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Resistance and magnetic torque measurements are reported in a layered organic superconduc-
tor, β”-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2 with Tc=4.8 K, where BEDT-TTF stands for
bis(ethylenedithio)tetrathiafulvalene. Because of the large anion between the BEDT-TTF conduct-
ing layers, the superconductivity of this salt is highly anisotropic. In magnetic fields parallel to the
conducting layers for T= 0.4 K, the magnetic torque shows a large diamagnetic signal associated
with hysteresis up to ∼21 T, suggesting the upper critical field Hc2

>
∼21 T at 0.4 K. The large reduc-

tion of the diamagnetic signal is observed above 16 T, which shows a Fulde and Ferrell, and Larkin
and Ovchinnikov (FFLO) phase transition. For T= 0.5 K, the interlayer resistance has non-zero
value in a wide field region up to Hc2, arising from the Josephson vortex dynamics. Successive dips
in the second derivative curves of the resistance are observed between 16 T and Hc2, which are as-
cribed to the commensurability effect between the Josephson vortex lattice and the order parameter
oscillation of the FFLO phase. The commensurability effect is observed only in nearly parallel fields,
showing that the FFLO phase is stable in a very limited field angle region. The temperature-field
phase diagram is determined.

PACS numbers: 71.18.+y 71.20.Rv 74.70.Kn

I. INTRODUCTION

Layered organic superconductors are modeled as stacks
of Josephson junctions since the interlayer coherence
length (ξ⊥) is comparable to the layer spacing. Because
of the highly two dimensional (2D) nature, a novel su-
perconducting (SC) phase has been reported to appear
in parallel fields sufficiently below the critical tempera-
ture Tc.

1–17. In conventional superconductors, the SC or-
der parameter is spatially homogeneous. However, when
the superconductivity is in the clean limit and the or-
bital effect is quenched, a novel SC state where the order
parameter oscillates in real space can be stabilized even
above the Pauli limit HPauli. This phase was first pro-
posed by Fulde and Ferrell18, and then by Larkin and
Ovchinnikov (FFLO).19 For most of the layered organic
superconductors, the superconductivity is in the clean
limit, and the orbital effect is strongly suppressed in par-

allel fields. Therefore, layered organic superconductors
are recognized as the best candidates for the FFLO phase
studies. Among the various candidates, λ-(BETS)2FeCl4
is known to show characteristic vortex dynamics in the
FFLO phase. λ-(BETS)2FeCl4 shows a metal-insulator
transition at 8 K, which is associated with an antifer-
romagnetic order.20–22 The antiferromagnetic insulating
phase is broken by applying a magnetic field of about 10
T, and then a paramagnetic metallic phase is recovered.21

In fields parallel to the conducting ac planes, the SC
phase is induced in the field range from 17 T to 42
T.2,4,23 This field-induced SC phase is understood by
the Jaccarino-Peter compensation mechanism.24 In par-
allel fields, the magnetic flux lines penetrate only the
insulating layers, where Josephson vortices (JVs) are
formed.[Fig. 1(a)] If the JVs are driven by a perpen-
dicular current, non-zero interlayer resistance is observed
even in the SC phase. In λ-(BETS)2FeCl4, the interlayer
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FIG. 1: (color online) (a) Schematic of a layered supercon-
ductor in parallel magnetic fields. JVs, which are formed
in the insulating layers, can be driven by a perpendicu-
lar current. (b) Schematics of superconducting order pa-
rameter oscillations and JVs in a FFLO phase for a lay-
ered superconductor. (c) Crystal structure of β”-(BEDT-
TTF)4[(H3O)Ga(C2O4)3]C6H5NO2

resistance shows successive dips between 17 T and 25 T in
the SC phase.4 In the FFLO phase, the order parameter
is given by ∆(r) = ∆0cos(qr), where q is the center-of-
mass momentum of the Cooper pair. The dips are inter-
preted as the magnetic field-dependent commensurability
(CM) effect between the wavelength of the FFLO order
parameter oscillation λFFLO = 2π/q and the JV lattice
constant l4,25: the dips appear when the JV lattice is
collectively pinned by the periodic nodes of the FFLO
order parameter.[Fig. 1(b)] On reasonable assumptions,
the wavelength λFFLO is estimated, ranging from 20 to
70 nm. So far, only in λ-(BETS)2FeCl4, the CM effect
has been found. One of the crucial factors for the obser-
vation of the CM effect is that the JV lattice are easily
driven collectively: the SC state is highly 2D.

The organic superconductor, β”-(BEDT-
TTF)4[(H3O)Ga(C2O4)3]C6H5NO2 (hereafter β”-salt)
has the large anion between the BEDT-TTF layers
[Fig.1(c)],26 which makes the electronic state highly 2D.
The interlayer coherence length ξ⊥ ≈1nm is comparable
to the layer spacing. Therefore, the orbital effect is
strongly suppressed in parallel fields and the JVs are
pinned very weakly. We have made systematic interlayer
resistance and magnetic torque measurements in a
wide temperature and field region for the β”-salt, and
found characteristic field dependence of the interlayer

FIG. 2: (color online) Temperature dependence of the inter-
layer resistance for samples ♯1 and ♯2.

resistance between 16 T and Hc2. This is the strong
evidence of the CM effect in the FFLO phase. The
temperature-field phase diagram in parallel fields and
the field angular dependence of the CM effect are also
discussed.

II. EXPERIMENTS

Single crystals of the β”-salt were prepared by elec-
trochemical oxidation in an appropriate solvent.26 The
crystal structure is monoclinic (C2/c) with the lattice
parameters: a =1.02782(3) nm, b=1.98733(6) nm, c
=3.50431(10) nm, β=93.4230(10)◦ at 100K. [Fig.1(c)]
For the resistance measurements, two gold wires (φ10µm)
were attached on both sides of the crystal (conducting
ab plane) by carbon paste. The sample resistance R
was measured by a conventional four-probe AC technique
with an electric current I perpendicular to the conduct-
ing layers. The magnetic torque was measured by a mi-
crocantilever technique.27 These experiments were per-
formed by a 31T resistive magnet at National High Mag-
netic Field Laboratory, Tallahassee, Florida.

III. RESULTS

A. Resistance

Figures 2 presents the temperature dependence of the
interlayer resistance for samples ♯1 and ♯2. Both sam-
ples show similar behavior except above 200 K. As the
temperature decreases, the resistance has a minimum at
∼100 K, increases down to 6 K, and then rapidly de-
creases due to the SC transition. The overall behavior is
consistent with previous reports.26,28,29

The semiconducting behavior of the resistance below
∼ 100 K was first interpreted as the coexistence of in-
sulating and metallic states, which are induced by dis-
order in the anions and/or the ethylene groups of the
BEDT-TTF molecules.28 Raman spectra show a split-
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FIG. 3: (color online) (a) Interlayer resistance in perpendic-
ular magnetic fields for sample ♯1. Inset: Fourier transform
spectrum of the SdH oscillation at 0.5 K. (b) Fermi surface
calculated by a tight binding approximation. In the first Bril-
louin zone (hexagonal shape), two closed Fermi surfaces, elec-
tron and hole pockets are formed, both of which have the
same cross-sectional areas.

ting of the ν2 mode below 100 K, suggesting a charge
order.29 13C NMR measurements also show a charge or-
der at low temperatures even in the SC phase.30,31 On
the other hand, the observation of quantum oscillations
at low temperatures28 provides convincing evidence of a
metallic state (coherent motion of the electrons) in the
BEDT-TTF layers. The semiconducting behavior of the
interlayer resistance suggests that the interlayer transfer
integral in the charge ordered state is sufficiently smaller
than kBT and thermal hopping (incoherent transport) is
dominant in the interlayer transport.

Figure 3 (a) presents the field dependence of the resis-
tance in perpendicular fields. For T=0.5 K, the resistance
rapidly increases above ∼1 T, has a sharp peak at ∼2.5
T and then decreases. The decrease of the resistance
may suggest that the charge order is suppressed by the
field. Above 15 T, where the resistance is almost con-
stant, we observe Shubnikov-de Haas (SdH) oscillations,
whose Fourier transform spectrum is shown in the inset.
The frequency F=220 T is consistent with the previous
report.29 At higher temperatures, the resistance peak and
SdH oscillations are reduced. The band structure calcu-

FIG. 4: (color online) Semilog plot of the magnetic field de-
pendence of the interlayer resistance at various field angles
for sample ♯1. Inset: Linear plot of the resistance and second
derivative curves −d2R/dH2 for the up and down sweeps at
θ=0◦.

lated by a tight binding approximation is presented in
Fig. 3 (b).32 We see two 2D Fermi surfaces, electron and
hole pockets. Because of the carrier compensation, both
the pockets have the same cross-sectional area, which is
consistent with the observation of the single SdH fre-
quency. The SdH frequency of 220 T corresponds to 11
% of the Brillouin zone, which well agrees with the band
calculation, 11 %. If the charge order is formed,31 the
Fermi surfaces are reconstructed and then many smaller
pockets will be formed, leading to low frequency oscilla-
tions. However, the observation of the single frequency
shows that the charge order is strongly suppressed by
high fields or magnetic breakdown occurs at the Bril-
louin zone boundary folded by the charge order above 15
T.
Figure 4 presents the field dependence of the resistance

at various field angles for T=0.5 K. When the field is par-
allel to the layers (H ‖ a, θ=0◦), the resistance rapidly
increases above ∼1 T and has a kink at ∼13 T. After
that, a broad maximum appears at ∼ 19 T. As the field
is tilted, the resistance curve shifts to low fields, asso-
ciated with the suppression of the kink. The inset of
Fig. 4 shows the linear plot of the resistance and sec-
ond derivative curves −d2R/dH2 for the up and down
sweeps at θ=0◦. We note small structures in the sec-
ond derivative curves, which are reproducible in both
field sweeps. The resistance curve is linear to the field
(−d2R/dH2=0) above 21 T but has a downward curva-
ture below it (−d2R/dH2 >0), whereHc2 can be defined.
This Hc2 value is consistent with the magnetic torque
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FIG. 5: (color online) Second derivative curves −d2R/dH2

for the down sweep at various field angles. The curves are
shifted for clarity.

data, as shown later. Below 21 T, we see three sharp
dips, denoted by Hdip. The rather broad dip at ∼13 T is
due to the upward curvature around the kink.
Figure 5 presents the second derivative curves of the

resistance at various angles. For θ ≈0◦, we see the dip
structures between 16 T and 20 T. As the field is tilted,
the dips are suppressed and disappear for θ >∼3◦. The
SdH oscillations are observed at high fields for θ >∼50◦.
Figures 6 (a) and (b) present the magnetic field depen-

dence of the interlayer resistance at various field angles at
1.64 K and 3.6 K, respectively. For θ=0◦ at 1.64 K, the
resistance has a similar kink at ∼ 8 T and a maximum at
∼ 16 T. As the field is tilted, the resistance curve shifts
to low fields. We also see a dip in the second derivative
curve −d2R/dH2 as indicated by an arrow in the inset.
At 3.6 K, we see a gradual increase of the resistance and
a maximum, but no dip in −d2R/dH2 [inset of (b)].
Figure 7 presents the angular dependence of Hc2 and

Hdip at three different temperatures. At these temper-
atures, Hc2 has a maximum at θ=0◦ and decreases as
the field is tilted. The red and blue curves show the
simulations for the Tinkham 2D34 and anisotropic 3D
models,35 respectively. The 2D model apparently repro-
duces the experimental results much better than the 3D

FIG. 6: (color online) Semilog plots of the resistance at
(a) 1.64 K and (b) 3.6 K. Insets: Second derivative curves
−d2R/dH2 of the main panel data. The curves are shifted
for clarity.

model. At 1.6 K and 3.6 K, we see deviations from the
simulations near zero degree. The reason will be due to
ambiguity of the definition of Hc2, the Hc2 values in-
evitably include rather large ambiguity, arising from the
vortex flow resistance, superconducting fluctuation, and
background magnetoresistance behavior. At 0.5 K, the
dips appear at high fields only for θ <2◦. Although the
data points of Hdip are rather scattered, we see four se-
ries of the dips, two of them are independent of the angle
and the others decrease with angle. At 1.6 K, we see only
a single dip for θ=0◦.

Figure 8 (a) presents the magnetic field dependence of
the resistance at various temperatures. As temperature
increases,both the kink and maximum shift to low fields.
In the second derivative curves [Fig. 8 (b)], we can sim-
ilarly define Hdip and Hc2 as indicated by arrows, both
of which decrease with increasing temperature. The dips
are suppressed with increasing temperature and not evi-
dent above 2.5 K.
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FIG. 7: (color online) Angular dependence of Hc2 and Hdip

at (a) 0.5 K, (b) 1.6 K, and (c) 3.6 K. Red and blue curves
show the simulations for the Tinkham 2D and anisotropic 3D
models, respectively. The parameters used for the simulations
are: Hc2⊥=2.5 T and Hc2‖=21.8 T at 0.5 K, Hc2⊥=0.55 T
and Hc2‖=15.5 T at 1.6 K, and Hc2⊥=0.15 T and Hc2‖=5.5
T at 3.6 K. Dotted curves are guides for the eye. Red shaded
regions show the expected FFLO phases. The phase boundary
at ∼3◦ is unclear in (a).

B. Magnetic torque

The magnetic torque is expressed as τ = µ0M × H,
where M is the magnetization. For highly 2D supercon-
ductors, when the field is nearly parallel to the layers and
the parallel field H‖ is much larger than the lower criti-
cal field, the magnetic torque is reduced to the formula,
τ ≃ µ0M⊥H‖,

36 whereM⊥ is the perpendicular magneti-
zation. Therefore, τ/H‖ directly gives the magnetization
curve M⊥(H⊥).

The torque curves as a function of field are plotted in
Fig. 9 when the field is nearly parallel to the layers. We
observe large hysteresis in a wide field region, which is
ascribed to the vortex pinning in the SC layers. Above
∼ 21 T, the torque curve becomes reversible, where the

FIG. 8: (color online) (a) Semilog plot of the resistance at
various temperatures in parallel fields. (b) Second derivative
curves −d2R/dH2. The curves are shifted for clarity.

irreversibility field Hirr can be defined (inset of Fig. 9).
For θ ≈0◦, the torque signal is very small (M⊥ ≈0),
showing almost all the flux lines penetrate the insulating
layers. The irreversible behavior clearly shows the bulk
superconductivity up to Hirr. Since the gradual change
of the torque curves, we can not define Hc2, which should
be larger thanHirr. TheHirr value approximately agrees
with Hc2 determined by the resistance measurements.

Typical torque curves for two different rotations at 0.4
K are shown in the inset of Fig. 10. A sharp feature
around θ=0◦ arises from the SC transition, which is su-
perimposed on a smooth background given by a cos(2θ)
curve. Large hysteresis between the two rotations is as-
cribed to the vortex pinning in the SC layers. The aver-
age of the two-rotation curves gives the reversible part of
the diamagnetic torque signal. In parallel fields (θ = 0◦),
we obtain no torque (no diamagnetism) because M⊥ =0.
The torque steeply decreases as the field is tilted from
the layers. This diamagnetism (−M⊥ ∝ H⊥) means that
most of the flux lines penetrate the insulating layers but
not in the SC layers.11 As the magnetic field is further
tilted, the torque has a sharp dip (maximum of the dia-
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FIG. 9: (color online) Magnetic torque curves as a function of
field in nearly parallel fields at 0.5 K. The curves are shifted
for clarity. Inset: Close-up of the torque curve for θ=-0.13◦.
Large hysteresis due to vortex pinning is observed up to ∼21
T, which is defined as the irreversibility field Hirr

FIG. 10: (color online) Averaged torque curves at fields from
10 T to 29 T with a step of 0.5 T. Inset: Typical torque
curves for two different rotations (blue and red curves). The
average of the two-rotation curves (green curve) corresponds
to the reversible part of the diamagnetic torque signal without
the pinning effect. The peak height ∆τpeak is defined by the
arrow.

FIG. 11: (color online) Magnetic field dependence of the
torque peak height ∆τpeak, defined in the inset of Fig. 10.
Arrows indicate kinks in the field dependence, showing the
reduction of the diamagnetic signal.

magnetism) and then increases, showing that many flux
lines start penetrating the SC layers. At a higher an-
gle, the torque curve becomes reversible and then the SC
state is completely broken. Figure 10 presents the av-
eraged torque curves at various fields. The diamagnetic
torque signal gradually decreases with increasing field.
Even at ∼ 25 T, which is much larger than Hirr, the dia-
magnetic signal is slightly observed, likely due to large
SC fluctuations. Figure 11 presents the magnetic field
dependence of the peak height ∆τpeak of the averaged
torque curve. The peak height, defined in the inset of
Fig. 10, corresponds to the maximum diamagnetic sig-
nal. The kinks in Fig. 11 show the presence of a phase
transition as discussed below.

IV. DISCUSSION

The phase diagram in parallel fields is presented in
Fig. 12, where Hc2 and Hdip from the resistance mea-
surements, and Hirr and Hkink from the torque measure-
ments are plotted. The irreversibility field Hirr=21 T at
0.5 K agrees with Hc2. The Hkink value coincides with
Hc2 at 3.6 K but is apparently lower than Hc2 at 1.56 K
and 0.4 K. In the FFLO phase, the flux lines will easily
penetrate the SC layers along the nodal lines of the order
parameter from the sample edges, which leads to the re-
ductions of the diamagnetic torque signal. Therefore, the
kinks of ∆τpeak in Fig. 11 provide reasonable evidence
of the FFLO phase boundary (HFFLO) as has been dis-
cussed in other layered organic superconductors.4,14

The dips of the −d2R/dH2 curves show relatively
strong pinning of the JVs at Hdip. The origin of the
dips will be ascribed to the CM effect between the wave-
length of the FFLO order parameter oscillation λFFLO

and the JV lattice constant l4,25. The lattice constant is
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TABLE I: Superconducting parameters in layered organic superconductors

material Tc [K] µ0Hc2⊥[T] µ0Hc2‖[T] Hc2‖/Hc2⊥ µ0HFFLO[T] µ0HFFLO/Tc[T/K] CE Ref.

κ-(ET)2Cu(NCS)2 9.5∼10 7 28∼34 4∼4.8 21∼23 2.0∼2.2 none 1,5,6,9,10,13,14

λ-(BETS)2GaCl4 5∼5.7 4 12∼13 3∼3.3 9.5∼10 1.7∼2.0 none 3,8,15

λ-(BETS)2FeCl4 3∼4 - 16∗ - 7∗ 1.8∼2.1 © 2,4,11,12

β”-(ET)2SF5CH2CF2SO3 4.7∼5.2 1.3 14 11.5 9.5-10 1.9∼2.1 ∗∗ 7,16

β”-salt 4.8 2.5 21 8.4 15 3.1 © this work

∗ : estimated by considering the internal field.4
∗∗ : not reported.
ET : BEDT-TTF
β”-salt : β”- (BEDTTTF)4[(H3O)Ga(C2O4)3] C6H5NO2

CE : commensurability effect
Ref. : references

FIG. 12: (color online) Magnetic field phase diagram in par-
allel fields. Hc2 and Hdip are determined from the resistance
measurements, and Hirr and Hkink are from the torque mea-
surements. The estimated wavelength of the FFLO order pa-
rameter oscillation, λFFLO at 0.5 K is also shown on the right
scale.

given by l = Φ0/sH , where s is the layer spacing (s=1
nm) and Φ0 is the flux quantum. In the homogeneous SC
phase, λFFLO is infinite, but expected to jump to a finite
value at the FFLO transition. After that, λFFLO de-
creases with increasing field up to Hc2. It is theoretically
difficult to obtain the optimum q vector for anisotropic
Fermi surfaces such as the β”-salt [Fig. 3(b)] because
the stability of the FFLO phase is closely related to the
nesting condition of the Fermi surface.38 For simplicity,
we assume that the q vector is perpendicular to the field
in the following discussion. As long as the q vector is
not parallel to the field direction, our conclusion is qual-
itatively unaffected. As discussed in λ-(BETS)2FeCl4

4,
We also assume that the dips appear in the −d2R/dH2

curves when the ratios m = l/λFFLO are given by simple
integers and it is close to unity at HFFLO for simplicity.
On these assumptions, we obtain λFFLO at 0.5 K on the
right scale in Fig. 12. We can see an upward curvature of

λFFLO with deceasing field. The same tendency can be
obtained for other combinations of the number m. The
λFFLO values obtained here are comparable to those in
λ-(BETS)2FeCl4.

4

Tachiki et. al., theoretically discussed the SC order pa-
rameter of a FFLO phase, including the orbital current
effect, and obtained the field dependence of λFFLO.

37

The λFFLO(H) curve has an upward curvature, rang-
ing from 30ξ‖ to 13ξ‖ when the orbital effect is strongly
suppressed. As the orbital effect increases, the FFLO
field region shrinks. Shimahara theoretically estimated
λFFLO for a 2D system and showed that λFFLO at Hc2

decreases down to πξ‖ with decreasing temperature.38 In
Fig. 12, we obtain λFFLO=3ξ‖∼11ξ‖. In Fig. 7 (a), the
four series of the dips are found; two are independent of
the angle and the others decrease with angle. Theoreti-
cally, FFLO phases with multi q vectors are expected to
appear at sufficiently low temperatures.39 In such phases,
the optimum q vectors will show complicated field depen-
dence. At present, it is not clear whether a multi-q-vector
phase is realized for the β”-salt. Further investigations
will be required to understand the angular dependence
of Hdip.
In Fig. 7 (a), HFFLO seems to decrease as the field is

tilted from the layer. The FFLO phase should be closed
in the phase diagram; HFFLO should merge with the
Hc2 curve. Such behavior is not seen in our experiments.
Further studies are required to understand these results.
Table I presents the SC parameters for layered or-

ganic superconductors showing FFLO phase transitions.
Among various superconductors, the CM effect has
been observed for λ-(BETS)2FeCl4 and β”-salts. The
Hc2‖/Hc2⊥ value is a good measure of the two dimen-
sionality of the SC state. The CM effect will be ob-
served when the JVs are collectively driven, which re-
quires the weak Josephson coupling, highly 2D SC state.
Therefore, the large Hc2‖/Hc2⊥ value in the β”-salt is
consistent with the observation of the CM effect. β”-
(ET)2SF5CH2CF2SO3 is another good candidate for the
CM effect.
In the weak coupling BCS theory, the energy gap at 0K

is given by ∆0=1.76kBTc. Using the Pauli limit HPauli =
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∆0/
√
2µB, we obtain µ0HPauli/Tc=1.84 [T/K]. It is gen-

erally expected that the FFLO transition takes place at
∼ HPauli. Since these materials are probably non-s-wave
superconductors, the weak coupling model is not directly
applicable. However, we note that the µ0HFFLO/Tc val-
ues for most of the salts are comparable to 1.84 except 3.1
for the β”-salt. The reason of HFFLO > HPauli for the
β”-salt will be closely related to the Fermi surface struc-
ture. The β”-salt has only small Fermi surfaces [Fig.
3(b)], whereas the others have a closed pocket and two
sheets of Fermi surfaces with flat parts. The flat parts,
which have a nesting instability, can form many Cooper
pairs with a center-of-mass q vector in a FFLO phase.
Therefore, the flat parts are more favorable for the FFLO
phase transition and will give a lower HFFLO. The less
flat parts of the Fermi surface for the β”-salt will lead
to a relatively high HFFLO. By contrast, Hc2‖ will be
mainly limited by the orbital effect, which is strongly sup-
pressed for the β”-salt because of the large anion between
the BEDT-TTF layers.
Finally we discuss the origin of the kink in the re-

sistance curve at ∼ 13 T for θ = 0◦in Fig. 4. Non-
zero resistance in a wide field region up to Hc2 shows
that JVs are easily driven by the perpendicular current.
At low temperatures and small fields, the SC layers are
strongly Josephson-coupled [Fig.1(a)]. As the field in-
creases, the interlayer coupling weakens and then the
layers will be decoupled. After the decoupling, the JV
lattice in each layer can be driven independently. This
decoupling, which effectively reduces the pinning force of
the JVs, will increase the interlayer resistance. This is a
possible mechanism of the kink at ∼ 13 T. As the field is
tilted from the layer, the flux lines penetrate the SC lay-
ers and the pancake vorticess are formed. This flux line
structure will obscure the decoupling transition of the JV
layers, as seen in Fig. 4. As the temperature increases,
the kink field decreases [Fig. 8(a)]. The result is con-
sistent with the above picture, the Josephson coupling is
reduced with increasing temperature.

V. CONCLUSIONS

We have reported the resistance and magnetic torque
measurements in the highly 2D organic superconduc-

tor, β”-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2 with
Tc=4.8 K. At 0.4 K in parallel magnetic fields, we observe
non-zero interlayer resistance due to the JV dynamics in
the wide field region. At ∼13 T, the resistance has the
kink, which is likely due to the interlayer decoupling of
the JVs. In the region between 16 T and Hc2, we ob-
serve the successive dips in the −d2R/dH2 curves. The
dips, showing the relatively strong pinning of the JVs,
are interpreted as the CM effect between the Josephson
vortex lattice and the periodic order parameter oscilla-
tion of the FFLO phase. The magnetic torque curves
associated with the large hysteresis show that the bulk
superconductivity is evident up to 21 T, consistent with
the resistance results. The significant reduction of the
diamagnetic signal above ∼16 T shows the FFLO phase
transition, consistent with the observation of the succes-
sive dips in the −d2R/dH2 curves between 16 T and Hc2.
On the few assumptions, we obtain the field dependence
of λFFLO, which ranges from 3ξ‖ at Hc2 to ∼11ξ‖ at
HFFLO. The angular dependence of the dip field Hdip

shows the four series; two are independent of the an-
gle and the others decrease with angle. The behavior
may suggest the possibilities of the complicated q vector
phases in the FFLO phase.
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