier density. We
note that the effect of tensile strain is substantial, with
the enhancement in Tc by more than a factor of two,
under experimentally achievable strain conditions. Un-
der compression, the dome is narrowed and the critical
temperature decreases.

The strong peak in Tc at low carrier densities is the
direct result of the softening of the ferroelectric modes
explicitly present in the coupling [Eq. (1)] and its lo-
cation corresponds exactly to the carrier densities where
ω0(u) = 0. Its presence in the case of oxygen isotope
substitution10 was not observed because, in that model,
it occurs at much lower carrier densities. Away from
these soft mode induced peaks, the maximum Tc varies
linearly with strain, and a strong deviation, including,
as seen at lower carrier concentrations, the possibility
for the largest Tc to occur at intermediate strains, would
indicate a soft mode in the coupling mechanism. The
strong dependence of the ferroelectric modes in STO on
strain potentially allows access to interesting new fea-
tures by bringing them within the range of carrier con-
centrations relevant for superconductivity, although the
strong, relatively narrow peaks observed here are direct
consequences of the model used and appear as kinks in
Tc in a more detailed description that accounts for the
anisotropy in the ferroelectric phase.19

The value of b = −13 (strain as a percentage) used
is representative of the linear fits to the squared phonon
frequencies in Fig. 2. A smaller value of |b| would result
in weaker changes in Tc and the peak in Tc occurring at
lower carrier densities for a given strain. A positive value
of b would lead to an increase in Tc and the divergence
moving towards higher carrier concentrations under com-
pression rather than dilation as seen here.

We can characterise two types of general response: an
‘asymmetric’ response that occurs when the relevant fer-
roelectric mode softens (frequency decreases) under one
sign of strain and hardens for the other so the change
in Tc under tensile (compressive) strain is an extension
of the behaviour under compressive (tensile) strain. A
‘symmetric’ response is characterised by the variation in
Tc having the same sign for all strains although the gra-
dients may not necessarily be the same on each side of
u = 0.

As seen from the squared frequencies of the ferroelec-
tric modes plotted in Fig. 2, all individual modes give
asymmetric behaviour under isotropic strain; symmet-
ric behaviour is possible in the case of biaxial strain
if the critical temperature is controlled by the softest
rather than a particular mode. Therefore such symmetric
or asymmetric behaviour under different types of strain
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FIG. 2. (Colour online) Squared frequencies of the ferroelec-
tric modes with strains calculated using DFT (details in ap-
pendix V C) and their linear fits with slope b. a) isotropic
strain: b = −15.9,−12.7 for modes parallel (red, solid) and
perpendicular (blue, dashed) to the antiferrodistortive (AFD)
axis. Hardening of both modes under compression and soft-
ening under dilation characterises ‘asymmetric’ behaviour. b)
Biaxial strain in the basal plane of the tetragonal unit cell:
b = 6.8,−11.8, respectively. One mode softens while the other
hardens under both compression and dilation allowing ‘sym-
metric’ behaviour of Tc whereby it increases or decreases for
all strains. The crosses indicate the DFT data points.

could indicate whether the critical temperature is de-
termined by the softest (lowest frequency) ferroelectric
mode, or linked to a specific mode or orientation of the
tetragonal c-axis, providing an important insight into the
superconducting coupling mechanism of STO.

Having examined the effects of isotropic strain on the
superconducting dome assuming a ferroelectric soft mode
character for the superconducting coupling, we now de-
velop a simple Ginzburg-Landau model of the strained
superconducting system to capture the dominant features
of the change in the critical temperature. We focus on
the asymmetric response and assume that the coupling
strength is independent of strain.

III. GINZBURG-LANDAU DESCRIPTION

The (Helmholtz) free energy has three parts: the un-
strained superconductor in the absence of an applied
magnetic field with coefficients α = a(T − T 0

c ) and β;20

Hooke’s law with strain u and elastic constants ζ;3,6,21

a part describing the direct coupling between strain and

the order parameter ψ with coupling strengths γ:22,23

F = α|ψ|2 +
β

2
|ψ|4 +

ζ11
2
u21 +

ζ22
2
u22 + ζ12u1u2

+(γ1u1 + γ2u2)|ψ|2. (5)

In order to focus on the qualitative behaviours that may
occur, we restrict our analysis to a single uniform super-
conducting order parameter ψ in two dimensions with
strains applied along the principal axes of a rectangular
lattice. The strains u1 and u2 therefore denote fractional
changes in length along any two of the 〈100〉 directions of
the tetragonal unit cell.6 Our strain notation is such that,
from the general γαβuαβ coupling between the strain and
order parameter permitted,24–26 all shear strains (α 6= β)
are zero and the remaining indices have been contracted.
These restrictions are further discussed in appendix V D.
All shear strains are assumed to be zero and the volume
preserving reaction along the remaining 〈100〉 direction
is neglected.

Minimising Eq. (5) with respect to ψ∗ gives a linear
change in the critical temperature with applied strain:

∆Tc = T sc − T 0
c = −u1Γ1 − u2Γ2, (6)

where scaled coupling constants, Γ = γ/a, with units of
temperature (K) have been introduced. In the case of
symmetry preserving strain, u1 = u2 = u, and we define
Γ = Γ1 + Γ2 so Eq. (6) simplifies to:

∆T lmc = −Γu. (7)

There is a simple linear dependence of Tc on strain and
the behaviour would reflect an asymmetric nature of the
ferroelectric modes under strain. Detail of how an esti-
mate for Γ can be extracted from experimental pressure
data is contained in appendix V E.

Meanwhile, when the only applied strain is u1, the re-
laxation of the lattice determines u2 so u2 = −νu1 where
ν is Poisson’s ratio27 (ν ≈ 0.25 for bulk STO28), and
the couplings to strains in the different directions be-
come important. For simplicity, we neglect the effects
of the change of the crystal symmetry and assume that,
at least for small strains, the dominant irreducible repre-
sentation of the order parameter will be the same as the
unstrained system, though, in principle they will differ.29

The change in the critical temperature is again linear in
the applied (uniaxial) strain:

∆Tuxc = −u1(Γ1 − νΓ2). (8)

Assuming that Γ1 and Γ2 have the same sign, the rel-
ative sizes of Γ1 and Γ2 will determine the sign of ∆Tuxc ,
with no change in Tc due to uniaxial strain if Γ1 = νΓ2.
In Fig. 3, the value of Γ = Γ1 +Γ2 is fixed at Γ = −600K
as determined from hydrostatic pressure data12,18 and
∆Tuxc for different choices of Γ1 are plotted showing that
both decreases and increases in Tc under uniaxial com-
pressive strains are possible. As discussed in appendix
§V D, for strains applied to an initially square lattice,
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FIG. 3. (Colour online) Change in Tc as a result of uniaxial
applied strain u1 with u2 = −νu1. Varying (negative) Γ1

while keeping Γ1 +Γ2 = −600K leads to both an increase and
a decrease of Tc under uniaxial compression depending on the
exact value of Γ1.

Γ1 = Γ2. However, if the initial lattice is rectangular,
Γ1 6= Γ2 is permissible and, for Γ1 sufficiently small, an
increase of Tc under compression may occur.

In experiments, linear ∆Tc under uniaxial compres-
sion in the [100] direction has been observed to be either
positive or negative depending on the carrier concentra-
tion, while in all other cases, compression lead to a de-
crease in Tc that was strongest for hydrostatic pressure.12

The analysis presented here indicates that at different
points across the superconducting dome the relative sizes
of Γ1 and Γ2 may differ while their sum is (approxi-
mately) constant across the superconducting dome.12,18

Since the observed increase in Tc under uniaxial com-
pression is weak compared with the decrease under hy-
drostatic pressure,12 the possibility of Γ1 > 0 has not
been considered.

Further, the linear changes of Tc under various stress
configurations have been observed over a broad range
(−0.12 <∼ ∆Tc <∼ 0.031 K) of temperatures for T 0

c = 0.27
K,12 so, although the limit of a Landau analysis is usually
(T − T 0

c )/T 0
c � 1, the linear variation of Tc considered

here is likely to be representative of strains giving a broad
range of Tc/T

0
c . Moreover, changes in Tc larger than 10%

for lattice changes of ∼ 0.1% have also been observed in
two dimensionally doped STO where the size of the effect
was attributed to the variation of dielectric properties
with the orientation of tetragonal domains.30

In the above discussion, we considered a 2D supercon-
ducting order parameter and the results presented are
qualitative in nature. The example with u1 = u2 reflects
3D isotropic strain while the uniaxial case (u2 = −νu1)
is representative of all strain configurations where the
lattice relaxes in directions perpendicular to the applied
strain but otherwise preserves the pseudocubic structure
of the unit cell. The value of Γ is overestimated, but the

behaviours representative of those that may occur.
The interplay between ferroelectricity and supercon-

ductivity in STO has been examined for both oxygen
isotope substitution10 and a combination of oxygen de-
pletion and calcium doping,9 with critical carrier densi-
ties 1019 < 1020cm−3 beyond which the ferroelectric-like
order is destroyed.9,10 Both bulk3 and thin film STO6,8

samples become ferroelectric beyond critical strains on
the range of 0.3%.6,8,31–33 Assuming that the critical car-
rier density that destroys ferroelectric order in STO does
not depend strongly on the origin of the ferroelectric or-
der, we expect ferroelectric order and superconductivity
to occur within the same range of carrier densities for
strained systems. The proposed strain tunability of STO
superconductivity builds on these ideas and provides an
alternative test of the role of ferroelectric criticality in
STO superconductivity with several distinct signatures.
While the discussion has focussed on bulk STO, we ex-
pect similar effects to occur in interfacial superconduc-
tivity of STO based systems.

IV. CONCLUSIONS

In conclusion, we have considered the effects of strain
on superconductivity in STO in two situations. First,
we assumed that the superconducting coupling is caused
by the ferroelectric modes that are present due to the
incipient ferroelectric nature of STO. This led to an in-
crease of Tc under isotropic tensile strain, a broadening
of the superconducting dome, and a shift of the maxi-
mum Tc towards lower carrier densities. We found that
strain is an efficient way to control the soft mode in-
duced superconductivity, with the Tc more than doubling
under experimentally achievable values. The behaviours
are exactly opposite under compression. We note that
differences between isotropic and biaxial strain experi-
ments may provide insight into the relative importance
of the ferroelectric modes parallel and perpendicular to
the tetragonal c-axis for the superconducting pairing. Al-
though reference has been made to STO, the behaviours
observed are expected to be general for any superconduc-
tor where pairing is mediated by softening ferroelectric
modes, such as in KTaO3.34 One important feature of
strained STO is that small tensile strains are sufficient
to bring the ferroelectric quantum critical point, charac-
terised by ω0(u) = 0, to carrier densities that are well
within the superconducting dome, leading to a distinct
signature in Tc.

19 Thus strain tuning is expected to be
a versatile means of investigating the interplay between
superconductivity and ferroelectricity in STO.

In order to understand experimental data of linear
changes of Tc under various strain configurations, we also
considered a simple Ginzburg-Landau analysis of a uni-
form 2D superconductor under strain in which there is
a linear dependence - very strong for STO - of Tc on
strain. The observed qualitative differences between uni-
axial and isotropic strain (hydrostatic pressure)12 can be
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understood by considering that the couplings to strain in
different directions may depend on carrier density while
their sum remains fixed.
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V. APPENDICES

A. On assuming n(u) ≈ n(0)

The carrier density is defined as the number of free
electrons ne per unit cell of volume V . In the unstrained
tetragonal unit cell, V = V0 = a20c. If strain is applied
uniaxially along one 〈100〉 axis and the lattice is allowed
to relax in the two perpendicular directions, the Poisson’s
ratios for the relaxation are needed. Since STO has a
tetragonal unit cell, the Poisson’s ratios in the inplane
νa and c-axis νc directions are, in principle, different.

The volume of the strained unit cell is: V (u) = (a0 +
δa[100])(a0 + δa[010])(c+ δc[001]) for changes δa, δc in the
lattice constants. With strain defined as the fractional
change in the lattice constants, i.e.: u = (a− a0)/a0, the
strains resulting from the controlled deformation in the
[100] direction are u[010] = δa[010]/a0 = −νau[100] and
u[001] = δc[001]/c0 = −νcu[100]. Thus, V (u) = V0(1 +
u[100])(1− νau[100])(1− νcu[100]).

Considering the case of a small strain applied in the
[100] direction, only the linear term is kept in expanding:
V (u) ≈ V0[1 + u[100](1− νa − νc)] from which

n(u) ≈ n0[1 + u[100](1− νa − νc)]. (9)

For many materials ν ∼ 0.327 and for cubic STO ν ≈
0.25.28 Further, the absolute maximum of ν is 0.527 so
tetragonal STO probably has νa 6= νc ∼ 0.25, implying
that the limit of carrier density under uniaxial strain is

n(u) ≈ n0(1 + 0.5u[100]).

If strain is applied equally to more than one axis, then
the effective ν of the second axis is −1; ignoring or for-
bidding relaxation of the third axis is equivalent to ν = 0
for this axis. Isotropic strain (u[100] = u[010] = u[001])
that preserves the tetragonal unit cell has the maximum

change in volume, with the resulting change in carrier
density:

n(u) ≈ n0(1− 3u).

Thus, at least for small strains (1% strain corresponds to
u = 0.01), the change in carrier density due to strain is
small and can be neglected.

B. Description of superconducting dome

The superconducting dome is constructed by com-
bining Eliashberg strong coupling theory with the
standard expression for the superconducting critical
temperature.10,17 The coupling is given by Eq. (1) of
the main text:10

λ =

∫ ∞
0

dω
α2(ω)

ω
F (ω)

with ω = ωq. The frequencies of the soft ferroelectric
mode excitations around the paraelectric ground state
are given by

ω2
q (u) = 4Γf [Γf − 2J cos(q)] + bu, (10)

in which Γf = A + BE2
f + CEf with Ef weakly de-

pendent on strain through the carrier density n(u) =
n0/([1 + u]3) ≈ n0(1 − 3u). If b > 0, ω2

q decreases with
compressive strain while it would increase under com-
pression for b < 0. On the basis of our DFT calculations
and existing experimental data,3,12,18 we believe that the
latter scenario is realised in isotropically strained STO.
For isotropic strain, the coupling is

λ ∼
∫ π

−π

dq√
4Γf [Γf − 2J cos(q)] + bu

. (11)

The ratio Γf/2J is unity on the ferroelectric quantum
critical line so 2J = 1 is used for simplicity. The val-
ues of the parameters chosen are such that Γf = 1 at
zero doping and strain: A = 1.14, B = 10−6K−2 and
C = 2.5 × 10−3K−1. The Fermi energy, Ef , is con-
verted to carrier concentration to plot the superconduct-
ing dome.10

The critical temperature is:10,17

1 =
λ

2π2

∫ 0

−Ef

dεN(ε)
tanh(ε/2Tc)

ε

where ε is the energy relative to the Fermi energy Ef and
N(ε) is the density of states. The two limits are set by
N(ε) = 0 for ε ≤ −Ef and ε = 0 at Ef . For low doping,
the relevant energy range is near −Ef and the density of

states in 3D is N(ε) ∼
√
ε+ Ef . A change of variables

x = ε/Tc is made and we have to solve10,17

D

λ
=
√
Tc

∫ 0

−Ef/Tc

dx
√
x+ Ef/Tc

tanh(x/2)

x
(12)

numerically with D = 190K1/2 and λ given by Eq. (11).
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FIG. 4. (Colour online) Variation of the ferroelectric mode
frequencies with (a) isotropic strain and (b) biaxial strain in
the basal plane of the tetragonal unit cell. The blue curves
are for the mode perpendicular to the axis of the antiferrodis-
tortive (AFD) rotations and the red curves correspond to the
mode parallel to the AFD axis; in both cases, the crosses mark
the DFT data points. The imaginary frequencies correspond
to unstable phonon modes.

C. Ferroelectric mode in strained STO

To gain an insight into the behaviour of ferroelectric
modes under strain and carrier doping, we carried out
first-principles calculations. Density functional calcula-
tions were performed using the Vienna Ab-initio Simula-
tion Package (vasp),35 with the PBEsol approximation
to the exchange correlation functional.36 We used the
default projector augmented wave pseudopotentials, and
the wavefunction was expanded in plane waves up to a
cutoff of 550eV. The Brillouin zone was sampled using
an 8× 8× 6 k-point grid. We used the low temperature
tetragonal structure of SrTiO3 and relaxed the structures
until the forces were less than 10−4 eV/Å. The phonon
calculations were performed using the phonopy code,37

employing 80 atom supercells and a 4 × 4 × 6 k-point
mesh.

We considered two scenarios: uniform change in lattice
constants (isotropic strain corresponding to hydrostatic
pressure conditions) and an ab plane biaxial strain in the
basal plane of the tetragonal unit cell. Our results for
the frequencies of the ferroelectric (FE) mode are shown
in Fig. 4. A uniform reduction in the lattice constants
hardens the FE mode and the frequency becomes positive
for ∼ 0.1% reduction in the lattice constants [Fig. 4(a)].
On the other hand, with an increase in volume (negative
hydrostatic pressure), the FE mode frequencies become
more imaginary indicative of a stronger FE instability.
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FIG. 5. (Colour online) Ferroelectric mode frequencies at
different strain values and across range of carrier densities.
Left: a), b) Isotropic strain affecting only the volume of the
unit cell; right: c), d) Biaxial strain in the basal plane of the
tetragonal unit cell. Top row: a), c) FE mode parallel to
the AFD (tetragonal c-) axis; bottom row: b), d) FE mode
perpendicular to the AFD axis. The imaginary frequencies
denote unstable phonon modes.

Meanwhile, under biaxial strain, the behaviour of FE
modes parallel and perpendicular to the axis of antifer-
rodistortive (AFD) rotations, i.e. the c-axis, is opposite
[Fig. 4(b)]. For an in-plane compressive strain the FE
modes perpendicular to the AFD axis harden, while the
mode parallel to the AFD axis becomes more unstable.
Under tensile strain, the situation is reversed: modes per-
pendicular to the AFD axis soften and the mode parallel
to the AFD axis is stabilised. Although different FE
modes are softening, the overall behaviour is symmetric
under strain. Uniaxial strain is expected to mirror the
biaxial case analysed here, although the anisotropy be-
tween the two AFD modes may be greater and, in some
geometries, the two modes perpendicular to the AFD axis
may split.

To understand the effect of carrier doping on the fer-
roelectricity and its interplay with strain, we carried out
density functional calculations by adding electrons to the
unit cell (a background compensating charge was added
to maintain overall charge neutrality). The results are
shown in Fig. 5 for the FE modes parallel and perpen-
dicular to the AFD axis, under both isotropic and biaxial
strain. The effect of electron doping is to harden the FE
mode frequency: driving the system closer to the quan-
tum critical point if unstable phonon modes are present
and further away from the quantum critical point if all
FE modes are initially stable.
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FIG. 6. Sketches of two planes of the unstrained tetragonal
unit cell that permit either a) equal (square basal plane) or b)
different (rectangular a-c plane) coupling strengths between
strain and the order parameter along the perpendicular strain
directions considered.

D. Symmetry considerations for coupling terms

In the free energy, the general coupling term between
strain and the superconducting order parameter is24–26

γ̃u|ψ|2,

where u is the symmetric strain tensor with elements
uαβ , α, β ∈ {1, 2, 3} ≡ {x, y, z} in 3D, or {1, 2} in 2D and
γ̃ some coupling.

The free energy transforms as a scalar - the identity;
assuming a uniform s-wave order parameter, |ψ|2 trans-
forms as the identity. u is a rank two tensor27 so γ̃,
which couples a rank two tensor to a scalar is also a rank
two tensor.38 Performing the tensor contraction leads to
a prefactor of each uαβ containing a combination of the
various γ̃αβ elements.

Considering only strains that preserve the pseudocu-
bic symmetry of the unit cell (i.e.: setting all shear
strains, where α 6= β, to zero), and considering the two-
dimensional model, the coupling term can therefore be
written in a simplified form as

γ1u1 + γ2u2 (13)

where γ1,2 contain combinations of the original γ̃αβ ele-
ments and u1,2 are u11,22.

A cubic unit with symmetry Oh has all axes equivalent
so γ1 = γ2. However, in the tetragonal unit cell of low
temperature STO, symmetry D4h, the two couplings may
be different depending on which view is considered. The
structural phase transition means that γc 6= γa, then, for
configurations that involve strains along the tetragonal
c-axis, uc, γ1 6= γ2.

Thus, depending on the view of the tetragonal unit
cell assumed in the 2D discussion, the couplings to u1
and u2 may differ. The two possible initial 2D unit cell
symmetries are sketched in Fig. 6.

In the case of isotropic strain where u1 = u2, the cou-
pling strength is the sum γ1 + γ2 and would therefore
result in a different slope to the change in Tc. It is when
u2 = −νu1 that the effect of different γ values (and com-
peting contributions to the change in Tc) becomes signif-
icant, as demonstrated in Fig. 3 of the main paper.

E. Coupling strengths from pressure (stress) data

The strain-order parameter coupling strengths must
be determined from experimental data which is often in
terms of applied pressure. By introducing the Gibbs
free energy, G = F −

∑
λ σλuλ the stresses (negative

pressures) σλ are now present. Assuming isotropic,
symmetry preserving strains from hydrostatic pressure,
u = u1 = u2; σ1 = σ2 = σ ⇒ G = F − 2σu, and solving
∂G/∂u = 03,6,21 gives the equilibrium value of strain:

u =
σ

ζ
− γ

2ζ
|ψ|2

which is substituted into the free energy (ζ = ζ11 +
ζ12; γ = γ1 + γ2)

G(σ) = |ψ|2
(
α+

σγ

2ζ

)
+
|ψ|4

2

(
β − γ2

2ζ

)
− σ2

ζ
.

Minimisation with respect to ψ∗ gives

∆Tc(σ) = Tc(σ)− T 0
c = −Γσ

2ζ
. (14)

Although superconductivity in STO occurs at temper-
atures well below the cubic-tetragonal structural phase
transition at about 105K,3,39–42 the elastic constants of
STO at low temperatures are not well known12,43,44 so
we use values extrapolated from the high temperature
cubic unit cell: ζ11 = ζ22 = 3.36, ζ12 = 1.07× 1011Pa.3,6

In Fig. 7 the changes in the critical temperature
that would occur with coupling constants calculated
from hydrostatic pressure data for STO,12,18 zinc and
lanthanum13 and [110] strain data for Sr2RuO4

23 (assum-
ing [110] → u1 = u2) are plotted for a range of strains
that can be achieved in STO films by lattice mismatch
to a substrate.45 The range of temperatures is chosen to
lie near the maximum Tc observed in unstrained STO.14

We note that the value of Γ obtained here is certainly
over estimated, as might be expected since the analysis
considers a 2D system but has used hydrostatic pressure
data. However, although the actual coupling strengths
are not accurate, a more precise analysis would have a
similar effect on all examples and the relative sizes of the
Γ values for the different materials are representative.
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FIG. 7. (Colour online) Linear change in the superconduct-
ing critical temperature (asymmetric response continued from
experimental behaviour under compression12) as a result of
isotropic strain [Eq. (7) of main text] for several materials
and |u| < 1.7%. The materials and scaled coupling strengths
are: STO, Γ = −600K; Zn, Γ = −20K; Sr2RuO4, Γ = −10K
and La, Γ = 90K.
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berger, and K. Behnia, Nature Physics 13, 643 (2017).

10 J. M. Edge, Y. Kedem, U. Aschauer, N. A. Spaldin, and
A. V. Balatsky, Phys. Rev. Lett. 115, 247002 (2015).

11 A. Stucky, G. W. Scheerer, Z. Ren, D. Jaccard, J.-M.
Poumirol, C. Barreteau, E. Giannini, and D. van der
Marel, Scientific Reports 6 (2016).

12 E. R. Pfeiffer and J. F. Schooley, Journal of Low Temper-
ature Physics 2, 333 (1970).

13 N. B. Brandt and N. I. Ginzburg, Contempory Physics 10,
355 (1969).

14 C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler,
and E. R. Pfeiffer, Phys. Rev. 163, 380 (1967).

15 X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S. Krämer,
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